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Abstract
Corn harvesting is one of the most complicated problems which farmers need information to make decision 
prior farming. Corn price is the main factor for farming and there are many factors that affect the corn price 
vice versa. Knowledge of the factors affecting the corn price and the ability to forecast the corn price in advance 
would benefit farmers in the context of harvesting. The factors that affect the corn price in Thailand include 
chicken export rate, corn import rate, weather, soybean price, corn production, stock-to-use, season and planting 
area. The Cause Tree diagram has been constructed to demonstrate the linkage of such factors and all related 
data have been collected and analysed by using SPSS software. The Box-Jenkins model has been implemented 
to establish a time series forecasting model. And performance comparisons among the ARIMA model with 
Holt-Winters multiplicative seasonal  model and Holt-Winters additive seasonal model methods. The results of 
this research indicated that the corn price can be forecast by using its two lag data with current period soybean 
price data. The resulting forecasting equation with the ARIMA model generate the lowest errors with Root 
Mean Square Error (RMSE) at 0.8678, Mean Absolute Percent Error (MAPE) at 12.1009 and Mean Absolute 
Error (MAE) of 4.7592.

Keywords: The cause tree diagram, SPSS, Box-Jenkins model, Holt-Winters Multiplicative Seasonal model, 
Holt-Winters Additive Seasonal model
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1 Introduction

Corn is one of the most important agricultural products 
and is critical to both humans and animals. It can be 
used in variety applications, e.g., pharmacological 
activities [1]. Pimentel and Patzek [2] mentioned the 
use of corn as raw material for ethanol production, 
starch, food for human, animal feeds. Corn may even 
be used in high fructose syrup production as proposed 
by Parker et al. [3].
 In the market in Thailand, corn is used as the main 
feed for many kinds of livestock, e.g., chickens, pigs, 
etc. and constitutes more than 40% of pigs and more 
than 30% of chicken feed ingredients. Although, the 

demand for corn is quite high but its price fluctuates 
greatly and knowledge of the factors that affect corn 
price would beneficial to farmers in the context of 
corn harvesting. There has been plenty of research that 
has taken places regarding the factors that affect the 
corn price but only in respect of certain  dimensions.  
Whittaker [4] studied only the effects of planted acreage  
of corn, corn yield, weather and ethanol production in 
determining the corn price. Wescott and Hoffman [5] 
have established a corn price forecasting model and 
found that the stock-to-use of corn also affects the 
corn price. These authors also mentioned that corn and 
soybeans compete with each other in term of farmers 
production decisions. Government programs have also 
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been important in influencing farm-level prices of 
corn and wheat. Condon et al. [6] mentioned that each  
billion gallon expansion in ethanol production yields 
a 2–3% increase in corn prices on average. 
 It is important not only to know the factors that  
affect the corn price but also the relationships among the 
factors are very important. Knowing these relationships  
would bring more insight and understanding to the 
system as a whole. System thinking facilitates the 
viewing of a system from more than one perspective 
and the cause tree diagram could then be developed to 
demonstrate the linkage among each potential factor 
in a graphical manner.
 Collected data from related factors would yield a 
time series pattern. These time series data might compose 
variety of components, e.g., trend, cyclical, seasonal  
or even irregular components might be combined in 
different ways. The Autoregressive Integrated Moving 
Average or ARIMA (p,d,q) model was proposed by 
Box and Jenkins [7] and represents a methodology to 
decompose such components.  
 The purposes of this research are to model the 
relationships among each of the factors affecting the 
corn price in order to establish a corn price forecasting 
model. The forecasting model is then tested with actual 
data and compared with the forecasting performance 
of other methods.

2 Methods

The research was designed to take place in 2 phases 
with a total of 8 steps as given below. The first phase 
sought to determine the independent variables by using 
system thinking. And the second phase established the 
forecasting model by using the ARIMA (Box-Jenkins) 
model.

