
3Applied Science and Engineering Progress, Vol. 12, No. 1, pp. 3–13, 2019

Applying the Median and Genetic Algorithm to Construct D- and G-optimal Robust 
Designs Against Missing Data 

Sitisak Mahachaichanakul and Patchanok Srisuradetchai*
Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Rangsit 
Campus, Pathum-Thani, Thailand 

* Corresponding author. E-mail: spatchan@tu.ac.th         DOI: 10.14416/j.ijast.2018.10.002
Received: 23 May 2017; Revised: 23 August 2017; Accepted: 28 August 2017; Published online: 4 October 2018
© 2019 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
In practice, there is a circumstance in which some observed values in well-planned experiments are missing. In 
this research, small optimal robust response surface designs against missing data were constructed using a Genetic 
Algorithm (GA) with a Minimum (Min) of alphabetic criteria such as D- and G-optimality for a second-order 
model. The resulting designs from GA were compared to designs generated from Exchange Algorithm (EA). 
Unlike EA, GA uses a set of continuous design points as candidate points, so GA produces more optimal and 
robust designs. For D-optimality, the results showed that the values for D-efficiency, Min D, Med D, and leave-
1-out D criteria of designs generated by GA were all greater than or equal to those from EA. Calculated by EA 
and GA methods, all G-related criteria values were less than 0.6 apart, except in the case of N = 7. Furthermore, 
a median of alphabetic optimality criteria has been proposed for use as a criterion to construct robust designs. 
This approach compromises between optimality criteria such as usual D- and G-optimality and pessimistic-
oriented criteria such as Min D- and Min G-optimality. For general missing points, the Med D-optimal designs 
would be superior to the Min D-optimal designs, especially for very small designs. The Med G-optimal designs 
are far better than the G-optimal designs, although the sample size is increased.
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1 Introduction

A response surface design is an experimental design 
for developing, improving, and optimizing products. 
It has been used in many industrial researches. The 
design contains factor settings that either maximize 
or minimize single or multiple responses. A small 
exact response surface design is usually constructed 
using a second-order polynomial model, as shown in 
Equation (1). 

 (1)

where y is the measured response; x1, x2,..., xk are the 
design variables or predictors; β's are the parameter  
coefficients and ε is a random error term. The  
second-order model is the most popular model used to  
approximate the true relationship between the response 
and predictors. This is because the fitted surface of the 
model has a simple interpretation with respect to the 
maximum, minimum, and saddle points [1].
 The matrix notation of the second-order model 
is in Equation (2).

y = β0 + xTb + xTBx + ε = Xβ + ε, (2)

where X is called a “model matrix”:
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 Borkowski [2] used design optimality criteria 
such as D and G criteria with GA to construct and 
evaluate the exact N-point design. An example of the 
resulting 7-point D-optimal is shown in Figure 1. An 
exact design is one that has the number of design points 
as a specified integer N. The exact N-point design can 
be represented by an N×k design matrix, where each 
of the N rows corresponds to the experimental point 
and has k columns or k factors. Therefore, the design 
is expanded into an N×p expanded design matrix X, 
which is used to calculate the design optimality criteria 
of interest. Corresponding to Equation (1), the number  
of model parameters is the number of columns in 
matrix X, .
 The design optimality criteria, also called  
alphabetic optimality criteria, can be divided into 2 
categories. The first category focuses on minimizing 
the generalized variance of parameter estimates such as  
D-optimality, introduced by Wald [3] in 1943. The 
D-optimality criterion minimizes the determinant   
|(XTX)–1| and is directly proportional to the generalized  
variance. This is equivalent to maximizing |XTX|,  
a part of the Fisher information for exact designs [1].  
D stands for “determinant”. If ξ* is a D-optimal design, 
ξ* satisfies Equation (3) below.

 (3)

where Ξ is a set of all possible continuous designs on 
design space χ and M = XTX/N is a moment matrix [4]. 
To compare D-optimal robust designs, D-efficiency as 
defined in Equation (4) is usually used as a criterion. 
Higher D-efficiency in a design means the design is 
better.

D-efficiency  (4)

 The second category of design optimality criteria 
centers on minimizing the prediction variance. In this 

paper, G-optimality is chosen as it is generally used 
in literature. G-optimality, introduced by Smith [5], 
minimizes the maximum of the Scaled Prediction  
Variances (SPVs). Since the SPV is calculated by 
all points in design space χ, G stands for “global.” If 
design ξ* is a G-optimal, ξ* satisfies the condition in 
Equation (5).

