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Abstract
The crack distribution is the mixture of an inverse Gaussian distribution and a length-biased inverse Gaussian  
distribution introduced by Jorgensen et al. (1991) and Bowonrattanaset et al. (2011). The probability density function  
of this distribution has a complicated form that is problematic in parameter estimation. Saengthong and Bodhisuwan  
(2014) try to solve this problem by introducing the new two-parameter crack distribution but the  parameter 
estimate still had a problem. Therefore, optimization techniques had to be used. For this reason, we  offer an  
alternative algorithm, an EM-algorithm, to estimate two unknown parameters of a two-parameter crack distribution  
which is presented in Saengthong and Bodhisuwan (2014). A Monte Carlo simulation study was conducted to  
appraise the performance of the proposed EM-algorithm and compared with the quasi-Newton method for the given 
sample sizes. The results from the simulation study show that the proposed method performed very well for both  
parameters and provide consistent statistics, while the quasi-Newton method is a poor estimate of the parameter θ.

Keywords: Inverse gaussian distribution, Length-biased inverse gaussian distribution, Two-parameter crack 
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1 Introduction

The crack distribution is a positive skewness model, 
which is extensively used to model failure times of 
fatiguing materials. This distribution is also known as 
the mixture inverse Gaussian distribution, which was 
originally presented by Jorgensen et al. [1] and was 
included in special sub-models such as the Birnbaum 
Saunders (BS) distribution, the Inverse Gaussian (IG) 
distribution and the Length-Biased Inverse Gaussian  
(LBIG) distribution. Later, Gupta and Akman [2] studied  
the mixture of IG distribution and LBIG distribution 
in a point of reliability, and they named it the JSW 
distribution. Moreover, Gupta and Akman [3] proposed 

the use of Bayes estimation for the mixture of an IG 
distribution and a LBIG distribution.
 Bowonrattanaset et al. [4] introduced the mixture  
inverse Gaussian distribution based on the re- 
parametrization model provided in Ahmed et al. [5] 
and proposed the name “crack” for this distribution.  
Gupta and Kundu [6] proposed to use the EM-algorithm  
to estimate the unknown parameters of the mixture 
inverse Gaussian distribution based on that it was  
originally provided in Jorgensen et al. [1] for complete  
and censored samples. Recently, Duangsaphon [7] 
studied crack distribution from the view point of 
regression-quantile estimation, Bayesian estimation, 
and confidence interval estimation. Additionally,  
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Saengthong and Bodhisuwan [8] proposed a new 
weight parameter for the mixture of the IG distribution 
and the LBIG distribution, named the “two-parameter 
crack distribution” denoted by TCR(λ,θ). In this paper, 
we emphasize the crack distribution that was introduced  
by Saengthong and Bodhisuwan [8].
 Suppose that a random variable X1 has the IG 
distribution with the parameters λ, θ > 0, and the  
corresponding probability density function (pdf) is 
Equation (1)

 (1)

Suppose X2 ~ LBIG(λ, θ). The pdf of X2 is given by:

 (2)

 We can write the Equation (2) in the following 
formula [Equation (3)]:

 (3)

 For the two-parameter crack distribution,  
considering that a random variable X is mixture of 
X1 and X2, then the corresponding pdf of a random 
variable X is

 (4)

 However, the parameter estimation of this distribution  
still has problems (see more details in Jorgensen et al.  
[1]; Gupta and Akman [3]; Bowonrattanaset [9]; 
and Saengthong and Bodhisuwan [8]). Therefore, in 
order to solve such problems, we resorted to a more 
elaborate technique. The main aim of this paper was to  
introduce the use of an alternative technique to estimate  
the two unknown parameters of a two-parameter 
crack distribution: the EM-algorithm. A Monte Carlo  
simulation was conducted in order to appraise the  
performance of the proposed EM-algorithm and  
compared with the quasi-Newton method by using the 

RStudio version 1.0.143 for evaluation.
 The article is organized as follows. Section 2 
briefly describes the two-parameter crack distribution. 
Section 3 gives the parameter estimation; 3.1 quasi-
Newton method and 3.2 EM algorithm. Section 4, the 
random TCR-numbers generation procedure is shown. 
Numerical results are shown in Section 5. Finally,  
Section 6 contains conclusions. 

