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Abstract
Carotenoids and polyphenols are the natural pigments which are distributed to the pigmented rice bran. These 
pigments can prevent chronic disorders related to oxidative stress and antioxidant properties. This article  
focuses on carotenoids and polyphenols as ones among the natural pigments. Carotenoids and polyphenols exert 
an antioxidant property and anti-inflammatory agents; enhance immune responses  and prevent Age-related 
Macular Degeneration (AMD). In combination with protein and dietary fiber, the bioavailability of carotenoids 
decreases in gastrointestinal tract. The inefficient absorption of anthocyanins in the small intestine resulted from 
unstability of the physiochemical pH and the degradation of anthocyanins in the small intestine. These have led 
to low bioavailability of anthocyanins.  
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1 Introduction

Traditional medicine in Asia has utilized various products  
from rice (Oryza sativa L.) for a long time. These 
uses of rice were known to the aboriginal people [1]. 
According to ethnopharma-cological studies, since 
ancient times, rice has been traditionally prescribed 
for therapeutic purposes, especially whole brown 

rice which is considered perfect food in various  
Asian countries including Thailand, Myanmar, China, 
Malaysia, Indonesia and India [1], [2]. For example, 
rice was used as medicine in China by royal Chinese 
physicians [1]. Malayan medicine stated that water, 
after soaking pounded raw rice or fine rice flour in 
it, could be used to treat eye diseases [3] and also to 
treat acute inflammation of inner body tissues. Dried 
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rice powder has been applied to treat skin ailments. 
In Cambodia, the hull of mature rice plant was used 
to treat dysentery. The hulls of three-month-old rice 
plants were used as diuretic. In the Philippines, rice 
bran extract was used to prevent and to cure beri-beri 
as it is rich in vitamin B1 [4]. Moreover, in traditional  
Indian Ayurvedic medicine, rice is used to heal  
nutritional disorders, by consuming it as boiled rice 
with the starchy water and a small amount of salt 
[5]; this alleviates the pains in the digestive system. 
Furthermore, the same prescription also increased the 
virility of men.
 Rice porridge administered orally can cure  
digestive disorders, such as constipation and gas pain, 
typhoid fever and hematemesis (vomiting of blood). 
The specific traditional rice Njavara has exhibited anti-
inflammatory activity [6], [7]. Additionally, Chinese 
people claimed that rice as traditional medication 
could improve the spleen as well as the stomach,  
increase appetite and curing indigestion [1]. Hagiwara  
et al. [8] reported that pre-germinated brown rice 
contains small amounts of γ-aminobutyric acid 
(GABA), which may prevent patients with type II  
diabetes mellitus from macrovascular diseases  
associated with hyperglycemia and hyperlipidemia, 
such as ischemic heart disease, and can lower blood 
glucose concentrations. In addition, rice bran oil  
contains γ-oryzanol, which decreases the risks of 
obesity and of type II diabetes [9], reduces blood 
cholesterol both in vivo and in a clinical study [10], 
replaces chemotherpy [11], [12], antibacterial [13], and 
stimulates hair growth and prevents skin aging [14]. 
 Pigmented rice is considered as a functional 
food in China, Japan, Korea and India due to its 
high polyphenol and anthocyanin contents [16]. 
However, the nutrient composition of rice depends 
on its cultivation [17], and its contents of bioactive  
compounds also depend on genetic characteristics 
of the rice variety [18], [19]. Some cultivars of rice 
have pigments on the pericarp and seed coats, causing  
red, black or purple coloration. When comparing 
pigmented and white rice brans nutritionally, the 
pigments act as sources of phytochemicals. These 
include hydrophilic and semi-hydrophilic compounds 
(anthocyanins and polyphenols) which usually  
disseminate in the pericarp and aleurone layers of the 
grains [20]–[22]. In addition, black rice bran is rich 
in lipophilic compounds including carotenoids [23], 

[24], tocopherols, tocotrienols and γ-oryzanol, which 
are distributed in the outermost pericarp, germ and 
aleurone layers [25], [26]. All these compounds may 
provide health benefits and prevent chronic disorders 
related to oxidative stress and antioxidant activity  
[27]–[29]. The therapeutic roles of rice-derived 
products and their constituents were curated from  
literature as shown in Figure 1. This review focuses 
on the naturally occurring pigments in pigmented rice 
bran, such as carotenoids and anthocyanins.