1. System thinking.
1.1 Develop the cause tree diagram.
1.2 List all independent variables.

2. ARIMA 
2.1 Data preparation.
2.2 Model selection.
2.3 Parameter estimation.
2.4 Model checking.
2.5 Forecasting.
2.6 Compare with other methods.

 Corn prices data have been collected with 240 
data points gathered during January 1997 to December 

2016 from Office of Agricultural Economics source. 
These data were separated into 2 parts, the first part 
comprises 228 data points during January 1997 to  
December 2015 and were used to generate the forecasting  
model. The second part comprises 12 data points collected  
during January 2016 to December 2016. These latter 
data were used to test the forecasting model and to 
compare the results with other forecasting methods.

2.1  System thinking

System thinking has its foundation in the field of 
system dynamics, as pioneered by Forrester [8] at the 
Massachusetts Institute of Technology. It models the 
relationships between elements in a system and how 
these relationships influence the behavior of the system 
over time. The objective of systems thinking modeling 
is to improve our understanding of the ways in which 
an organization’s performance is related to its internal 
structure and operating policies, including those of 
customers, competitors and suppliers and then to use 
that understanding to design high leverage policies 
for success [8].  
 System thinking models have been implemented 
to capture the linkage of factors in models for discrete 
time series and dynamic systems. The models may be 
used to obtain optimal forecasts and optimal control 
action. Such models also form a connection between 
structure and decisions that generate system behavior.  
The cause tree diagram is an important tool for  
representing the linkage of factors of in the system 
and has long been used in academic work and is also 
increasingly common in business [8]. 

2.2  ARIMA

A time series is a collection of data recorded over 
a period of time be it weekly, monthly, quarterly or 
yearly. Time series forecasting is a statistical process 
which uses historical data to describe a pattern of  
correlations among variables. The model can be  
generated and then used to forecast future data. The 
analysis of history represents an interesting use of time 
series data and decisions and plans may be made based 
on the forecast results. In any time series data might 
comprise many types of variation, e.g., trends, cyclical 
features, seasonal or even irregular variations, which 
lead to inaccuracy of the forecasting result. The Box-
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Jenkins methodology, known as the Autoregressive 
Integrated Moving Average (ARIMA), eliminates these 
variations and improves the accuracy of forecasting. 
The time series model using the Box-Jenkins approach 
was proposed by Box and Jenkins since 1970 [8]. The 
model is concerned with the building of frameworks 
to describe discrete time series and dynamic systems.  
The models may be used to obtain optimal forecasts 
and optimal control actions. 
 Box-Jenkins analysis refers to a systematic 
method of identifying, fitting, checking and using the 
ARIMA time series models. ARIMA (p,d,q) models 
are the extension of the autoregressive (AR) model 
that uses three components for modeling the serial  
correlation in the time series data. The first component 
is the AR term. The AR (p) model uses the p lags of the 
time series in the equation. The second component is 
the integration (d) order term. Each integration order 
corresponds to differencing the time series. I (d) means 
differencing the data d times. The third component is 
the Moving Average (MA) term. The MA (q) model 
uses the q lags of the forecast errors to improve the 
forecast. 
 The original Box-Jenkins modeling procedure 
involved an iterative three-stage process comprising 
model selection, parameter estimation and model 
checking [8]. Recent explanations of the process often 
add a preliminary stage of data preparation and the last 
stage of forecasting [9], as demonstrated in Figure 1.
 The first stage, data preparation, involves  
transforming and differencing the data to produce a 
series compatible with the assumption of stationarity.  
The second step, model identification, finds the most  
satisfactory ARMA (p,q) model to represent the stationary  
data from the first stage by examining the autocorrelations  
function (ACF) and partial autocorrelation function 
(PACF) of the stationary series. The third stage, parameter  
estimation, finds the tentative values of the model 
coefficients which provide the best fit to the data. The 
fourth stage, model checking, involves testing the 
model. This stage passed the chosen value of ARIMA 
model and estimated its parameters. The adequacy of 
the model would be checked by analysing the value of 
its residuals. If the residuals are white noise, the model 
would be accepted; otherwise, the model is rejected 
and the process backward to start over stage 1 again. 
The last stage is forecasting. Once the model has been 
selected, the forecasting task would be accomplished.