 (5)

where x (m) = [ ]. 
Likewise, the G-efficiency shown in Equation (6) is 
used to compare resulting G-optimal robust designs.

G-efficiency =  (6)

 In practice, the data in well-planned experimentations  
has the potential to be missing or lost. The designs 
from Borkowski [2] can be considered optimal designs 
when there is no missing data. However, there are some 
D-optimal designs with only one missing design point, 
but the corresponding |XTX| can be 0. This causes an 
inability to estimate parameters, as matrix XTX is 
singular [6]. For example, |XTX| will be zero if point 
(–1, –1) is missing, as seen in Figure 1.
 Srisuradetchai [6] introduced robust response 
surface designs against missing data for alphabetic  
optimal designs by introducing the minimum of  
interested efficiencies calculated on an (N – 1)-point 
design. The idea behind this is that, if one design 
point is missing, design efficiency will be calculated 

Figure 1: Example of 7-point D-optimal exact design 
for a second-order model in two factors.

(–1, –1) (1, –1) 

(–1, 1) (1, 1) 
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from the remaining N – 1 design points. Applying the  
aforementioned approach to every possible missing 
point in the design, there will be N D-efficiencies 
and the minimum will be used as modified criteria to 
construct a robust design. This modified criterion is  
considered a pessimistic approach because the minimum  
is used.
 Let Ξ be a set of all possible exact designs on 
design space χ, Θ be a set of all design points in the 
design, and xi be a design point in Θ. D-optimal robust 
exact design ξ* satisfies

 (7)

where M(ξ–xi 
) is a moment matrix of design ξ without 

design point xi. The resulting design constructed from 
Min D-optimal criterion assures that the minimum of 
D-efficiencies is still highest. Using this method will 
prevent the worst-case scenario, where a missing point 
leads to the minimum D-efficiency. The criterion will 
be called “Min D”. For Min G-optimality criterion,  
let χ be the design space and a∈x. Srisuradetchai [6] 
seeks a design ξ* satisfying

 (8)

where M–1(ξ–xi 
) is an inverse of the moment matrix of 

design ξ without design point xi. The resulting design 
achieving Equation (8) is called Min G-optimal robust 
exact design.
 The method used to construct robust response  
surface designs against missing data in Srisuradetchai 
[6] is EA, where the process is started from constructing  
an initial design and setting candidate points for 
exchange. A design point in the initial design will be 
sequentially chosen from the first to the last. Each of 
the initial design points will be sequentially exchanged 
with all candidate points. A design efficiency of interest  
will be calculated for each exchange. The design with 
the highest efficiency will be kept and used as the 
new starting design. The entire process repeats until  
improvement in the efficiency is not significant. The 
final design will be kept as the optimal robust exact 
design.
 For response surface designs, independent values 
will typically be coded to 1 for the highest value and –1 
for the lowest value. This is called orthogonal coding. 
If a one-decimal digit is used, the candidate design 

points will be –1,–0.9,...,0,...,0.9,1 and the total number 
of design points is 21 in one-factor designs. For two-
factor designs, the total number of design points goes 
up to 212 or 441 and up to 9,261 points for three-factor 
designs. The number of candidate points becomes a 
large number, although the number of decimal digits 
only increases from one to two.
 The robust designs constructed using EA from 
Srisuradetchai [6] have design points with only one 
decimal digit. It is believed that, as the number of  
decimal digits increases, design efficiency will  
increase. This agrees with the actual idea of response  
surface methodology, which seeks factor settings over a  
continuous region in a design space. Also, using EA to 
construct response surface designs is time-consuming, 
especially when k is greater than 2. For example, our 
experience was that the design for N = 7, k = 2, and  
χ = {–1,–0.9,...,0.9,1}2 took 5– 6 minutes to construct 
the D-optimal robust design. For N = 8, it took about 
6–7 minutes. However, the design with N = 11, k = 3,  
and χ = {–1,–0.9,...,0.9,1}3 involved the length of 
time consumed for constructing a D-optimal robust 
design jumping to 9 hours as the number of candidate 
points increased exponentially. Srisuradetchai [6] also 
mentioned that “Probably, using a grid search with the 
point-exchanging algorithm is not a very good method 
to find the best Min G design”.
 In previous literature, Borkowski [2] used GA 
to construct optimal D, A, G and IV small exact 
response surface designs for second-order models 
with 1, 2 and 3 factors assuming that there was no 
missing data. As GA has never been used to generate 
robust exact response surface designs against missing 
points, it is a challenge to see if Min D and Min G 
values can be improved by GA; this will be our first 
objective. Also, a custom-tailored genetic algorithm 
to construct D- and G-optimal robust exact designs 
against missing data will be described in detail. 
Finally, robust designs will be generated using the 
newly-proposed criterion which is a median of N – 1 
design efficiencies. 
 The scope of the study involves the construction 
of small optimal robust exact response surface designs 
against a missing point for a second-order model with  
2 factors and 7, 8, 9 and 10 design points. The resulting  
robust designs will be compared with optimal  
designs from Borkowski [2] and robust designs from 
Srisuradetchai [6].
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2 Using Median to Construct Robust Designs

