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Abstract
The vehicle routing problem is a logistics problem which receives much attentions in logistics management. 
This paper presents a Memory integrated Artificial Bee Colony Algorithm (MABC) to solve the Vehicle Routing 
Problem with addition of Backhauls and Time Windows, known as the VRPBTW. In VRPBTW, a homogenous 
fleet of vehicles are utilized to deliver goods to linehaul customer set and pick up goods from backhaul customer 
set. Vehicle capacity, sequence of linehaul/backhaul and time windows are the three of major constraints for 
this problem. The VRPBTW’s objective is to determine the optimal routes with minimum of total distance that 
satisfies all constraints. The proposed algorithm was tested on Gelinas’s VRPBTW benchmark problems. MABC 
is developed by adding the memory to Artificial Bee Colony (ABC). The local search algorithms including 
λ-interchange and 2-opt* are utilized to search for the better solutions. The computational results show that MABC 
significantly yields the good solutions in terms of total travelling distance. Finally, it can be concluded that the 
performance of the proposed MABC algorithm is superior to the existing studies in term of quality solution.

Keywords: Memory integrated artificial bee colony algorithm, Vehicle routing problem, Backhauls, Time 
windows, Local search
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1 Introduction

Logistics management mainly focuses in cost, time, 
and quality. The Vehicle Routing Problem (VRP) is 
a vital operation for logistics. Fully utilization of the 
fleet of vehicle is a major concern for VRP. Assigning 
vehicle to pick up goods during backhaul can enhance 
utilization of the vehicle. In addition, the period for 
delivery and pick up goods is also the restriction in 
logistics since warehouse or customer usually schedule 

a specific period to pick up or receive goods. Vehicle 
Routing Problem with Backhauls and Time Windows 
(VRPBTW) is an extension of the classical Vehicle 
Routing Problem (VRP). The VRPBTW contains two 
subsets of customers, known as delivery customer  
(linehaul) and pickup customer (backhaul). Each  
linehaul customer requires a given quantity of goods 
from depot, and a given quantity of goods is collected 
from each backhaul customer and returned to the 
depot. Because deliveries are usually higher priority 
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than pickup; therefore, the linehaul customers must be 
visited before the backhaul customers in each route. 
Each customer must be visited within a specified 
time windows. The vehicle is allowed to arrive before  
the lower bound of time windows, and waits until the 
customer is available. However, the vehicle is not  
allowed to arrive after the upper bound of time  
windows. We consider this restriction as the hard time 
windows constraint for the vehicle routing problem 
with backhauls. Due to the finite capacity of each 
vehicle, the routes must be satisfied the capacity  
constrain. The objective is to minimize the total  
travelling distance of vehicles, while all constraints 
must be satisfied.
 Literatures on logistics management can be found 
in [1], [2]. The decision making model on the excavated  
soil transportation with transportation cost and time 
constraint was proposed by [1]. [2] presented the  
location routing problem which intended to minimize 
the transportation and depreciation cost of collection 
and distribution in a rubber market. In this paper, the 
vehicle routing problem is our interest. The VRPBTW 
is a NP-hard problem [3]. Because it can be considered 
as the VRP, which is well-known NP-hard problem, 
only backhauls and time windows are additionally 
considered. Research on VRPBTW has been mainly 
focused on heuristic and meta-heuristic approaches 
which can produce high quality of solutions within  
reasonable computational time. The review on  
metaheuristic for VRPBTW are provided as follows.  
A Genetic Algorithm (GA) with greedy route  
construction heuristic for VRPBTW was performed by 
[3]. The routing construction heuristic with different 
local search heuristics for improving initial solution 
was proposed by [4]. A Tabu Search (TS) heuristic 
for VRPBTW was proposed by [5]. The result was 
compared with solution of other heuristic approach and 
the optimal solutions. An ant system was presented to 
solve the VRPBTW by [6]. This ant system approach 
was based on insertion algorithm proposed by [7]. A 
Guided Local Search Approach (GLSA) and section 
planning technique for VRPBTW were also presented 
by [8].
 Recently, a Differential Evolution Algorithm 
(DEA) was presented by [9]. DEA was tested with 
benchmark problem and compared the results with 
the optimal and best known solutions. They could 
find some of the results that were better than the best 

