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Abstract 

The objective of this research is to calculate the optimal inventory lot-sizing for each supplier and minimize 

the total inventory cost which includes joint purchase cost of the products, transaction cost for the suppliers, 

and holding cost for remaining inventory. Genetic algorithms (GAs) are applied to the multi-product and 

multi-period inventory lot-sizing problems with supplier selection under storage space. Also a maximum 

storage space for the decision maker in each period is considered. The decision maker needs to determine 

what products to order in what quantities with which suppliers in which periods. It is assumed that demand of 

multiple products is known over a planning horizon. The problem is formulated as a mixed integer 

programming and is solved with the GAs. The detailed computation results are presented. 
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1 Introduction

Lot-sizing problems are production planning 

problems with the objective of determining the 

periods where production should take place and the 

quantities to be produced in order to satisfy demand 

while minimizing production and inventory costs [1]. 

Since lot-sizing decisions are critical to the efficiency 

of production and inventory systems, it is very 

important to determine the right lot-sizes in order to 

minimize the overall cost. 

Lot-sizing problems have attracted the attention of 

researchers. The multi-period inventory lot-sizing 

scenario with a single product was introduced by 

Wagner and Whitin [2], where a dynamic 

programming solution algorithm was proposed to 

obtain feasible solutions to the problem. Soon 

afterwards, Basnet and Leung [3] developed the 

multi-period inventory lot-sizing scenario which 

involves multiple products and multiple suppliers. 

The model used in these former research works is 

formed by a single-level unconstrained resources 

indicating the type, amount, suppliers and purchasing 

time of the product. This model is not able to 

consider the capacity limitations. One of the 

important modifications we consider in this paper is 

that of introducing storage capacity. 

In this paper based on Basnet and Leung [3] genetic 

algorithms (GAs) are applied to the multi-product 

and multi-period inventory lot-sizing problem with 

supplier selection under storage space. Also a 

maximum storage space for the decision maker in 

each period is considered. The decision maker needs 

to determine what products to order in what 

quantities with which suppliers in which periods. The 

objective of this research is to calculate the optimal 

inventory lot-sizing for each supplier and minimize 

the total inventory cost.  

This paper is organized as follows: Section 2 

provides a literature review on the current inventory 
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lot-sizing. Section 3 we describe our model. Section 4 

the genetic algorithm approach is applied to problem. 

In Section 5 presents a numerical example of the 

model. Finally, computation results and conclusions 

are presented in Section 6 and 7. 

 

2 Literature review 

Inventory lot-sizing has been one of the most studied 

problems in production and inventory management 

literature. Bahl et al [4] proposed four categories for 

classifying works in this area: (1) single-level 

unconstrained resources, (2) single-level constrained 

resources, (3) multiple-level constrained resources, 

and (4) multiple-level unconstrained resources. 

Levels refer to the different levels in a bill of material 

structure where dependency of requirements exists, 

and constrained resources refer to production 

capacity limitations.  

The scenario discussed in this paper belongs to the 

second category. The multi-period inventory lot-

sizing which involves with multiple products and 

multiple suppliers under storage space. The study lot-

sizing began with Wagner and Whitin [2], provided a 

dynamic programming algorithm for a single product 

case. This problem is known as the uncapacitated 

single item single level lot-sizing problem.  

With the advent of supply chain management, much 

attention is now devoted to supplier selection. 

Rosenthal et al [5] studied a purchasing problem 

where one needs to select among suppliers who offer 

discounts selling a ‘‘bundle’’ of multiply products. 

Then a mixed integer programming formulation was 

presented. Chaudhry et al [6] considered vendor 

selection under quality, delivery and capacity 

constraints and price-break regimes. Ganeshan [7] 

presented a model to determine lot sizes that involve 

multiple suppliers including multiple retailers, and 

consequent demand on a warehouse. Kasilingam and 

Lee [8] incorporated the fixed cost of establishing a 

vendor in a single-period model that includes demand 

uncertainties and quality considerations in the 

selection of vendors. Also vein, Jayaraman et al [9] 

proposed a supplier selection model that considers 

quality (in terms of proportion of defectives supplied 

by a supplier), production capacity (constraining the 

order placed on a supplier), leadtime, and storage 

capacity limits. This is also a single period model that 

attaches a fixed cost to deal with a supplier.  