The goal of using a minimum of alphabetic efficiencies  
in Srisuradetchai [6] is to construct robust designs 
with the highest minimum design efficiency in order to 
prevent the worst-case scenario. However, the resulting  
design is generally not near-optimal if there is no 
missing data. To compromise between the optimality  
criteria (for example, D- and G-optimality) and 
pessimistic-oriented criteria (for example Min D and 
Min G), the median will be used in our study instead 
of the minimum. In other words, we consider that  
preventing the worst-case scenario is not a priority goal.  
Instead, we are interested in a design that is robust 
to a missing point and still near-optimal when there 
is no missing data. Another reason convincing us to 
use the median is that our experience has shown that, 
in a process of constructing robust designs satisfying  
Equation (8), there will be N design efficiencies. 
Each of them is calculated from N – 1 design points.  
Usually, one or more efficiency values are extreme, so 
using the median would be reasonable.
 Let Ξ denote a set of all possible exact designs 
on design space χ, Θ be a set of all design points in 
the design space, and xi be a design point in Θ. Thus, 
the median D-optimal or Med D design ξ* is a design 
satisfying Equation (9).

 (9)

where M(ξ–xi 
) is a moment matrix of design ξ without 

design point xi. The resulting design is called Med  
D-optimal robust exact design. 
 For a median G-optimal design, the optimal 
design ξ* needs to achieve

 (10)

 The resulting design obtained from Equation (10) 
is called a Med G-optimal robust exact design. In our 
study, designs satisfying Equations (9) and (10) will 
be constructed by GA.

3  Genetic Algorithms

Introduced by Holland [7] in 1975, a Genetic Algorithm  
(GA) is a computer-based strategy for seeking and 
developing solutions to a problem. The main idea 

is taken from biological population genetics and  
natural selection theory. A candidate solution is called 
a chromosome, as represented by a string of genes that 
are encoded in binary representations whose values are 
0 and 1. In practice, Davis [8] found that GA using real 
number representations for genes was better than GA 
with binary representations followed by decoding in 
numerical optimization problems. 
 In this research, genes are factor settings that 
will be optimized after running a certain number of 
generations of GA with the goal of finding a design 
that maximizes an objective function. In this case, 
the objective functions are robust alphabetic criteria 
such as Min D, Min G, Med D, and Med G. For one 
generation of GA, it contains 4 major steps: initiation, 
selection, reproduction, and convergence checking. 
The descriptions for these steps are as follows.

3.1  Initiation 

The initial population chromosome M is created at the 
beginning of GA; M is an odd or even number based on 
the number of the best chromosomes. If we decide to keep 
just the best chromosomes, M will be an odd number.  
If we decide to keep a pair of the best chromosomes,  
M will be an even number. These conditions can be 
considered in reverse. 
 A chromosome is represented as an N×p matrix  
X and is also called a “model matrix”. Each gene 
xij is the coded setting of the ith factor in the jth  
experimental run. Its value is dictated by the design 
space χ. In this study, each xij is in [–1, 1] and M is 
chosen to be an even number, so a pair of the best 
chromosomes will be kept in the selection step.

3.2  Selection 

This step is divided into two differently purposed 
steps. The first step is to select the best chromosomes 
from each generation. The best chromosomes have 
to maximize objective functions: Equations (7), (8),  
(9), or (10). The number of chromosomes selected 
is based on the number of the initial population  
chromosomes M chosen in initiation step. The selected  
chromosomes are called “elite” chromosomes and 
will not be changed in the next step of GA, i.e. the 
reproduction step. The purpose of this step is not only 
to pass good traits of elite chromosomes to future 



7Applied Science and Engineering Progress, Vol. 12, No. 1, pp. 3–13, 2019

S. Mahachaichanakul and P. Srisuradetchai, “Applying the Median and Genetic Algorithm to Construct D- and G-optimal Robust Designs 
Against Missing Data.”