2 A Brief Review Two-parameter Crack Distribution 

The pdf of two-parameter crack distribution, as defined 
in Equation (4), can be expressed as

and the cumulative distribution function (cdf) is 

From Equation (4) it is clear that the IG distribution 
and the LBIG distribution can be obtained as a special 
case of two-parameter crack distribution. Interestingly, 
it observed that the two-parameter crack distribution  
became the Birnbaum-Saunders distribution, as  
proposed by Ahmed et al. [6], when . 
And the pdf of the BS distribution is

Moreover, the shape of the two-parameter crack  
distribution is shown in Figures 1 and 2.

3 Parameter Estimation

3.1  Maximum likelihood via quasi-Newton method

Saengthong and Bodhisuwan [3] studied the maximum 
likelihood estimators of two unknown parameters. 
They showed two equations, which are:

 and 

Obviously, the MLE of λ and θ can be obtained by 
using a numerical procedure. They suggested the use 
of Newton-Raphson method in R. In connection with 
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this, we consider the log of likelihood function of the 
two-parameter crack distribution:

.

 The quasi-Newton method was applied by using the 
default function of R program, called “nlminb” function  
to obtain the MLEs of λ and θ via quasi-Newton 
method, denote are  and  respectively. 

3.2  Maximum likelihood via EM-algorithm

Suppose that we have observations, denoted {x1,...,xn}, 
where X ~ TCR(λ,θ). The observed-data log-likelihood 
function of Θ = (λ,θ) is given by

 It is not a simple task to find the maximum-
likelihood estimate of parameters λ and θ using the 
directly-maximized log-likelihood function. Therefore, 
we suggest the EM-algorithm. The EM-algorithm is an 
iterative algorithm for maximum-likelihood estimation 
for models with incomplete data. There are two ways 
to apply the EM-algorithm. The first occurs when the 
data actually has missing values. The second occurs 
when optimising the likelihood function is complicated 
and intractable. More specifically, let {x1,...,xn} denote 
the observed data and {z1,...,zn} are indicator variables 
that whether xi comes from X1 or X2. The complete 
data X = (X;Z) are X augmented with Z. We denote 
the complete-data log-likelihood function by lcomplete 
(λ, θ| y1,...,yn) . Each iteration of the EM-algorithm has 
two steps; that is, an E-step and an M-step, defined as 
follows.

E-step:
Based on the complete sample {y1,...,yn} where 
yi = (xi;zi) for i = 1,2,...,n, the complete-data log- 
likelihood function is

 (5)

Since  so Equation (5) can 
be written as

We simplified the above formula, so we get

Figure 2: Density function of the two-parameter crack 
distribution for λ = 0.5 and different values of θ.

Figure 1: Density function of the two-parameter crack 
distribution for θ = 0.08 and different values of λ. 
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 (6)

Substitute Equation (1) in Equation (6) so we get

where . 

 Hence, the complete-data log-likelihood function 
without the additive constant (the terms without the 
parameters λ and θ) is

 Next, we set the derivatives of the complete-data 
log-likelihood function to zero, and solve directly for λ.

.

 Then the positive root becomes the maximum 
likelihood estimator of λ. It is as follows:

,

where . Here the MLEs of θ, denoted as ,  

can be obtained by maximizing g(θ) by using the 
“optimise” function in R program, where

 Next, we will provide the E-step of the EM-
algorithm. Note that at the E-step of the EM-algorithm, 

the “pseudo” log-likelihood function, was obtained be 
replacing the missing values Zi by their expectation 
E(Zi); then the “pseudo” log-likelihood function at the 
kth stage becomes:
 

here  and  is given by 
  

M-step:
In the M-step of the EM-algorithm, we update  and   
by maximizing the “pseudo” log-likelihood function 
with respect to λ and θ to obtain λ(k+1) and θ(k+1). They 
will be as follows:

Here θ(k+1) was obtained by maximizing g(k+1)(θ), where
 
g(k+1)(θ)

by using the “optimise” function in R program. The  
calculation of M-step was continued until a convergence  
occurred. 
 Next we discuss how to choose the initial values 
for λ and θ. The following two facts were used to find 
the initial values of  and . If {x1,...,xn} is a random 
sample of Xi, then the log-likelihood function of Xi is
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 The MLEs of λ and θ, denoted by  and , will 
be as follows:

here  and  was obtained by maximizing  

A(θ) with respect to θ, where:

by using the “optimise” function in R program.  
Similarly, if {x1,...,xn} is a random sample of X2, then 
the log-likelihood function of X2 is  

Hence the MLE of λ is

and the MLE of θ, denoted by , can be obtained by 
maximizing B(θ) with respect to θ, where:

 We prefer to average the MLEs of IG and LBIG 
distribution as the initial value of λ and θ for the EM-
algorithm, i.e.:

 and .