Included in the stream of researches integrating 

supplier selection and procurement lot-sizing are 

works by Oliver [10], Rule [11], Chappell [12], 

Williams and Redwood [13], Anthony and Buffa 

[14], Buffa and Jackson [15], Bender et al [16], Pan 

[17], Tempelmeier [18], and Basnet and Leung [3]. 

They consider a multi-period planning horizon and 

define variables to determine the quantity purchased 

in each elementary period. Buffa and Jackson [15] 

presented a schedule purchase for a single product 

over a defined planning horizon via a goal 

programming model considering price, quality and 

delivery criteria. Bender et al [16] studied a 

purchasing problem faced by IBM involving multiple 

products, multiple time periods, and quantity 

discounts. The authors described, but not developed, 

a mixed integer optimization model, to minimize the 

sum of purchasing, transportation and inventory costs 

over the planning horizon, without exceeding vendor 

production capacities and various policy constraints. 

Basnet and Leung [3] presented a multi-period 

inventory lot-sizing scenario where there are multiple 

products and multiple suppliers. They considered a 

situation where the demand of multiple discrete 

products is known over a planning horizon. The 

model determines the type, amount, supplier and 

purchasing time of products. Their model is one of 

the most useful ones for supply selection in a single 

stage category. They proposed an uncapacitated 

mixed integer programming that minimizes the 

aggregate purchasing, ordering and holding costs 

subject to demand satisfaction. The authors proposed 

an enumerative search algorithm and a heuristic 

algorithm to solve the problem.  

Complexity theory and computational experiments 

indicate that most lot sizing problems are hard to 

solve [19]. To deal with the complexity and find 

optimal (or near-optimal) results in reasonable 

computational time, in recent years, a growing 

number of researchers have employed heuristic 

approaches to solve lot sizing problems [20] [21] . 

Among these heuristic approaches, evolutionary 

computation has received the greatest attention. The 

most well known evolutionary computation is genetic 

algorithms (GAs). Recently, GAs has been applied to 

lot-sizing problem [22]. Rezaei and Davoodi [23] 

have applied GAs for multi-period inventory lot 

sizing scenario while demand and all costs are 

considered as fuzzy numbers. Moghadam et al [24] 

presents inventory lot-sizing with supplier selection 

and the multi-echelon using a hybrid intelligent 

algorithm based on a fuzzy neural networks and GAs 

is designed. A multi objective program for a single 

item model [25] was assumed that all suppliers’ lots 

simultaneously arrive at the beginning of each 
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replenishment period. To deal with the multi 

objective optimization, a GAs was applied.  

 

3 Formulation 

We also make the following assumptions and 

mathematical for the model: 

 

3.1 Assumptions  

• Demand of products in period is known over a 

planning horizon. 

• All requirements must be fulfilled in the period in 

which they occur: shortage or backordering is not 

allowed. 

• Transaction cost is supplier dependent, but does 

not depend on the variety and quantity of products 

involved. 

• Holding cost of product per period is product-

dependent. 

• Product needs a storage space and available total 

storage space is limited. 

 Base on the above assumption of model, Figure 1 

shows the behavior of the model considering the 

scenario of multi-period inventory lot-sizing 

problem with supplier selection under storage 

space. The characteristics of the model used to 

determine what products i , with which 

suppliers j , and in which periods t  to 

order )( ijtX . 

 

Figure 1: Behavior of the model in period t . 

 

3.2 Mathematical modeling 

This paper is built upon Basnet and Leung [3] model. 

We formulate the multi-product and multi-period 

inventory lot-sizing problem with supplier selection 

under storage space using the following notation: 

Indices: 

i       =     1,…., I   index of products 

j        =     1,…., J   index of suppliers 
t       =     1,…., T   index of time periods 

Parameters: 

itD    =     demand of product i  in period t  
ijP     =     purchase price of product i  from supplier j  
iH     =     holding cost of product i per period 

jO     =     transaction cost for supplier j  

iw     =     storage space product i    

S       =    total storage space   

Decision variables: 

ijtX   =     number of product i  ordered from supplier 

j  in period t   

jtY     =     1 if an order is placed on supplier j  in time 

period t , 0 otherwise 

Intermediate variable: 

itR     =     Inventory of product i , carried over from 

period t  to period t  + 1 

 