generations, but also to prevent inferior chromosomes 
from reproducing. As a result, the initial population M 
is reduced to M–2 “parent” chromosomes. The second 
step is to randomly select a pair of chromosomes from 
the total (M–2)/2 pairs of parent chromosomes. The 
selected pair (considered parents) will reproduce 2 
new chromosomes called offspring chromosomes. 
The comparison occurs for each parent-offspring pair, 
and 2 chromosomes with higher objective function 
values will be kept for the next generation of GA. If 
any parent pair of chromosomes is selected, it will not 
be used again for reproducing offspring. This process 
repeats until all (M–2)/2 pairs of parent chromosomes 
reproduce completely.

3.3  Reproduction 

The reproduction step can be varied according to the 
researcher and the nature of the solution of interest, but 
has the same idea as biological population genetics. This 
step contains two different types of operators: between-
chromosome crossover operators and chromosome  
mutation operators.
 To decide whether genes (xij) in a certain  
chromosome (X) will be changed or not, it depends  
on PTIP (Probability Test Is Passed) for that  
chromosome. This is the probability that 0 ≤ u ≤ α 
where α is the probability of success in Bernoulli trial 
and u is a random deviate from uniform distribution 
on [0,1]. If 0 ≤ u ≤ α, reproduction operators will apply 
to the corresponding gene or row of the gene in the 
chromosome matrix based on the type of operators. 
Otherwise, the gene is left unchanged.
 In this study, the probability test of crossover  
operators is set to α = 0.2 for the first half of generations  
of chromosomes and set to α = 0.05 for the second half 
of generations. In the mutation operators, α is 0.1 for 
the first quarter of generations of chromosomes and is 
0.01 for later generations. The value of α is usually a 
small number to mimic a gradual change in the natural 
selection theory.
 The chromosomes that go through the defined set 
of operators – comprising both crossover and mutation 
operators – are called offspring chromosomes. The 
crossover operators here are blending and swap. For 
mutation operators, there are sign change, zero genes, 
half genes, extreme genes, and creep; these are all 
used for creating offspring chromosomes. Note that for 

crossover operators, PTIP will be checked for each row  
of genes by assigning random deviate u to each row of 
the matrix. On the other hand, the mutation operators  
will check PTIP for each gene or element xij by assigning  
random deviate u to each element of matrix X.
 Let matrices A and B represent two parent 
chromosomes and matrix A* and B* represent their 
offspring chromosomes. The details for each operator 
are described as follows.

3.3.1 Blending

This operator is a crossover operator that combines 
the information from rows of genes in A and B to 
create a new row of genes injected to the offspring  
chromosomes. Let Aa be the ath row of A and Bb be 
the bth row of B. Blending occurs for the ath row  
selected by the PTIP condition and the bth row, which 
is randomly selected by a uniform deviate. A change 
for each pair of Aa and Bb can be shown in the following 
linear combination [Equations (11) and (12)]:

 (11)

where  is the ath row in A* and

 (12)

where  is the bth row in B* The δ is a blending ratio 
that is a random deviate from uniform distribution  
[0, 1]. The process is applied from the first PTIP row 
in A through the last PTIP row. For Bb to have a chance 
to be repeatedly selected, if this occurs, the latest PTIP 
row in A will be the only row chosen to blend with Bb. 

3.3.2 Swap

The swap operator, considered a crossover operator, 
exchanges information from rows of genes in A and 
B. Unlike a blending operator, this operator does not 
change values of rows in the parent chromosomes. 
Instead, it simply exchanges PTIP rows in parent 
chromosomes to reproduce offspring chromosomes.

3.3.3 Sign Change

This operator is a mutation operator that changes the 
sign of gene xij for which a probability test is passed. 
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If one PTIP gene is positive, it will be changed to a 
negative value counterpart. Likewise, a negative value 
for a PTIP gene will be changed to positive.

3.3.4 Zero Genes

Zero Genes is a mutation operator that changes the 
value of PTIP gene xij to zero. Because a design point 
of response surface designs is coded between –1 and 
1, the middle value is zero. The idea behind this kind 
of operator is to get the middle point 0.