 The following algorithm was used to find 
the MLEs via the EM-algorithm of the unknown 
parameters of the two-parameter crack distribution.

Algorithm:
Step 1: Generate a random sample {x1,...,xn} following 
the two-parameter crack distribution. 
Step 2: Set k = 0. Compute λ(0) and θ(0).

Step 3: At the kth stage, compute  for i = 1,2,...,n  
and compute , where

 n is the number of samples, and k is the number 
of iterations.
Step 4: Obtain θ(k+1) by maximizing
g(k+1)(θ)

by using the “optimise” function in R program,

and .

Step 5: Increment k, k = k + 1 . Repeat Step 3 and Step 4,  
until convergence is met.

4 Random TCR-numbers Generation Procedure

We prefer the use of acceptance-rejection method to 
generate random variables X from a two-parameter 
crack distribution on a computer. The method can 
be used alone, but more typically it is used together 
with other methods, especially the mixture method, 
in creating exact and efficient algorithms. Hence, we 
recommend the following procedure.
Step 1. Fix the parameters λ and θ.
Step 2. Generate a random number Y with Birnbaum-
Saunders  distribution, Y~BS (λ,θ).
Step 3. Generate a random number U with uniform 
distribution, U~U (0,M), where

.

Step 4. Accept X = Y if U(0,M) ≤ .

Step 5. Return to Step 2 otherwise.

5 Monte Carlo Simulations 

In this subsection, we present some simulation results 
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in order to verify how the proposed EM-algorithm 
worked in this case and compared with the quasi-
Newton method. All of the experiments were run on 
RStudio version 1.0.143.
 In order to evaluate the performance of the above 
estimators, we performed a simulation study for different  
sample sizes and for different parameter values. For each 
of the sample sizes n = 20, 30, 50, 100, we simulated  
samples from a two-parameter crack distribution with 
a combination of parameters λ = 1, 2, 3, 4, and θ = 
0.5, 0.8, 1. The simulations were repeated 1,000 times 
for each model. We computed the estimates of λ and 
θ using the EM-algorithm and obtained the average 
estimates, bias and the mean squared errors of the 
estimates over the 1,000 runs. Similarly, we compute 
the estimates of λ and θ by using the quasi-Newton 

method in R program with the initial value which is    

c . The results so obtained are reported  

in Tables 1–8.
 From the simulation results, it was observed that 
the proposed EM-algorithm worked well. It was clear 
from Tables 1–4 that the average estimates of λ and θ 
were close to the actual value given. The performance of 
the estimator of λ and θ as the sample size increases the 
biases and the mean squared errors decrease and tends  
to zero as n → ∞. For example, in Table 1, for λ = 2, θ = 0.5  
and n = 20, the simulated biases of  and  were 0.461 
and –0.037 respectively, while for n = 100 the simulated  
biases of  and  are 0.344 and –0.029 respectively. 
Therefore, the  and  are consistent estimator.

Table 1: The average estimates, bias and the mean 
squared errors of the maximum likelihood estimators 
via the EM-algorithm for n = 20 

 –  – 
MSE 
( )

MSE 
( )

1
0.5 1.373 0.440 0.373 –0.060 0.235 0.009
0.8 1.546 0.543 0.546 –0.257 0.400 0.076
1.0 1.616 0.607 0.616 –0.393 0.497 0.167

2
0.5 2.461 0.463 0.461 –0.037 0.383 0.006
0.8 2.825 0.596 0.825 –0.204 0.935 0.050
1.0 3.000 0.673 1.000 –0.327 1.287 0.119

3
0.5 3.336 0.496 0.336 –0.004 0.336 0.004
0.8 3.830 0.652 0.830 –0.148 1.020 0.030
1.0 4.090 0.737 1.090 –0.263 1.544 0.080

4
0.5 4.085 0.533 0.085 0.033 0.265 0.005
0.8 4.752 0.701 0.752 –0.099 0.934 0.017
1.0 5.020 0.806 1.020 –0.194 1.479 0.048