Regarding the above notation, the mixed integer 

programming is formulated as follows: 
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(4)  

t,jY   jt                  and allfor 1or0  (5)  

t, jiX  ijt   all                and,,for0  (6)  

 

The objective function as shown in Eq.(1) consists of 

three parts: the total cost (TC) of 1) purchase cost of 

the products, 2) transaction cost for the suppliers, and 

3) holding cost for remaining inventory in each 

period in t + 1. 
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Constraint in Eq. (2) all requirements must be filled 

in the period in which they occur: shortage or 

backordering is not allowed. Constraint in Eq. (3) 

there is not an order without charging an appropriate 

transaction cost. Constraint in Eq. (4) each products 

have limited capacity. Constraint in Eq. (5) is binary 

variable 0 or 1 and Constraint in Eq. (6) is non-

negativity restrictions on the decision variable. 

According to a large optimal problem, a GAs 

approach is applied to solve this problem. 

 

4 Genetic algorithms approach 

The genetic algorithms (GAs) approach is developed 

to find optimal (or near – optimal) solution. Detailed 

discussion on GAs can be found in books by Holland 

[26], Michalewicz [27], Gen and Cheng [28] [29], 

Davis [30] and, Goldberg [31]. In this section, we 

explain GAs procedure is illustrated in Figure 2. 

Topics covered include (1) Chromosome structure (2) 

Initial population (3) Evaluation (4) Selection (5) 

Crossover (6) Mutation, and (7) Termination rule.  

 

 

Figure 2: The genetic algorithm procedure 

 

4.1 Chromosome structure 

In this problem, we take each chromosome as a 

model solution, where I, J and T are the number of 

products, suppliers and periods, respectively, and 

each chromosome is a real values vector (we make it 

by X) by length of (I x J x T) and a binary values 

vector are 0 or 1 (we make it by Y) by length of (J x 

T), appropriate by each ijtX  and jtY  (decision 

variables). For example, the representation of a 

chromosome is illustrated in Figure 3. 

 

 

 

Figure 3: Chromosome structure 

 

4.2 Initial population 

The population initialization technique used in the 

GAs approach is a randomly generate solutions for 

the entire population. Population size depends only 

on the nature of problems and it must balance 

between time complexity and search space measure. 

More population size may increase the probability of 

finding optimal solution, but may induce a longer 

computer time. In this paper, we use a population size 

is set not less than twice the length of the vector of 

the chromosomes [24]. 

 
4.3 Evaluation or fitness function 

It is evaluated by the chromosome structure which 

results in positive value in [32]. Fitness value defines 

the relative strength of a chromosome compared with 

the others, and the optimality of the solution to the 

problem. The fitness function of this model is an 

objective one (to minimize cost). 

 

4.4 Selection 

The selection of parents to produce successive 

generations plays an extremely important role in the 

GAs. The goal is to allow the fittest individuals to be 

selected more often to reproduce. However, all 

individuals in the population have a chance of being 

selected to reproduce the next generation. In this 

paper, the roulette wheel selection technique is used. 

[33] [34].  

 
4.5 Crossover operator 

Crossover operators combine information from two 

parents in such a way that the two children (solutions 

for the next population) resemblance to each parent. 

There are several available methods to do so [27] 

[35]. This paper adapts two point crossover operators 

to solve GAs [33]. 

 

4.6 Mutation operator 

Mutation operators alter or mutate one chromosome 

by changing one or more variables in some way or by 

Initial 
population 

Evaluation 

Selection 

 

Crossover 

 

Mutation 

 

Termination rule Stop 
Yes No 

Chromosome  111X  112X  … ijtX  … 1IJTX  IJTX  

11Y  12Y  … jtY  … 1JTY  JTY  
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 Price 

Products X Y Z 

A 30 33 32 

B 32 35 30 

C 45 43 45 

Transaction Cost 110 80 102 

 

some random amount to form one offspring. For 

mutation, we use a linear mutation by probability (1/I 

x J x T) for mutating X vector and bit-wise mutation 

by probability (1/J x T) for Y vector [23] [34]. 