 The ARIMA model is widely used in various  
applications, e.g., for short term forecasting of Hepatitis  
C Virus (HCV) seropositivity among volunteer blood 
donors in Karachi, Pakistan [10],  for short-term 
market predictions, especially in the case of the high 
technology market which is characterized by a short 
life cycle due to rapid technology substitution [11], 
to forecast the major airline fatalities in the World 
using univariate time series models [12]. Weron [13] 
implemented ARIMA to forecast electricity price with 
various applications and the model has even been used 
for traffic condition prediction, proposed by Williams 
and Hoel [14]. 
 Riansut and Thongrit [15] have constructed a 
forecasting model to predict the prices of field corn 
in Thailand during January 1997 to November 2015 
by using the Box-Jenkins method. However, these 
authors used only previous values of the corn prices 
to construct the forecasting model. Kerdsomboon and 
Varaphakdi [16] have studied 4 agriculture products 
including rice, corn, green beans and soybean. The 
objectives were to construct appropriate forecasting  
models for plant acreage, products and prices. However,  
the forecasting models were generated separately in 
the absence of interrelation studies.

3 Results

3.1  Cause tree diagram

In regard to the collected potential factors proposed 
by Kitworawut and Rungreunganun [17] and to bring 
more insight understanding by demonstrating the  

Figure 1: Box-Jenkins modelling procedure.
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relationships among the variables a cause tree diagram 
may be constructed, as shown in Figure 2. 
 There are two types of variables, dependent and 
independent variables. From the cause tree diagram in 
Figure 2 the data can be classified into 5 groups with one 
additional group relating to the test of the direct effects 
from rain, plant acreage, temperature, consumption  
rate, import rate, amount of pigs and number of chickens  
on the corn price, as illustrated in Table 1. To test for 
any relationships among each group, dependent and 
independent variables in Table 1 are analysed by using 
cross-correlation function.

Table 1: Classification of dependent and independent 
variables from the causes tree diagram

Group Dependent Variable Independent Variable

1 Corn Price
Corn Production
Soybean Price

2 Corn Production
Rain

Plant Acreage
Temperature

3 Plant Acreage
Consumption Rate

Import Rate

4 Consumption Rate
Amount of Pig

Amount of Chicken

5 Import Rate
Corn Price

Soybean Price

6 Corn Price

Rain
Plant Acreage
Temperature

Consumption Rate
Amount of Pigs

Amount of Chickens
Import Rate

3.2  ARIMA

The corn price data have been collected with a total 
of 240 data points during January 1997 and December  
2016 from Office of Agricultural Economics source. 

The data are separated into 2 parts. The first part 
comprises 228 data points gathered between January  
1997 and December 2015. These are used to analyse  
the pattern of data. The second part, the data collected  
between January 2016 and December 2016, are 
used for corn price forecasting and comparing of the  
forecasting performance with other methods. This 
research has been analysed by using SPSS statistics 
software version 21.
 In regards to Table 1, the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) are 
be used to determine the correlation between dependent  
variable data and lag time data itself. Then, the next 
step is to test the cross-correlation between the noise 
residuals from the dependent and independent variables  
for each group.

3.2.1 Corn price data with corn production and  
soybean price data

The corn price time series data have been plotted in  
Figure 3. This figure demonstrates that the data comprise  
trend variations. The ACF and PACF would be used to 
determine the correlation between the data and lag time 
itself. The ACF and PACF are illustrated in Figure 4. 
 From Figure 4, it is seen that ACF trends to 
decrease exponentially. The value of the PACF is 
significantly higher than zero at 2 lags. Hence, the  
appropriate time series model to forecast the corn price 
is the ARIMA (2,0,0). The results are demonstrated 
in Table 2.