known solutions. Moreover, an advanced Hybrid  
Metaheuristic Algorithm (HMA) was proposed by 
[10]. The HMA combines Simulated Annealing 
(SA) and Tabu Search (TS) meta-heuristic to solve 
VRPBTW. The HMA was applied to the benchmark 
problem and the results showed that HMA could also 
find better solution than the best known solutions. 
In addition, [11] proposed an Artificial Bee Colony 
(ABC) algorithm with λ -interchange local search 
technique for VRPBTW. The results shown that the 
proposed algorithm is comparable to HMA and GA.
 In this paper, we present Memory integrated  
Artificial Bee Colony Algorithm (MABC) and additional  
local search techniques, which are λ -interchange and 
2-opt* to reduce the time spent searching for solution 
and increase chances of finding better solution for 
VRPBTW. The Gelinas’s benchmark problems in [12] 
are used to evaluate the performance of the MABC 
algorithm.

2 Problem Definition

VRPBTW is formulated based on the existing  
mathematical formulation for VRPB, with each vertex 
representing a customer [13]. Let G(V, A) be a graph 
with a vertex set V = {0} ∪ L ∪ B , where the subset 
{0}, L and B represent to the depot, linehaul customer 
nodes, and backhaul customer nodes, respectively. A 
denotes all possible arcs that are connected between 
nodes. G(V, A) be a graph in G which is defined as:

 and   

 The arc set A can be divided into three subsets. 
The arc set A1 represents all of arcs from the depot to 
linehaul customer nodes and from linehaul customer 
nodes to linehaul customer nodes. A2 represents all 
of arcs from linehaul customer nodes to backhaul 
customer nodes and from linehaul customer nodes 
to the depot. A3 represents all of arcs from backhaul 
customer nodes to backhaul customer nodes and from 
backhaul customer nodes to the depot. Additionally, for 
each  and  
define the forward and backward star of i, respectively. 
Forward star of i defines the set of vertices j that have 
direct path from vertex i and backward star of i defines 
the set of vertices j that have direct path to vertex i. 
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Using these definitions, the VRPBTW was formulated 
as following and it is classified as the mixed-integer 
programming model [10].

Notations
K : Set of vehicles
di : Demand/supply for customer 
cij : Distance from node  to node  
tij :Travel time between node  to node  
ai : Earliest arrival time at customer  
bi : Latest arrival time at customer  
si : Service time at customer  
uk : Capacity of vehicle  
Tmax : Maximum route time allowed for vehicles
M : Large penalty value

Decision variables
xijk : 1 if vehicle k travels from customer i to j, and 
0 otherwise
wik : Service start time of vehicle k for customer i. 

Objective

 (1)

Subject to:

  (2)

  (3)

  (4)

  (5)

  (6)

  (7)

  (8)

  (9)

    
  (10)

 
  (11)

  (12)

  (13)

  (14)

  (15)

 According to the model, objective (1) is to minimize  
the sum of the route distance. Constraints (2) and (3) 
are the capacity restrictions which ensure that load of 
vehicle k will not exceed the capacity in linehaul and 
backhaul customers, respectively. Constraints (4)–(8) 
are the classic VRP constraints. Constraints (4) and (5) 
say that each route must leave from the depot and must 
return to the depot. Constraints (6) and (7) ensure that 
the exactly one arc enters and leaves each customer 
node. Constraint (8) states that a vehicle leaves from 
the same customer node it has entered. Constraints 
(9)–(13) define time windows that each customer 
must be serviced in the time windows and also these 
constraints prevent subtour. Finally, constraints (14) 
and (15) guarantee that all decision variables must be 
the proper variable types.

3 Proposed Algorithm

This section describes the MABC algorithm, generation  
of initial solution and local search operations which 
are λ -interchange and 2-opt*. These local searches 
improve the solution by exchanging customer nodes 
between 2 selected routes.