3.3.5 Half Genes

This mutation operator changes the value of PTIP gene 
xij to its halved value. For example, if PTIP xij is 0.25, 
mutated xij will be 0.25/2 = 0.125. The idea behind this 
operator is from Srisuradetchai [6] because resulting 
robust designs generated from EA have design point 
values between –0.5 and 0.5. They are middle values 
between zero and the lowest and highest values,  
respectively. In practice, exact values –0.5 and 0.5  
cannot be obtained through the aforementioned operators,  
so this kind of operator will be used accordingly.

3.3.6 Extreme Genes

The mutation operator that changes the value of PTIP 
gene xij to either –1 or 1 is called Extreme Genes. It 
can be assumed that robust designs against missing 
data might have design points containing –1 or 1, 
extreme values.

3.3.7 Creep

The creep operator will change the value of PTIP gene 
xij by adding a very small number. The idea behind 
this is to slowly change the values in each generation  
of GA to simulate an actual mutation in real life. This 
is adapted from the theory of evolution, stating that a  
mutation must take time to be observed. In this operator,  
PTIP gene will be added with a random deviate from 
N(0,σ2), where 0.001 ≤ σ ≤ 0.1. This also allows  
GA to produce a robust design in a continuous space. 

3.4  Convergence checking

After obtaining the total of M–2 offspring chromosomes  

from the reproduction step, they will be compared 
with their parent chromosomes. The one with higher 
design efficiency of interest will be kept and used in 
the next generation of GA, while lower efficiency 
chromosomes will be discarded. In total, there will be 
M–2 resulting chromosomes from the reproduction 
step and 2 elite chromosomes, selected beforehand in 
the selection step. Finally, there are M chromosomes 
in total to be used in the next generation of GA.
 For our study, three conditions are used as criteria 
to stop the repeating process of GA. The first condition 
is the maximum number of generations in GA. The total  
number of generations will affect objective function 
values and the length of time for design construction. 
Second is the maximum number of times for having 
the same best designs, one of 2 elite chromosomes. 
This part is specified because there is a chance that 
adjacent generations of GA will produce the same 
design efficiency or the same design because the PTIP 
condition might not pass at all in a certain generation. 
The last condition is the minimum change of design 
efficiencies between the last and current generations. 
It has to be specified in order to stop the process at a 
current generation.
 In the convergence checking step, a total of 
18,000 generations is used with the best design  
efficiencies being allowed to be the same for 6,000 
generations. Also, the minimum change in the last 
condition is set as 10–4.

4  Results 

The comparisons are made in 2 dimensions: algorithms 
and criteria.

4.1  Comparing the algorithms

The resulting N-point Min D-optimal robust designs 
using EA and GA with their properties are shown 
in Table 1. It is noticeable that there are two robust 
designs in which both algorithms produce the same 
design points: (±1, ±1), (±1,0), and (0,±1) for the 
8-point design and (±1, ±1), (±1,0), (0,±1), (0,0) for 
the 9-point design. For 7- and 10-point designs, Min  
D-efficiency is higher by using GA. Although it is a 
small improvement in Min D-efficiencies, this cannot 
be achieved by EA with a design space grid of 4 decimal  
digits because of the huge number of candidate points. 
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Also, D-efficiencies from GA are greater than or equal 
to those obtained from EA without missing data. 
 Furthermore, leave-one-out and Med D-efficiencies,  
interpreted respectively as the mean and median of a 
design with 1 missing point, are also higher or equal to 
designs obtained from GA. The D-efficiency, Min D, 
Med D, or leave-1-out D values from GA are at least 
superior to those from EA. 
 For N-point Min G-optimal robust designs, the 
design points and corresponding properties are shown 
in Table 2. All designs can be improved by using GA, 
even a small amount of difference in Min G efficiencies. 
 For each N, designs from GA and EA are 
all different. However, some designs are subtly  

different. For example, the 8-point design generated  
by EA is {(±1,±1), (–1,–0.3), (–0.3,1), (0.3,–1), 
(1,0.3)}and the design generated by GA is {(±1,±1),  
(–1,–0.3002), (–0.3002,1), (0.3002,–1), (1,0.3002)}. 
The only difference here is in the 4th decimal place 
for coordinates.
 Considering G-efficiency, Min G, Med G, and 
leave-1-out G of designs with the same N, except the 
case of N = 7, the differences in efficiencies are all 
less than 0.6. For example, G-efficiencies of 9-point 
designs generated by EA and GA are 73.6434 and 
73.9627, respectively. The difference is only 0.3191. 
Unlike D criterion, improving Min G does not  
necessarily increase G-efficiency. 