2 Carotenoids in Cereal Grains

Carotenoid pigments in nature provide red, yellow  
or orange coloration to fruits and vegetables. These 
compounds are also found in plant seeds [30]. 
They include α- and β-carotene, lutein, lycopene 
and zeaxanthin, which are red and yellow in colour  
(Figure 2). These are distributed in the outermost 
pericarp, germ and aleurone layers of black rice 
bran [23], [24]. Some studies have reported that the 
predominant carotenoids in wheat are lutein and 
two non-pro-Vitamin A xanthophylls, which are  
oxygenated derivatives of carotenes [31], [32]. Their 
chemical structures include hydroxyl groups, ones on 
each side of the molecule. Xanthophylls are more polar 
than carotenes and tend to be distributed between LDL 
and HDL [33]. Their hydroxyl groups may play an 
important role in the antioxidant function. 
 Carotenoids, which act as radical scavengers and 
singlet oxygen quenchers [34], decrease the risk of 
degenerative diseases, such as cancer, cardiovascular 
diseases, and age-related macular degeneration, and 

Figure 1: Therapeutic functions of rice and pigmented 
rice [15].
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help maintain skin health [35], [36]. They also act as an 
anti-inflammatory agents, enhance immune responses 
[37] and prevent Age-related Macular Degeneration 
(AMD) [33]. In 2007, the World Cancer Research Fund 
(WCRF) reported that carotenoid intake and breast 
cancer are associated; therefore, high α-carotene, 
β-cryptoxanthin, lutein, (+)zeaxanthin, lycopene and 
total carotenoids levels in bloodstream can decrease 
the risk of breast cancer [38]. Approximately, 40  
carotenoids are present in the human diet, 20  
carotenoids in human blood and tissues [37], while 
6 carotenoids are found in human serum, namely 
β-cryptoxanthin, lutein, lycopene, zeaxanthin, 
β-carotene and β-carotene [33]. β-carotene and 50 
of the carotenoids can be metabolized and converted 

to vitamin A. Moreover, among these carotenoids, 
β-carotene has the highest provitamin A activity [33].
 When carotenoids enter the digestive system, they 
are incorporated into micelles in the gastrointestinal  
tract and absorbed by mucosal cells of the small  
intestine [39]. Primarily, carotenoids are partly 
cleaved and converted to retinylester. Carotenoids  
and retinylester are bound to chylomicrons before  
entering the lymphatic system and the blood circulation,  
respectively, as shown in Figure 3 [40].

Figure 2: Chemical structures of the carotenoids in 
cereal grains.
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Figure 3: The absorption of carotenoids from the food 
matrix. 1) and 2) Disruption of food matrix, 3)  Release 
of bile salts from the common bile duct, 4)  Uptake of 
carotenoid molecules by a lipid droplet and formation 
of a micelle, 5) Uptake of carotenoid molecules in 
enterocyte, and 6) Release of carotenoid molecules to 
blood circulation [79].
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 Because of the complexation of carotenoids with 
soluble protein and dietary fiber, they are captured in 
the plant cell walls, the bioavailability of β-carotene 
becomes quite low (10–65%) [41]. When complexing  
with protein, this inhibits its transportation into the 
gastric emulsion with bile salts. Thus, the gastric  
emulsion will always inhibit the absorption of carotenoids  
in the small intestine. The release of carotenoids from 
the food matrix depends on the degree of digestion, 
which may be assisted by mechanical processing  
reducing the particle sizes prior to digestion. Increase in 
specific surface would help the contact with pancreatic  
lipases and bile salts, improving digestion and release 
[42]. The absorption of carotenoids would begin at 
the micelle formation because the micelles always  
affect their bioavailability. Additional dietary fat could 
also improve the bioavailability of carotenoids [43]. 
The addition of extra oil usually benefits non-polar  
carotenoids more than polar carotenoids (xanthophylls) 
[44]. Also, other factors, such as thermal processing  
and structural barriers in food (matrix, cell wall  
integrity, bio-encapsulation), have influenced on  
bioaccessibility. The lipids which can be added to 
improve the bioavailability are the most important 
factor determining the bioavailability of carotenoids. 