 

4.7 Termination rule  

The GAs moves from generation to generation 

selecting and reproducing parents until a termination 

criterion is met. The most frequently used stopping 

criterion is a specified maximum number of 

generations. In this paper, there are two stop criteria. 

First, the process is stopped when the number of 

interations has reached the maximum generations. 

Second, the process is stopped when the maximum 

time exceeds a given value (set at 120 minutes) [3]. 

 

5 A numerical example  

In this section we solved a numerical example of the 

model using real parameter genetic algorithms. We 

consider a scenario with three products over a 

planning horizon of five periods whose requirements 

are as follows: demands of three products over a 

planning horizon of five periods are given in Table 1. 

There are three suppliers and their prices and 

transaction cost, holding cost and storage space are 

show in Table 2 and Table 3, respectively. 

 

Table 1: Demands of three products over a planning 

horizon of five periods )( itD . 

 

Table 2: Price of three products by each of three 

suppliers X, Y, Z )( ijP and transaction cost of 

them )( jO .  

Table 3: Holding cost of three products A, B, C )( iH  

and storage space of them )( iw . 

 

 

 

 

 

     

The total storage space )(S is equal to 200. 

 

The results of applying the proposed method are 

shown in Table 4. The solution of this problem (I = 3, 

J = 3, and T = 5) is to place the following orders.  

All other ijtX = 0:  

 

Table 4: Order of three products over a planning 

horizon of five periods )( ijtX . 

 

 Planning Horizon (Five Periods) 

Products 1 2 3 4 5 

A X131 =  12 X132 =  15 X113 =  37 - X135 =  13 

B X231 =  20 X231 =  21 X213 =  22 X234 =  23 X235 =  24 

C X331 =  20 X332 =  19 X313 =  18 X334 =  17 X335 =  16 

 

Cost calculation for this solution: 
Purchase cost for product 1 from supplier 1, 3 

= (37×30) + (12+15+13) × 32 = 2,390.    

Purchase cost for product 2 from supplier 1, 3 

= (22×32) + (20+21+23+24) × 30 = 3,344.  

Purchase cost for product 3 from supplier 1, 3 

= (18×45) + (20+19+17+16) × 45 = 4,050.    

Transaction cost from supplier 1, 3  

=  (1×110) + (4×102) = 518. 

Holding cost for product 1 

1311313  D-XR                  = 37 − 17 = 20. 

=   tRH 11      = 1× (0 + 0 + 20 + 0 + 0) = 20. 

Thus, the total cost for this solution 

= 2,390 + 3,344 + 4,050 + 518 + 20 

= 10,322. 

 

 

 

              

 
Planning Horizon (Five Periods) 

Products 1 2 3 4 5 

A 12 15 17 20 13 

B 20 21 22 23 24 

C 20 19 18 17 16 

 Products 
 A B C 

Holding Cost 1 2 3 

Storage Space 10 40 50 
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6 Computation results 

In this section the comparison of the two methods 

solved problem size is using a commercially 

available optimization package like LINGO12 and 

GAs code is developed in MATLAB7. Experiments 

are conducted on a personal computer equipped with 

an Intel Core 2 duo 2.00 GHz, CPU speeds, and 1 GB 

of RAM. The transaction costs are generated from int 

[50; 200], a uniform integer distribution including 50 

and 200. The prices are from int [20; 50], the holding 

costs from int [1; 5], the storage space from int [10; 

50], and the demands are from int [10; 200]. 

The result in Table 5 shows the GAs comparing with 

LINGO12 for the nine problem sizes. A problem size 

of I; J; T indicates number of suppliers = I, number 

of products = J, and number of periods = T.  

Computation time limit is set at 120 minutes.  

For comparison, the percentage error is calculated by 

Eq.(7) and (8) 

 

 

 

 

Percentage error of LINGO12 

100
boundUpper 

boundLower    -  boundUpper 
                








        (7) 

Percentage error of  GAs 

100
LINGO boundUpper 

GAs  -  LINGO boundUpper 
               








        (8) 

The solution time of LINGO12 to optimal is a short 

time as the small problem size (with the problem 

sizes 3 x 3 x 5; 3 x 3 x 10; 3 x 3 x 15; and 4 x 4 x 10). 