3.1  Memory integrated Artificial Bee Colony Algorithm  
(MABC)

The ABC algorithm is an evolutionary algorithm that 
is inspired by the natural foraging behavior of honey 
bees in finding food or nectar source around the hive. 
The solution of the problem are considered as food 
source and the groups of bees try to exploit the food 
sources in the hope of finding good quality nectar or 
high quality of solutions.
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 In the ABC algorithm, the bees are divided into 
three types including employed bees, onlookers and 
scouts [14]. Employed bees are responsible for exploiting  
available food sources and gathering required  
information. The information is shared to onlookers 
then the onlookers select existing food source to be 
further explored. Employed bee can abandon the old 
food source when the onlookers can find the best food 
source. In this case, the employed bee associated with 
the old food source will be assigned to the best food 
source found by onlookers. However, any food sources 
will also be abandoned if the iteration limit is reached. 
After that, the employed bee becomes a scout bee to 
look for new food source randomly.
 MABC algorithm which adopts ABC algorithm 
in [11] with addition of memory and local search can 
be performed by following step 1 to 4. Step 1 to 3 
are for the initial solutions and parameters setting. 
Step 4 describes an improvement on solution (or food 
source) Xi by generating  with local search processes 
including λ-interchange and 2-opt*. The best results 
from both local searches will be used to generate .  
Next, the additional of memory (MEM) concept as 
in step 4 is proposed to avoid ABC algorithm to fall 
into the local optimal too fast. The memory can be 

considered as Tabu list or forbidden list. Additional 
of memory is used for memorizing the search paths in 
solution Xi that has been proceeded by local searches 
without any improvement. The MABC algorithm can 
be summarized as in Figure 1.

3.2  Initial solutions

An initial solution is constructed based on the weighted 
time oriented nearest neighbor heuristic process that 
was proposed by Solomon [7] and this technique was 
applied with ABC algorithm in [11]. The closet of 
node i to node j, cij is introduced to generate the initial 
solutions appropriately.
 In term of closest, cij is determined by three cost 
factors [15]. The first factor as in (16) is distance from 
customer i’s location to customer j’s location, dij 

 (16)

where (xi, yi) is geometric location of customer i.
 The second factor is urgency, uij in (17). Urgency 
of customer j is time left to service customer j after it 
serves customer i.

Figure 1: Memory integrated artificial bee colony algorithm for solving the VRPBTW.

1. Generate a set of initial food sources (or initial solutions) Xi.
2. Evaluate the fitness f(Xi) for each food source.
3. Set v = 0, li = 0, and MEM of Xi = ∅; i = 1,2,...,Nb
4. While (v <= MaxIteration) do

a. For each Xi, generate  by randomly select pair of routes (ri, rj) that do not appear in MEM of Xi and apply two local search 
operations,

If f( ) > f(Xi) Then Xi = , li = 0, apply removing procedure to (ri, rj) as in section 3.5, Else li = li + 1 and add  to MEM of Xi 
End If, Next

b. Set f( ) = 0, F = ∅ 
c. For each onlooker

Select food source Xi by using roulette wheel selection method and generate  by randomly select pair of routes (ri, rj) that do 
not appear in MEM of Xi and apply two local search operations, 
If f( ) > f( )Then  =  End If, Next

d. For each food source Xi, If f(Xi) < f( ) Then i ∈ F End If, Next 
Set  = Xj where  

For each food source Xi, If Xi =  Then Replace Xi with , li = 0, replace MEM of Xi with MEM of  and Else li = li + 1 End 
If, Next

e. For each food source Xi, If li = limit Then Replace Xi with a randomly generated solution, li = 0, and set MEM of Xi = ∅ End if, Next
f. v = v +1

Loop
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(a) Before the 2-pot* exchange process (a) After the 2-pot* exchange process 

 (17)

where Ti denotes the service start time of customer, si  
is defined as the service time of customer i, tij denotes 
travel time between customer i’s location to customer 
j’s location.
 The third factor is the waiting time, wij as in (18) 
which is the time remaining until the vehicle’s last 
possible service start.

 (18)

The closest term can be formulated as (19)

 (19)

where θd, θu, θw, are the weight of distance, urgency, 
and waiting time, respectively.
 The lower value of cij is more preferable. To generate  
different initial food sources, the initial weight of 
distance, urgency, and waiting time are randomly 
searched from range 0 to 1.
 The procedure of this heuristic starts every routes 
by finding the unrouted customer closest (in term of cij) 
to the depot. Next, calculate cij for unrouted customer 
j to the last customer of each route i and also calculate  
cij for unrouted customer j to the depot. Select the  
lowest cij that satisfies both capacity and time windows  
constraint then add customer j to corresponding route. If 
closest to the depot, the new vehicle route is introduced.  
The approach is repeated until all customers are assigned.