3 Polyphenol in Cereal Grains

The phenolic compounds present in rice include phenolic  
acids, flavonols, anthocyanins, and procyanidins. 
Generally, non-pigmented rice varieties provide only 
phenolic acids, whereas pigmented rice is richer in 
polyphenol compounds, especially in anthocyanins and  
procyanidins. For instance, red rice contains procyanidins,  
while black rice contains either anthocyanins or 
procyanidins, or both, depending on the variety [45]. 
Phenolic acid exists in free, soluble conjugated, 
and insoluble bound forms. All of these are highly  
concentrated in the bran fraction [46], [47]. There are 
6 types of phenolic substances in raw black waxy rice 
bran, namely gallic acid, (+)-catechin, p-coumaric acid, 
syringic acid, ferulic acid and caffeic acid. Gallic acid 
is the major phenolic acid, followed by ferulic acid, 
while syringic acid contributes the smallest amount. 
These phenolic substances play an important role in 
the antioxidant activities and offer health benefits for 
those who suffer  from the chronic disorders [48]–[51]. 
Some reports have indicated that the total phenolic 

content in white rice or unpolished rice (14.6–33.4 
mg/100 g) and red rice (66.8–422.2 mg/100 g) was 
higher at 1 week of development in the flowering stage 
than in the mature stage, whereas black rice had higher 
antioxidant activity at maturity [52], [53]. Rice bran 
showed the largest total phenolic content, especially as 
bound fraction. From Table 1, total phenolic contents 
of red and black pigmented rice were compared with 
the white rice grains. The phenolic acids in white, red 
and black rice bran accounted for 88%, 89% and 91%, 
respectively. White rice had significantly lower levels 
of phenolic acids than pigmented rice bran, whereas  
black rice bran showed significantly higher levels of  
total phenolic contents than red rice bran. Protocatechuic  
Acid (PA) content was detected only in black and 
red rice bran. Regarding p-Hydroxybenzoic Acid  
(p-HA), it was detected in red and white rice bran. The 
Syringic Acid (SRA) content in red and white rice bran 
was significantly higher than that in black rice bran. 
Trans-p-coumaric (trans-p-CA), Ferulic Acid (FA), 
trans-sinapic acid (trans-SNA), and Isoferulic Acid 
(IFA) contents in white rice bran were higher than 
those in red and black rice bran. 

Table 1: Total phenolic contents of white, red, and 
black rice grains [53] 

Freeb Free/
Conjugatedb Boundb

Whole Grain
Whitec 0.07±0.01 0.14±0.02 0.19±0.06
Redc 0.17±0.00 0.70±0.003 0.50±0.04

Blackc 0.25±0.001 0.42±0.01 0.63±0.02
Embryo

Whitec 0.42±0.05 1.46±0.09 0.94±0.09
Redc 0.44±0.01 1.49±0.03 1.28±0.07

Blackc 0.53±0.04 1.80±0.08 1.40±0.17
Endosperm

Whitec 0.05±0.00 0.05±0.001 0.03±0.00
Redc 0.05±0.00 0.05±0.001 0.08±0.02

Blackc 0.06±0.01 0.07±0.001 0.05±0.03
Bran

Whitec 0.30±0.04 1.08±0.03 3.93±0.27
Redc 1.66±0.03 6.42±0.35 3.74±0.41

Blackc 1.53±0.02 3.09±0.04 3.78±0.01

The results are presented as mg gallic acid equivalent/g rice sample.
b Values in each column with different capital letters are significantly 
different  (p < 0.05).
c Values in each row with different lowercase letters are significantly 
different (p < 0.05).