For large problems sizes LINGO12 cannot obtain 

optimal solutions within limit time due to as the 

larger problem size (with the problem sizes 4 x 4 x 

15; 5 x 5 x 20; 10 x 10 x 50; 10 x 10 x 80; and 15 x 

15 x 50).  

The GAs can optimally solve when the problem size 

is small (with the problem sizes 3 x 3 x 5; 3 x 3 x 10; 

3 x 3 x 15; 4 x 4 x 10; 4 x 4 x 15; 5 x 5 x 20; and 10 x 

10 x 50). There are two problems which GAs cannot 

obtain optimal solutions (with the problem sizes 10 x 

10 x 80; and 15 x 15 x 50). 

 

 

Table 5: Comparative results of the two methods                                                                                                                                                                                                                                                                                  

aLINGO12 = Upper bound, bLINGO12 = Lower bound. 

 

 

 

Problem size 

Optimization approach with LINGO12 Genetic Algorithms (GAs) 

 

Total cost 

Solution time 

(minute) 

 

% Error 

 

Total cost 

Solution time 

(minute) 

 

% Error 

3 x 3 x 5 10,322 0.01 0 10,322 0.02 0 

3 x 3 x 10 20,644 0.14 0 20,644 0.21 0 

3 x 3 x 15 30,966 14.35 0 30,966 1.45 0 

4 x 4 x 10 25,436 6.34 0 25,436 0.51 0 

4 x 4 x 15 38,154
a 
, 37,828

b      
120 0.85 38,154 2.47 0 

5 x 5 x 20 60,218
a 
, 59,527

b     
 120 1.14 60,200 3.36 0.03 

10 x 10 x 50 285,344
a 
, 274,758

b     
 120 3.70 284,940 108.50 0.14 

10 x 10 x 80 456,494
a 
, 436,317

b     
 120 4.41 455,904 120 0.12 

15 x 15 x 50 417,800
a 
, 405,155

b     
 120 2.66 416,473 120 0.31 



 

Woarawichai C. et al. / AIJSTPME (2010) 3(4): 37-45 

 

43 

Next, we study differences in the problem sizes 

between solutions from the optimization with 

LINGO12 and the GAs. The results are show in 

Figure 4, a plot of the problem size versus solution 

time. LINGO12 uses longer computation time more 

than GAs with seven problem sizes, but uses equal 

time with two problem sizes. 

As show in Figure 5 a plot of the problem size 

versus % error when the problem size is very large, 

LINGO12 used a maximum % error from the optimal 

solutions is found to be 4.41% (at the problem size 10 

x 10 x 80) which has more % error than GAs. The 

GAs can solve small % error of two problem sizes (at 

the problem size 10 x 10 x 80; and 15 x 15 x 50). 

Figure 6 and Figure 7 show compares result between 

LINGO12 and GAs in problem size 3 x 3 x 5. 

Thus, it is evident that GAs is an effective means for 

solving the problem. GAs solution is optimal when 

the problem size is small. For larger problems GAs 

can find feasible solution within time limit for which 

LINGO12 fails to find the optimum. However, the 

GAs provides superior solutions to those from 

LINGO12 that are close to optimum in a very short 

time, and thus appears quite suitable for realistically 

sized problems.  

Additionally, the computation time when using GAs 

is also short, making it a very practical means for 

solving the multiple products and multi-period 

inventory lot-sizing problem with supplier selection 

under storage space. 
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Figure 4: Plot of the problem size vs. solution 
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Figure 5: Plot of the problem size vs. % error 

 

 

Figure 6: The best objective of LINGO 12  

 

 

Figure 7: The fitness value of GAs 
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7 Conclusions 

In this paper, we present genetic algorithms (GAs) 

applied to the multi-product and multi-period 

inventory lot-sizing problem with supplier selection 

under storage space. Also a maximum storage space 

for the decision maker in each period is considered. 

The decision maker needs to determine what products 

to order in what quantities with which suppliers in 

which periods. The mathematical model is give and 

the use of the model is illustrated though a numerical 

example. The problem is formulated as a mixed 

integer programming and is solved with LINGO12 

and the GAs. As compared to the solution of 

optimization package like LINGO12, the GAs 

solutions are superior. 
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