Table 2: The average estimates, bias and the mean 
squared errors of the maximum likelihood estimators 
via the EM-algorithm for n = 30 

 –  – 
MSE 
( )

MSE 
( )

1
0.5 1.339 0.443 0.339 –0.057 0.167 0.007
0.8 1.522 0.547 0.522 –0.253 0.343 0.070
1.0 1.599 0.612 0.599 –0.388 0.437 0.159

2
0.5 2.416 0.468 0.416 –0.032 0.276 0.004
0.8 2.804 0.594 0.804 –0.206 0.797 0.048
1.0 2.924 0.678 0.924 –0.322 1.025 0.111

3
0.5 3.323 0.497 0.323 –0.003 0.260 0.003
0.8 3.800 0.651 0.800 –0.149 0.864 0.027
1.0 4.022 0.741 1.022 –0.259 1.269 0.074

4
0.5 4.050 0.536 0.050 0.036 0.173 0.004
0.8 4.664 0.705 0.664 –0.095 0.678 0.014
1.0 4.975 0.806 0.975 –0.194 1.276 0.045

Table 3: The average estimates, bias and the mean 
squared errors of the maximum likelihood estimators 
via the EM-algorithm for n = 50 

 –  – 
MSE 
( )

MSE 
( )

1
0.5 1.307 0.446 0.307 –0.054 0.124 0.005
0.8 1.475 0.554 0.475 –0.246 0.266 0.065
1.0 1.560 0.613 0.560 –0.387 0.361 0.155

2
0.5 2.365 0.471 0.365 –0.029 0.194 0.003
0.8 2.717 0.601 0.717 –0.199 0.604 0.043
1.0 2.898 0.676 0.898 –0.324 0.906 0.110

3
0.5 3.254 0.502 0.254 0.002 0.148 0.002
0.8 3.759 0.653 0.759 –0.147 0.705 0.025
1.0 3.978 0.747 0.978 –0.253 1.108 0.069

4
0.5 3.998 0.539 –0.002 0.039 0.105 0.003
0.8 4.615 0.709 0.615 –0.091 0.530 0.012
1.0 4.927 0.810 0.927 –0.190 1.026 0.040

Table 4: The average estimates, bias and the mean 
squared errors of the maximum likelihood estimators 
via the EM-algorithm for n = 100 

 –  – 
MSE 
( )

MSE 
( )

1
0.5 1.283 0.451 0.283 –0.049 0.095 0.004
0.8 1.443 0.558 0.443 –0.242 0.216 0.061
1.0 1.526 0.620 0.526 –0.380 0.300 0.147

2
0.5 2.344 0.471 0.344 –0.029 0.153 0.002
0.8 2.691 0.603 0.691 –0.197 0.522 0.041
1.0 2.869 0.680 0.869 –0.320 0.806 0.105

3
0.5 3.231 0.505 0.231 0.005 0.096 0.001
0.8 3.709 0.657 0.709 –0.143 0.565 0.022
1.0 3.942 0.751 0.942 –0.249 0.957 0.064

4
0.5 3.975 0.542 –0.025 0.042 0.049 0.002
0.8 4.587 0.711 0.587 –0.089 0.418 0.010
1.0 4.887 0.814 0.887 –0.186 0.874 0.037
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6 Conclusions

In this article we discussed the point estimation of 
the lifetime distribution proposed by Saengthong and  
Bodhisuwan [9]. We know that the Birnbaum-Saunders  
distribution can be obtained as a special case of the 
two-parameter crack distribution. We have proposed 

the use of the EM-algorithm in order to estimate the 
unknown parameters of the two-parameter crack 
distribution and compared it with the quasi-Newton 
method. The proposed estimators were analytically 
easier to compute than solving the normal equations. 
For this reason, the process of the EM-algorithm was 
simple to use. The simulation results revealed that 
the presented EM algorithm performs better than 
the quasi-Newton method, specifically, the estimate 
of the parameter θ. Moreover, the MSE and bias of 
the maximum likelihood via EM-algorithm tend to 
decrease as n increases.

 Tables 5–8 show the results of the maximum 
likelihood estimators via the quasi-Newton method. 
It can see that the quasi-Newton method worked well 
for the  but inefficient for the .