7

KMUTNB Int J Appl Sci Technol, Vol. 11, No. 1, pp. 3–13, 2018

 Anthocyanins are a group of hydrophilic  
flavonoids. They are natural colorants responsible 
for red, purple and black colors of pigmented rice. 
The major anthocyanin in purple bran is cyanidin-
3-glucoside [20]. Types of anthocyanins in black rice 
included cyaniding 3-O-glucoside (C3G), peonidin 
3-O-glucoside (P3G) and cyanidin 3-O-rutinoside 
(C3R). The fractions of total anthocyanin in bran and 
in embryo of black rice were 97% (6.28±0.10 mg 
C3G equiv/g) and 3% (0.34±0.010 mg C3G equiv/g), 
respectively. From Table 2, C3G and P3G in black rice 
were detected only in bran and embryo, whereas C3R 
was found in black rice bran [53].   
 When the effective concentrations of anthocyanins  
were compared both in vitro and in a clinical study, in 
the latter plasma concentrations were lower than those 
in vitro [54]–[56]. The absorption of anthocyanins in 
the small intestine was poor; only about 1% of the total 
amount was administered orally.  When being exposed 
to the physiochemical pH of the small intestine, the 
anthocyanins are unstable and are degraded to other 
metabolites, which reduces their bioavailability [57]. 
Regarding absorption, phase II metabolism takes place 
in the gut or liver [58], [59]. The phenolic acids (i.e. 
protocatechuic acid) are degraded spontaneously or by 
microbial fermentation in the colon [60].   
 Antioxidant properties of the bioactive ingredients  
in plant-derived foods have been widely studied. In  
experiments simulating gastric digestion in vitro, the 
total anthocyanin content and the scavenging capacities  
of DPPH and ABTS radicals were not significantly 
affected by those of undigested sample, whereas the 
purple rice anthocyanins were remarkably reduced 
by the simulated intestinal digestion [61]–[63].  
Anthocyanins could reduce exposure to ROS which 
usually contributes to the incidence of chronic  
diseases. An H2O2 induced cell injury model is usually 
used to assess cytoprotective effects. Regarding such 

cytoprotective activity, cyanidin-3-glucoside could  
increase the levels of Superoxide Dismutase (SOD) and 
Glutathione (GSH) more than peonidin-3-glucoside  
[64], conferring prevention of renal oxidative stress 
in animal experiments [65]. When considering  
anti-inflammatory effects, cyanidin-3-β-D-glycoside 
from black rice and its metabolites, cyanidin and 
protocatechuic acid  have high reducing power [66] 
and can inhibit nitric oxide [67]. They also can release 
TNF-α, IL-1α, NO, and PGE2, induce activation of 
NO synthase (NOS) and COX-2 genes, and activate 
NF-κB and MAP kinases [68]. Proanthocyanidins from 
red rice and anthocyanins (cyaniding 3-O-glucoside 
and peonidin 3-O-glucoside) in black rice have  
decreased the concentration of nitric acid, as well as 
of other Reactive Oxygen Species (ROS), both in vitro 
and in vivo. In in vivo studies, they also increased the  
antioxidant capacity and activity of antioxidant  
enzymes, such as Superoxide Dismutase (SOD) 
and Catalase (CAT) [69]. Furthermore, black rice  

Table 2: Total anthocyanin content and anthocyanin composition of black rice grain [53]

TACa (mg cyanidin -3- 
glucoside equivalent/g)

Cyanidin 3-O- glucosidea 
(mg/g)

Peonidin 3-O- glucosidea 
(mg cyanidin 3-O-

glucoside equivalent/g)

Cyanidin 3-O-rutinosidea 
(mg cyanidin 3-O-

glucoside equivalent/g)
Whole grain 0.87±0.02 0.52±0.02 0.14±0.01 0.06±0.01
Embryo 0.34±0.01 0.12±0.01 0.09±0.01 nd
Endosperm nd nd nd nd
Bran 6.28±0.10 3.58±0.002 0.70±0.003 0.28±0.01