3.3  λ -interchange local search

λ -interchange local search was introduced by [16]. It 
improves the solution by exchange of nodes between 
pair routes that are selected randomly. The number of 
node using exchange ranged from 0 to λ. The exchange 
will be performed to all possible cases that can be  
exchanged. Then, the best result is selected after doing 
the λ -interchange local search. For example, if λ =2 
all possible exchange will have 8 cases: exchange with 
(0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1) and (2,2). Let 
route i and route j are selected routes to be performed 
the local search by exchange with operator (1,2) 
which means that route i will use 1 node to exchange 
and route j will use 2 nodes to exchange. Moreover,  
assuming that route i has 6 nodes and route j has 4 

nodes. In this case, there are 181 possible results then 
the best result will be the solution of this local search. 
Example of λ -interchange local search with operators 
(1,1) and (1,2) are shown in Figure 2.

3.4  2-opt* exchange local search

The 2-opt* procedure was proposed by [17]. It is able 
to improve the solution by exchange nodes in pair of 
routes that are randomly selected. After that select arc 
from selected route, for example, suppose that route 
i and route j are selected. Result of 2-opt* will occur 
by taking a node located next to selected arc on route i 
and taking a node located next to selected arc of route 
j and then exchange nodes between pair of routes. An 
example of 2-opt* procedure is depicted in Figure 3. 
Assuming that route i has 6 nodes and route j has 4 
nodes, these lead to 35 possible results then the best 
result will be the solution of this local search.

Figure 2: Interchange of nodes between two routes.

Figure 3: 2-opt* exchange.
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3.5  Removing procedure for the pair of routes

Since the memory is integrated to ABC algorithm, 
the forbidden list of each food source is introduced. 
If route (ri, rj) is added to forbidden list, it should be 
removed after a certain period of time. The removing  
procedure will release all pairs of routes that are 
consisted of ri or rj from the forbidden list (or MEM).

4 Computational Results

The proposed algorithm, MABC with λ -interchange 
and 2-opt * local search, was implemented via Visual 
Basic programming language using a laptop PC intel 
Core i5, 2.3 GHz processor and 4 GB memory. To 
evaluate the performance, the instance of VRPBTW 
generated by Gelinas et al. [12] have been tested. These 
benchmark problems were selected from the first 5 
problems of the r1 series developed by Solomon [7] 
and then randomly chooses 10, 30 and 50% of the 100 
customer nodes to be backhaul customer, without any 
changes to the other attributes. Gelinas et al. generated 
additional test problems by considering only the first 25 
and first 50 customer nodes. Therefore 45 test problems  
for the VRPBTW were generated. However, in this 
paper, we select 34 problems of which the optimal 
solutions are known to the computational experiments.

 The parameters for MABC consist of: the  
Number of bees (Nb), limit, λ(Lambda) and maximum 
iteration (MaxIteration). Design of experiments was 
conducted by [11] in order to determine the appropriate 
parameters which are employed to these experiments. 
Therefore, the parameters for MABC are as following:  
Nb = N_node/10, limit = N_node*5, λ = 2 and  
MaxIteration = 40,000. The number of customer is 
denoted by N_node.
 Table 1 to Table 3 display the optimal solution, 
the best result of MABC, and also the compared  
algorithms which are ABC II, HMA, GA, DEA  
referring to the proposed algorithms in [11], [10], 
[3] and [9] respectively. The %Gapopt for Gelinas’s 
benchmark problem sets with known optimal solution 
are shown as well. The %Gapopt can be described by 
the following equation:

 In the Table 1, the results for 25 customer nodes, 
show that the proposed MABC is able to find the 
optimum solutions for 10 problems and yields 1 new 
best solution in problem R104a. The total distance of 
8,432.1 and %Gapopt of 0.32% for proposed MABC 
reveal that MABC is the best for small-size problems