Table 2: Model fit statistics
Model Description

Model Type

Model ID cornprice Model_1 ARIMA(2,0,0)
(0,0,0)

Model Statistics

Model Fit Statistics Ljung-Box 
Q(18)

Stationary 
R-square R-squared RMSE MAPE Statistics DF Sig.

.949 .949 .410 .4641 14.624 16 .552
ARIMA Model Parameters

Estimate SE T Sig.
Cornprice-Model1 cornprice 
Constant 5.939 .798 7.446 .000

AR Lag 1  1.179 .065 18.076 .000
Lag 2 –.208 .065 –3.189 .002

Corn 
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Figure 2: The cause tree diagram.
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 A plot of the noise residual from the corn price 
data is illustrated in Figure 5. It showed that the data 
was distributed around zero which means that the 
variance is constant. The results from Table 1 for the 
ARIMA (2,0,0) model indicate that the Ljung-Box 
Q statistics value is 0.626, which has no significant 
at value 0.05. This yields the conclusion that there is 
no autocorrelation of random errors for the ARIMA 
(2,0,0) model. The forecasting model for ARIMA 
(p,d,q) is demonstrated in Equation (1).

 (1)

 Hence, ARIMA (2,0,0) forecasting model for the 
corn price from the model parameters would be given 
by Equation (2).

Cornpricet =  0.1739 + 1.19 Cornpricet–1 – 
0.221 CornPricet–2 (2)

 The r-square value from Equation (2) is 0.948 
which means that this forecasting equation can explain 
the variation of the corn price at 94.8% with a Mean 
Absolute Percent Error (MAPE) at 4.645.
 Next step is to check which factors affect the corn 
price by using cross-correlation function.
 From Figure 6 it is found that only the soybean 
price has a correlation with the noise residual from the 
corn price. Hence, the analysis can be performed with 
the ARIMA (2,0,0) model with the dependent variable as  
corn price, and the independent variable as soybean price.
 The equation for corn price forecast using the 
previous value of the corn price and the current price 
of soybean price is indicated in Equation (3).

Cornpricet = 0.2098 + 1.161 Cornpricett–1 – 
0.196 Cornpricet–2 + 0.068 Soybeanpricet (3)

Figure 3: Graph of time series data of corn price.

Figure 4: Graph of ACF and PACF of corn price data.

Figure 5: Graph of noise residual from corn price.

Figure 6: Graph of cross-correlation function between 
the noise residual from the corn price with the corn 
production and soybean price.
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 From Table 3 and Equation (3), it is possible to 
conclude that this forecasting equation can explain the 
variation of corn price at 95.1% with MAPE at 4.653. 

Table 3: Model fit statistics
Model Description

Model Type

Model ID  corn price Model_1 ARIMA(2,0,0)
(0,0,0)

Model Statistics

Model Fit Statistics Ljung-Box 
Q(18)

Stationary 
R-square R-squared RMSE MAPE Statistics DF Sig.

.951 .951 .402 4.653 16.461 16 .421
ARIMA Model Parameters

Estimate SE T Sig.
Corn price Constant 5.099 .778 6.550 .000
AR Lag 1  1.161 .066 17.694 .000
Lag 2 –.196 .066 –2.984 .003
SoybeanPrice Numerator Lag 0 .068 .031 2.154 .032

3.2.2 Corn production data with rain, plant acreage 
and temperature data

Consider the corn production time series data in Figure 7.  
This figure indicates that the production increased until 
2013 and then turned down. 
 Considering ACF and PACF for corn production 
data in Figure 8. The graph of ACF trends to decrease 
in damped sine wave pattern and the graph of PACF 
is indicated that the value of PACF after lag 2 is zero. 
Hence, the appropriate time series model to forecast 
corn production is AR (2). The analysis results are 
demonstrated in Table 4.