Table 5: The average estimates, bias and the mean 
squared errors of the maximum likelihood estimators 
via the quasi-Newton method for n = 20 

 –  – 
MSE 
( )

MSE 
( )

1
0.5 1.023 0.000 0.023 –0.500 0.214 0.250
0.8 0.980 0.000 –0.020 –0.800 0.150 0.640
1.0 0.961 0.000 –0.039 –1.000 0.166 1.000

2
0.5 2.193 0.000 0.193 –0.500 0.916 0.250
0.8 2.137 0.000 0.137 –0.800 0.723 0.640
1.0 2.140 0.000 0.140 –1.000 0.814 0.999

3
0.5 3.322 0.000 0.322 –0.500 1.705 0.250
0.8 3.256 0.000 0.256 –0.800 1.685 0.639
1.0 3.280 0.000 0.280 –1.000 1.610 0.999

4
0.5 4.470 0.000 0.470 –0.500 2.992 0.250
0.8 4.519 0.001 0.519 –0.799 3.123 0.639
1.0 4.434 0.001 0.434 –0.999 3.016 0.999

Table 6: The average estimates, bias and the mean 
squared errors of the maximum likelihood estimators 
via the quasi-Newton method for n = 30 

 –  – 
MSE 
( )

MSE 
( )

1
0.5 0.949 0.000 –0.051 –0.500 0.101 0.250
0.8 0.932 0.000 –0.068 –0.800 0.098 0.640
1.0 0.917 0.000 –0.083 –1.000 0.099 1.000

2
0.5 2.029 0.000 0.029 –0.500 0.391 0.250
0.8 2.063 0.000 0.063 –0.800 0.431 0.640
1.0 1.973 0.000 –0.027 –1.000 0.366 0.999

3
0.5 3.211 0.000 0.211 –0.500 1.024 0.250
0.8 3.130 0.000 0.130 –0.800 1.020 0.639
1.0 3.072 0.000 0.072 –1.000 0.786 0.999

4
0.5 4.238 0.000 0.238 –0.500 1.608 0.250
0.8 4.223 0.001 0.223 –0.799 1.659 0.639
1.0 4.256 0.001 0.256 –0.999 1.830 0.998

Table 7: The average estimates, bias and the mean 
squared errors of the maximum likelihood estimators 
via the quasi-Newton method for n = 50 

 –  – 
MSE 
( )

MSE 
( )

1
0.5 0.891 0.000 –0.109 –0.500 0.061 0.250
0.8 0.870 0.000 –0.130 –0.800 0.067 0.640
1.0 0.870 0.000 –0.130 –1.000 0.066 1.000

2
0.5 1.914 0.000 –0.086 –0.500 0.194 0.250
0.8 1.904 0.000 –0.096 –0.800 0.203 0.640
1.0 1.915 0.000 –0.085 –1.000 0.195 0.999

3
0.5 2.984 0.000 –0.016 –0.500 0.446 0.250
0.8 2.993 0.000 –0.007 –0.800 0.471 0.639
1.0 2.949 0.000 –0.051 –1.000 0.481 0.999

4
0.5 4.028 0.000 0.028 –0.500 0.865 0.250
0.8 4.028 0.001 0.028 –0.799 0.836 0.639
1.0 4.036 0.001 0.036 –0.999 0.762 0.999

Table 8: The average estimates, bias and the mean 
squared errors of the maximum likelihood estimators 
via the quasi-Newton method for n = 100 

 –  – 
MSE 
( )

MSE 
( )

1
0.5 0.851 0.000 –0.149 –0.500 0.045 0.250
0.8 0.828 0.000 –0.172 –0.800 0.051 0.640
1.0 0.827 0.000 –0.173 –1.000 0.052 1.000

2
0.5 1.863 0.000 –0.137 –0.500 0.115 0.250
0.8 1.847 0.000 –0.153 –0.800 0.114 0.640
1.0 1.853 0.000 –0.147 –1.000 0.111 0.999

3
0.5 2.891 0.000 –0.109 –0.500 0.210 0.250
0.8 2.861 0.000 –0.139 –0.800 0.223 0.639
1.0 2.841 0.001 –0.159 –0.999 0.213 0.999

4
0.5 3.891 0.000 –0.109 –0.500 0.346 0.250
0.8 3.904 0.001 –0.096 –0.799 0.378 0.639
1.0 3.901 0.001 –0.099 –0.999 0.369 0.999
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