Table 1: Computational result for 25 customer nodes

Problem Optimal 
Solutions

MABC ABCII HMA GA DEA %Gapopt

Dist NV %CV Dist Dist Dist Dist MABC ABCII HMA GA DEA
R101a 643.4 643.4 10 0.00% 643.4 643.4 643.4 643.4 0.00% 0.00% 0.00% 0.00% 0.00%
R101b 711.1 721.8 10 0.00% 721.8 721.8 721.8 721.8 1.50% 1.50% 1.50% 1.50% 1.50%
R101c 674.5 676.8 10 0.00% 676.8 676.8 682.3 676.8 0.34% 0.34% 0.34% 1.16% 0.34%
R102a 563.5 563.5 7 0.00% 563.5 563.5 563.5 565.3 0.00% 0.00% 0.00% 0.00% 0.32%
R102b 622.3 628.1 9 0.00% 628.1 628.1 622.3 629 0.93% 0.93% 0.93% 0.00% 1.08%
R102c 584.4 584.4 9 0.00% 584.4 584.4 584.4 585.3 0.00% 0.00% 0.00% 0.00% 0.15%
R103a 476.6 476.6 5 0.00% 476.6 478.8 476.6 489 0.00% 0.00% 0.46% 0.00% 2.60%
R103b 507 507 10 0.00% 507 507 507 510.9 0.00% 0.00% 0.00% 0.00% 0.77%
R103c 475.6 483 6 0.00% 483 483 483 495 1.56% 1.56% 1.56% 1.56% 4.08%
R104a 452.5 452.5 5 0.09% 453.8 453.8 452.8 459.1 0.00% 0.29% 0.29% 0.07% 1.46%
R104b 467.6 468.5 6 0.00% 468.5 468.5 468.5 469.6 0.19% 0.19% 0.19% 0.19% 0.43%
R104c 446.8 446.8 5 0.00% 446.8 446.8 446.8 458.7 0.00% 0.00% 0.00% 0.00% 2.66%
R105a 565.1 565.1 7 0.00% 565.1 565.1 565.1 565.1 0.00% 0.00% 0.00% 0.00% 0.00%
R105b 623.5 623.5 8 0.32% 628 623.5 630.2 630.2 0.00% 0.72% 0.00% 1.07% 1.07%
R105c 591.1 591.1 8 0.00% 591.1 592.1 592.1 598.5 0.00% 0.00% 0.17% 0.17% 1.25%
Total 8405 8432.1 0 0.00% 8437.9 8436.6 8439.8 8497.7 0.32% 0.39% 0.38% 0.41% 1.10%
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 The results for 50 customer nodes as in Table 2  
show that MABC can determine the optimum  
solutions for 2 problems and obtains 5 new best  
solutions out of 13 instances considered this papers. 
The total distance of 12,907.2 and %Gapopt of 0.68% 
of MABC algorithm confirms that MABC is still  
efficient to find the solutions for medium-size problems.
 Table 3 displays the results for 100 customer nodes.  
Although, the MABC can obtain only 2 new best solutions  
(R101b and R102c) for 6 instances but the total distance  
of MABC algorithm are close to the optimal values. 
%Gapopt of  MABC algorithm are not significant different  
from GA. Moreover, the overall %CV for MABC are 
very lower which indicate that the MABC is capable 
to yield the solution with low variation.

5 Conclusions and Discussions

The MABC is proposed to solve the extension of the 

vehicle routing problem with addition of backhauls and 
time windows, known as the VRPBTW. The proposed 
algorithm is based on ABC algorithm with additional 
memory for improving the effectiveness in finding the 
solution. The initial solutions are generated by random 
weighted time oriented nearest neighbor heuristic. 
The λ -interchange and 2-opt* local search are used as  
the neighborhood search mechanism. To evaluate the 
efficiency of the proposed algorithm, MABC is tested 
with Gelinas’s VRPBTW benchmark problems. The 
numerical experiments reveal that proposed MABC 
yield the solutions which are close to the optimal 
solutions with 0.89% of overall %Gapopt. Moreover, 
MABC has superior performance in solving VRPBTW 
by obtaining 8 new best solutions which are better than 
other reference algorithms. It can be concluded that the 
proposed MABC is out perform for VRPBTW. For the 
future research, the proposed algorithm may be applied 
to other variants of vehicle routing problem such as 