Table 4: Model fit statistics
Model Description

Model Type

Model ID  corn production Model_1 ARIMA(2,0,0)
(0,0,0)

Model Statistics

Model Fit Statistics Ljung-Box 
Q(18)

Stationary 
R-square R-squared RMSE MAPE Statistics DF Sig.

.801 .801 209527.013 2.924 . 0 .
ARIMA Model Parameters

Estimate SE T Sig.
Corn Production Constant 4570864.937 107826.590 42.391 .000
AR Lag 1 1.581 .124 12.705 .000
Lag 2 –.891 .111 -8.044 .000

 From the forecasting model for ARIMA (p,d,q) in 
Equation (1). Hence, ARIMA (2,0,0) forecasting model 
for corn production from model parameters would be 
in Equation (4).

CornProdcutiont = 1,404,338.581 + 
1.581 CornProductiont–1 0.891 – CornProductiont–2 (4)

 It can be concluded that the Equation (5) can forecast  
corn production with an r-square of 80.1% and MAPE 
at 2.924.
 The cross-correlation function in Figure 9 indicates  
that plant acreage has an effect on corn production.
 From the forecasting model for ARIMA (p,d,q) 
in Equation (1) and data from Table5. They can be 
determined that the ARIMA (2,0,0) forecasting model 
for corn production using plant acreage would be  
described by Equation (5).

CornProdcutiont = 8,253,886.76 – 
0.317 CornProductiont–1 – 0.505 CornProductiont–2 
+ 1.046 PlantAcreaget (5)

Figure 7: Graph of time series for corn production data.

Figure 8: Graph of ACF and PACF for corn production data.
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 It can be concluded that Equation (7) can forecast 
corn production using plant acreage with an r-square 
of 92.2% and MAPE at 1.881.

3.2.3 Plant acreage data with consumption rate and 
import rate data

Consider the plant acreage time series data in Figure 10.  
This figure indicates that the plant acreage dramatically 
increased from 2007 until 2010 and then gradually 
decreased.
 Considering the ACF and PACF for the plant 
acreage data in Figure 11, the appropriate time series 
model to forecast plant acreage is the ARIMA (2,0,0) 
model. The results are demonstrated in Table 6. 
 The forecasting model for the plant acreage data 
from the model parameters would be as shown in 
Equation (6).

PlantAcreaget = 2,447,241.96 +1.395 PlantAcreaget–1

– 0.741 PlantAcreaget–2 (6)

 From this equation, r-square value is 0.596. It means  
that this equation can explain the variation of plant acreage  

Figure 9: Graph of cross correlation function between 
noise residual from corn production with total rain (a), 
plant acreage (b) and temperature (c).

Figure 10: Graph of time series for plant acreage data.

Figure 11: Graph of ACF and PACF for plant acreage.

Table 5: Model fit statistics
Model Description

Model Type

Model ID corn production Model_1 ARIMA(2,0,0)
(0,0,0)

Model Statistics

Model Fit Statistics Ljung-Box 
Q(18)

Stationary 
R-square R-squared RMSE MAPE Statistics DF Sig.

.922 .922 140110.983 1.881 . 0 .
ARIMA Model Parameters

Estimate SE T Sig.
Corn Production Constant –2830958.116 473022.241 –5.985 .001
AR Lag 1  –.317 .449 –.706 .503
Lag 2 –.505 .322 –1.569 .161
Plant Acreage Numerator Lag 0 1.046 .067 15.639 .000
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at 59.6% with mean absolute percent error at 2.551.
 To test for correlation function between noise 
residual from plant acreage with consumption rate and 
import rate.
 Figure 12 demonstrates that neither import rate 
nor consumption rate have an effect on plant acreage.

3.2.4 Consumption rate data with numbers of pig and 
numbers of chicken data

Consider the consumption time series data in Figure 13,  
which indicates that the corn consumption rate is 
increasing continuously.  
 Considering the ACF and PACF for the 
consumption rate in Figure 14, the graph of ACF 
trends to decrease in a damped sine wave pattern. 
The appropriate time series model to forecast plant 

acreage is the ARIMA (2,0,0) model. The results are 
demonstrated in Table 7. 