TAC = Total Anthocyanin Contents

Anthocyanins and proanthocyanidins 

Inhibit lipid peroxidation 

Protect cell membranes 
By strengthening 

Decrease oxidative stress 

Free radical 
scavenging effect

Prevent mitochondrial 
damage

Slow ageing 
cardioprotection

Inhibit ROS & 
release NO

Improve inflammatory-
related illnesses, 
cardioprotection

Stabilize membranes 
of red and white 
blood cells

Reduce platelet 
aggregation

Prevent blood 
vessel damage

Figure 4: A decrease in oxidative stress by antioxidant 
such as anthocyanins and proanthocyanidins and free 
radical scavenging effects. ROS = reactive oxygen 
species, NO = nitric oxide [80]. 
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anthocyanidins can protect the retina against  
photochemical damage and inhibit apoptosis of retinal 
cells, which is otherwise induced by fluorescent light 
in an animal model [70]. In relation to cardiovascular 
prevention, cyanidin-3-glucoside from black rice  
anthocyanin improves both hypercholesterolemia and 
hyperlipidaemia, and simultaneously decreases hepatic 
lipogenic enzymes in hyperlipidaemic rats [71]. In 
summary, anthocyanins and proanthocyanidins have 
noticeable ability to prevent or reduce oxidative stress, 
as shown in Figure 4.
 (+)Catechin and epicatechin are the monomer 
units of proanthocyanidins, which are polymers of 
flavonol. Proanthocyanidins can shield against cancer  
and cardiovascular disorder [72], [73]. Regarding 
bioavailability, the trimers of proanthocyanidins 
may be absorbed in the gastrointestinal tract [74].  
Proanthocyanidin may be degraded into oligomers 
with DP < 3, mixed with epicatechin monomer and  
dimers in the acidic stomach environment [74]. Finally, 
it is absorbed in the small intestine [74], [75]. The 
proanthocyanidins with DP > 10 are degraded in the 
cecum large intestine by colonic microbiota [76]. The 
intestinal absorption of proanthocyanidins has positive 
impacts on health [77]. However, the mechanism of 
absorption and bioavailability of proanthocyanidins is 
still under continuing studies.

Table 3: Total proanthocyanidin contents in whole 
grain rice with red rice bran [68]

Proantho- 
cyanidin

Concentration 
(μg/g grain)

Contribution 
(%)

Monomers 5.30±0.33 0.42
Dimers 25.48±0.37 2.00
Trimers 52.45±0.75 4.12
Tetramers 87.50±1.18 6.87
Pentamers 123.69±1.91 9.72
Hexamers 215.56±5.89 16.93
Heptamers 128.22±1.67 10.07
Octamers 121.99±1.87 9.58
Nonamers 81.69±2.34 6.42
Decamers 56.90±4.92 4.47
Polymers 374.10±6.67 29.39
Total 1272.89±22.69 100.00

 From the data in Table 3, 5–8 mer oligomers  
accounted for 40% of proanthocyanidins in red 
rice bran, while oligomers with more than 10 mers  

accounted for 29%. In Japanese red rice bran, the total 
proanthocyanidins contents accounted for 71% which 
higher oligomers for 4–6 mers and lower oligomers 
for 1–3 mers. The bioactivity of proanthocyanidins  
depends on their structure. For example, the procyanidin  
fractions with DP < 5 and DP > 5 the mechanisms 
of homeostatic modulation of immune function and 
inflammation are different [78]. 

4 Conclusions

Due to the increasing costs of medical treatment, 
an alternative strategy is to maintain good health 
by preventing risks of degenerative diseases.  
Phytochemicals from plants can contribute to this 
strategy. Rice is the main staple food globally. In 
Ayurvedic medicine, white rice has contributed to 
therapeutic applications, but it is pigmented rice that 
is rich in phytochemicals. The natural pigments in 
pigmented rice bran include carotenoids, anthocyanins  
and proanthocyanidins. These can decrease the 
risks of degenerative human diseases. Carotenoids 
which usually act as anti-inflammatory agents can 
improve the immune response. Polyphenols, such as  
anthocyanins and proanthocyanidins, exert antioxidant 
and anti-inflammatory activities, and they can treat 
hypercholesterolemia and hyperlipidaemia. There is 
considerable evidence motivating studies of dietary 
pigmented rice in terms of its positive health effects. 
Supplementing human diet with pigment extracts 
from pigmented rice bran has not yet been much  
investigated, but it might be relevant to cardiovascular  
or cardiomyopathy mortality from cardiovascular 
diseases.
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