Table 1: Design points of N-point Min D-optimal robust designs using EA and GA and their properties 

N Algorithm D-efficiency Min D Med D Leave-one-out 
(Mean D) Design Points

7
Exchange 40.5674 31.5756 31.5756 33.2396 (±1, –1), (±1, 0.7), (0, ±1), (0, 0)*

Genetic 40.9343 31.6883 31.7902 33.7616 (±1, –1), (–1, 0.1924), (–0.4666, 1), (–0.1775, –0.5799), 
(1, –0.2747), (1, 1)

8
Exchange 45.4280 38.5145 40.8727 40.8727 (±1, ±1), (±1, 0), (0, ±1)*
Genetic 45.4280 38.5145 40.8727 40.8727 (±1, ±1), (±1, 0), (0, ±1)

9
Exchange 46.2241 39.5810 45.4280 42.8293 (±1, ±1), (±1, 0), (0, ±1), (0, 0)*
Genetic 46.2241 39.5810 45.4280 42.8293 (±1, ±1), (±1, 0), (0, ±1), (0, 0)

10
Exchange 44.5166 40.4043 41.9657 42.3082 (±1, ±1), (–1, –0.5), (–1, 1), (0, 0.1), (0.3, –1), (0.5, 1), 

(1, –0.2)*

Genetic 44.7694 40.4664 42.2662 42.5406 (±1, ±1), (–1, –0.4974), (–1, 1), (–0.1099, 0.0357), 
(0.2490, –1), (0.4579, 1), (1, –0.1881)

* Design generated using the Exchange Algorithm (EA) produced by Srisuradetchai [6]

Table 2: Properties of the N-point Min G-optimal robust designs using EA and GA

N Algorithm G–efficiency Min G Med G Leave–one–
out (Mean G) Design Points

7
Exchange 37.4269 9.3632 10.0782 14.9361 (±1, –1), (–1, 1), (–0.6, 0.2), (–0.3, –1), (0.2, 1), (1, 0.4)*

Genetic 35.0715 9.9635 10.1688 14.2102 (–1, –0.9949), (–1, 0.995), (–0.5584, 0.3226), (–0.2848, –1),  
(0.1984, 1), (0.9692, –1), (1, 0.3863)

8
Exchange 47.8846 18.3553 25.9948 25.9948 (±1, ±1), (–1, –0.3), (–0.3, 1), (0.3, –1), (1, 0.3)*

Genetic 47.8695 18.3569 26.0092 26.0092 (±1, ±1), (–1, –0.3002), (–0.3002, 1), (0.3002, –1),  
(1, 0.3002)

9

Exchange 73.6434 23.9848 30.3371 32.8611 (±1, ±1), (–1, 0.5), (–0.5, –1), (0, 0), (0.5, 1), (1, –0.5)*

Genetic 73.9627 24.0119 29.7853 32.9501
(–1, –0.9926), (–1, 0.4999), (–0.9935, 1), (–0.5003, –1),  
(–0.0029, –0.0007), (0.5002, 1), (0.9997, –1),  
(1, –0.4998), (1, 0.9956)

10

Exchange 78.6298 31.2233 33.2633 42.0814 (±1, ±1), (±1, –0.5), (±0.6, 1), (0, –1), (0, 0)*

Genetic 78.3637 31.7089 32.8844 41.9990
(±1, ±1), (–0.9981, –0.4998), (–0.6022, 0.9932), 
(0, –0.9983), (0.0132, 0.0275), (0.5997, 0.9974), 
(1.0000, –0.5005)

* Design generated using the Exchange Algorithm (EA) produced by Srisuradetchai [6]
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4.2  Comparing the criteria

For designs generated by GA, corresponding D- 
efficiency, Min D, Med D, and leave-1-out D values  
are compared, as shown in Table 3. For N = 7, the 
design points for Min D-, Med D-, and D-optimal 
designs are different. In this case, the Med D- and 
D-optimal designs are quite similar but are different  
from the Min D design in terms of D-efficiency, 
Min D, Med D, and leave-1-out D values. For  

N = 8, 9, 10, the Min D-, Med D-, and D-optimal  
designs have about the same D-efficiencies, as 
shown in Figure 2. This means that without a 
missing point, Min D- and Med D-optimal robust 
designs are nearly D-optimal. Also, D-efficiency 
of Med D-optimal designs tends to be larger than 
that of Min D-optimal designs. From Figure 3, Med 
D-optimal robust exact designs tend to give the 
smallest Min D efficiency value, i.e.
Min DMin D Design ≥ Min DD Design ≥ Min DMed D Design.