Table 2: Computational result for 50 customer nodes

Problem Optimal 
Solutions

MABC ABCII HMA GA DEA %Gapopt

Dist NV %CV Dist Dist Dist Dist MABC ABCII HMA GA DEA
R101a 1122.3 1133.3 15 0.03% 1134 1135.8 1138.1 1138.3 0.98% 1.04% 1.20% 1.41% 1.43%
R101b 1191.5 1191.6 16 0.32% 1191.6 1191.6 1192.7 1245.8 0.01% 0.01% 0.01% 0.10% 4.56%
R101c 1168.6 1183.9 16 0.00% 1183.9 1183.9 1183.9 1183.9 1.31% 1.31% 1.31% 1.31% 1.31%
R102a 974.7 976.5 12 0.00% 976.5 976.8 976.8 978.7 0.18% 0.18% 0.22% 0.22% 0.41%
R102b 1024.8 1054.6 14 0.00% 1054.6 1046 1029.2 1046 2.91% 2.91% 2.07% 0.43% 2.07%
R102c 1057.2 1059.7 14 0.00% 1059.7 1061.6 1059.7 1115.3 0.24% 0.24% 0.42% 0.24% 5.50%
R103a 811.4 813.8 9 0.52% 821.6 815.5 813.3 831.1 0.30% 1.26% 0.51% 0.23% 2.43%
R103b 882.8 886.3 11 0.33% 887.1 889.3 892.7 895.1 0.40% 0.49% 0.74% 1.12% 1.39%
R103c 882.1 884.3 11 0.07% 885.1 887.7 885.5 887.7 0.25% 0.34% 0.63% 0.39% 0.63%
R104c 733.6 733.6 8 0.27% 739.3 738.2 741.4 742.2 0.00% 0.78% 0.63% 1.06% 1.17%
R105a 970.6 973.7 11 0.33% 985.2 978.5 1002.5 972.8 0.32% 1.50% 0.81% 3.29% 0.23%
R105b 1007.5 1022.5 14 0.27% 1024.7 1026.7 1047.8 1030 1.49% 1.71% 1.91% 4.00% 2.23%
R105c 993.4 993.4 11 0.00% 993.4 996.2 1018 1022.2 0.00% 0.00% 0.28% 2.48% 2.90%
Total 12820.5 12907.2 0 0.00% 12936.7 12927.8 12981.6 13089.1 0.68% 0.91% 0.84% 1.26% 2.10%

Table 3: Computational result for 100 customer nodes

Problem Optimal 
Solutions

MABC ABCII HMA GA DEA %Gapopt

Dist NV %CV Dist Dist Dist Dist MABC ABCII HMA GA DEA
R101a 1767.9 1813.3 24 0.09% 1818.6 1811.6 1815 1881.6 2.57% 2.87% 2.47% 2.66% 6.43%
R101b 1877.6 1887.7 25 0.39% 1904.5 1891.1 1896.6 1925.9 0.54% 1.43% 0.72% 1.01% 2.57%
R101c 1895.1 1909.4 25 0.54% 1928.2 1911.2 1905.9 1930.2 0.75% 1.75% 0.85% 0.57% 1.85%
R102a 1600.5 1625.5 21 0.53% 1640.7 1623.7 1622.9 1649.8 1.56% 2.51% 1.45% 1.40% 3.08%
R102b 1639.2 1700.7 22 0.30% 1717.3 1724 1688.1 1758.2 3.75% 4.76% 5.17% 2.98% 7.26%
R102c 1721.3 1734.7 21 0.29% 1752.2 1759.8 1735.7 1777.1 0.78% 1.80% 2.24% 0.84% 3.24%
Total 10501.6 10671.3 0 0.00% 10761.5 10721.4 10664.2 10922.8 1.62% 2.47% 2.09% 1.55% 4.01%
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vehicle routing problem with pickup and delivery  
and open vehicle routing problem, etc. Moreover, 
the hybrid algorithm between two metaheuristics can 
also be developed to determine better solutions for the 
large-scale problem of VRPBTW.
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