Figure 2: Comparisons of D-efficiency values for  
N-point Min D-, Med D-, and D-optimal robust designs.

Figure 3: Comparisons of Min D values for N-point 
Min D-, Med D-, and D-optimal robust designs.

Table 3: Properties of the N-point Min D-, Med D-, and D-optimal robust designs

N Criteria 
Design D-efficiency Min D Med D Leave-1-out D Design Points

7

Optimal 45.0294 25.1438 39.7711 34.7890 (±1, ±1), (–0.0915, 0.0915), (–0.0675, –1), (1, –0.0675)*

Min D 40.9343 31.6883 31.7902 33.7616 (±1, –1), (–1, 0.1924), (–0.4666, 1), (–0.1775, –0.5799), 
(1, –0.2747), (1, 1)

Med D 44.7887 22.6502 41.1670 34.1754 (±1, ±1), (–1, 0.165), (–0.1783, 1), (0.1713, –0.1622)

8

Optimal 45.6158 33.6481 41.4995 40.3800 (±1, ±1), (–1, 0.0821), (0, –0.2152), (0, 1), (1, 0.0821)*
Min D 45.4280 38.5145 40.8727 40.8727 (±1, ±1), (±1, 0), (0, ±1)

Med D 45.1028 30.8416 42.2534 39.6587 (±1, ±1), (–1, 0.0385), (–0.0202, –0.2735), (0.0774, 1), 
(1, 0.4012)

9
Optimal 46.2241 39.5810 45.4280 42.8293 (±1, ±1), (±1, 0), (0, ±1), (0, 0)*
Min D 46.2241 39.5810 45.4280 42.8293 (±1, ±1), (±1, 0), (0, ±1), (0, 0)
Med D 46.2241 39.5810 45.4280 42.8293 (±1, ±1), (±1, 0), (0, ±1), (0, 0)

10

Optimal 45.9888 39.4000 44.6337 43.4774 (±1, ±1), (–1, –0.017), (–0.0993, –1), (–0.017, 1), 
(0.0243, –0.0243), (1, –1), (1, 0.0993)*

Min D 44.7694 40.4664 42.2662 42.5406 (±1, ±1), (–1, –0.4974), (–1, 1), (–0.1099, 0.0357), (0.2490, –1),  
(0.4579, 1), (1, –0.1881)

Med D 45.8469 38.7133 44.7346 43.2895 (±1, ±1), (–1, –1), (–1, 0.0347), (–0.0128, 0.1377), 
(0.0068, 1), (0.0425, –1), (1, –0.0246)

* Design generated by using the Genetic Algorithm (GA) produced by Borkowski [2]
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 Figure 4 indicates that the Med D values for  
D-optimal and Med D-optimal robust designs are 
about the same. Also, the Med D values for the Min 
D-optimal designs are smaller than those for the  
D-optimal designs, i.e., Med DMed D Design ≥ Med DD Design  
≥ DMin D Design. As the sample size increases, the  
D-efficiency, Min D, Med D, or leave-1-out D values 
for all N-point designs remain about the same, e.g., in 
the case of N = 10.

 Table 4 summarizes the properties of 7-, 8-, 9-,  
and 10-point designs constructed using Min G-, Med G-,  
and G-optimality criteria. It was observed that the  
G-efficiency values of the 7-point Min G-optimal design  
were much smaller than those of Med G-optimal 
design, as shown in Figure 5. However, it is about 
the same value in the 8-point design. For the 9- and 
10-point Min G-optimal designs, the G-efficiencies are 
higher than those of Med G-optimal designs. For Min G  

Figure 4: Comparisons of Med D values for N-point 
Min D-, Med D-, and D-optimal robust designs.
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Figure 5: Comparisons of G-efficiency values for  
N-point Min G-, Med G-, and G-optimal robust designs.

Table 4: Properties of the N-point Min G-, Med G-, and G-optimal robust designs

N Criteria 
Design G-efficiency Min G Med G Leave-1-out G Design Points

7

Optimal 80.1029 0.0000 21.5623 15.8832 (–1, –0.6031), (–1, 0.9378), (–0.6031, –1), (–0.0507, 0.773),  
(0.773, –0.0507), (0.9378, –1), (1, 1)*

Min G 35.0715 9.9635 10.1688 14.2102 (–1, –0.9949), (–1, 0.995), (–0.5584, 0.3226), (–0.2848, –1),  
(0.1984, 1), (0.9692, –1), (1, 0.3863)

Med G 62.4056 0.5206 31.4632 18.5443 (–1, 1), (–1, –0.9985), (–0.998, 0.1678), (–0.2152, 1), (0.121, –0.0913),  
(0.9812, –0.9814), (1, 1)

8

Optimal 87.9430 14.7921 28.7295 29.2077 (±1, ±1), (–1, 0.0522), (–0.0633, –0.8246), (0.0633, 0.8246), 
(1, –0.0522)*

Min G 47.8695 18.3569 26.0092 26.0092 (±1, ±1), (–1, –0.3002), (–0.3002, 1), (0.3002, –1), (1, 0.3002)

Med G 46.6297 0.1325 43.6185 28.4287 (–1, –0.6427), (–0.9505, 1), (–0.731, –1), (–0.7174, –0.0059),  
(–0.0445, –1), (–0.0445, 0.4281), (0.9053, 0.8313), (1, –0.9572)

9

Optimal 86.3165 22.1432 37.7760 35.2833 (±1, ±1), (–1, 0.4202), (–0.4202, –1), (0, 0), (0.4202, 1), (1, –0.4202)*

Min G 73.9627 24.0119 29.7853 32.9501
(–1, –0.9926), (–1, 0.4999), (–0.9935, 1), (–0.5003, –1), 
(–0.0029, –0.0007), (0.5002, 1), (0.9997, –1), (1, –0.4998), 
(1, 0.9956)

Med G 59.2783 0.0067 66.0352 43.9788 (–1, 0.5225), (–1, 0.5477), (–0.8947, –1), (–0.4805, 0.9931), 
(–0.3513, 0.9931), (0.1415, 0), (0.2213, –0.0864), (1, –1), (1, 0.9012)

10

Optimal 85.9260 29.4805 36.6922 42.3716 (±1, ±1), (±1, –0.43), (±0.564, 1), (0, –1), (0, 0.1766)*

Min G 78.3637 31.7089 32.8844 41.9990 (±1, ±1), (–0.9981, –0.4998), (–0.6022, 0.9932), (0, –0.9983),  
(0.0132, 0.0275),  (0.5997, 0.9974), (1.0000, –0.5005)

Med G 61.1967 1.3296 67.7520 46.9870 (±1, –1), (–1, 0.5073), (–1, 0.5754), (–0.518, 1), (–0.4859, 0.9941),  
(–0.0178, –0.9288), (0.5528, 0.0111), (0.5639, 0), (1, 0.9903)

*Design generated using the Genetic Algorithm (GA) produced by Borkowski [2]



Applied Science and Engineering Progress, Vol. 12, No. 1, pp. 3–13, 2019

S. Mahachaichanakul and P. Srisuradetchai, “Applying the Median and Genetic Algorithm to Construct D- and G-optimal Robust Designs 
Against Missing Data.”

12

comparisons in Figure 6, it is obvious that Min G of 
Med G-optimal designs is much smaller than that of 
Min G- and G-optimal designs, except in the case of 
N = 7. For example, the 9-point G-optimal design has 
Min G of 22.143 and Med G of 37.776, while the Med 
G-optimal design has Min G of 0.0067 and Med G 
of 66.0352. Also, Figure 7 shows that the difference 
in Med G values for optimal G- and Med G-optimal 
designs tends to become larger as the sample size  
increases. The Min G-optimal design always produces 
the smallest Med G-efficiency. 

5 Conclusion and Discussion

When comparing EA and GA designs, Min D- or 
Min G-efficiencies from GA are always higher than 
or equal to those from EA. For 8- and 9-point Min D 
designs, GA and EA produce the same design points. 
Thus, it can be said that the resulting designs are Min 
D-optimal in a continuous design space. 
 The proposed Med D-optimal robust and  
D-optimal designs have similar D-efficiencies. If the 
worst case happens, D-optimal designs are suggested 
to be used as their Min D values are close to those of 
Min D-optimal robust designs. However in case of 
a general missing point, the Med D-optimal robust  
design would be superior to the Min D-optimal design, 
especially for a very small design such as N = 7.
 For G-optimality, the Med G-optimal robust 
designs would not be recommended if the worst case 
happened. In such a case, G-optimal designs would 
give Min G much larger than that of Med G designs. 

However, |XTX| of Med G-optimal robust design is 
not singular, unlike the G-optimal design with N = 7. 
Without a missing point, Min G-optimal designs would 
be recommended, while Med G-optimal designs are 
far better than G-optimal designs for a general missing  
point (not the worst case) although a sample size 
increases.
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