Table 7: Model fit statistics
Model Description

Model Type

Model ID consumption  Model_1 ARIMA(2,0,0)
(0,0,0)

Model Statistics

Model Fit Statistics Ljung-Box 
Q(18)

Stationary 
R-square R-squared RMSE MAPE Statistics DF Sig.

.642 .642 .292 4.291 . 0 .
ARIMA Model Parameters

Estimate SE T Sig.
Consumption Constant 4.436 .968 4.582 .003
AR Lag 1 1.215 .395 3.077 .018
Lag 2 –.287 .480 –.598 .569

 The forecasting model for consumption rate from 
the model parameters are as shown in Equation (7).

Figure 12: Graph of cross correlation function between 
noise residual from plant acreage with consumption 
rate and import rate. Figure 13: Graph of corn consumption rate annually.

Figure 14: Graph of ACF and PACF for corn 
consumption rate data.
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Table 6: Model fit statistics
Model Description

Model Type

Model ID acreage Model_1 ARIMA(2,0,0)
(0,0,0)

Model Statistics

Model Fit Statistics Ljung-Box 
Q(18)

Stationary 
R-square R-squared RMSE MAPE Statistics DF Sig.

.596 .596 286928.272 2.551 . 0 .
ARIMA Model Parameters

Estimate SE T Sig.
Acreage Constant 7096425.223 154728.341 45.864 .000
AR Lag 1 1.395 .222 6.294 .000
Lag 2 –.741 .201 –3.695 .006
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ConsumptionRt = 0.316 + 1.215 ConsumptionRt–1

– 0.287 ConsumptionRt–2 (7)

 It could be concluded that Equation (7) can 
forecast the consumption rate by using its previous 
value with an r-square for 0.642 and MAPE of 4.291.
 To test for the correlation function between the 
noise residual from consumption rate with the number 
of pigs and chickens. 
 Figure 15 indicates that the quantities of both pigs 
and chickens with the noise residual of consumption  
rate. Hence, the analysis can be performed with 
the ARIMA (2,0,0) model for dependent variable  
consumption rate, and with the  independent variable 
as the quantity of pigs and chickens. The analysis result 
are demonstrated in Table 8.

Table 8: Model fit statistics
Model Description

Model Type

Model ID consumption  Model_1 ARIMA(2,0,0)
(0,0,0)

Model Statistics

Model Fit Statistics Ljung-Box 
Q(18)

Stationary 
R-square R-squared RMSE MAPE Statistics DF Sig.

.945 .945 .135 2.042 . 0 .
ARIMA Model Parameters

Estimate SE T Sig.
Consumption Constant 3.544 .595 5.960 .002
AR Lag 1  .036 .538 .066 .950
Lag 2 –.235 .465 –.505 .635
Pig Numerator Lag 0 –1.692E-7 1.039E-7 –1.627 .165
Chicken Numerator Lag 0 7.613E-9 1.355E-9 5.620 .002

ConsumptionRt = 5.263 + (0.036 × ConsumptionRt–1)
– (0.235 × ConsumptionRt–2) – (1.692 × 10–7 × Pigt) + 
(7.613 ×10–9 × Chickent) (8)

 From Equation (8), the r-square value is 0.945 
which means that this equation can explain the vari-
ation of the consumption rate at 94.5% with a mean 
absolute percent error at 2.042.

3.2.5 Import rate data with corn price and soybean 
price data

Consider the import rate time series data shown in 
Figure 16. This figure indicates that the import rate 
sharply decreased in 2001 and gradually increased 
from 2003 reaching a peak in 2008 and then fluctuating 
in a downward direction. 
 Considering the ACF and PACF for the corn  
production data in Figure 17, the model is indeterminate.  
Hence, the simulations to test for the best ARIMA 
(p,d,q) have been done and found that the appropriate 

Figure 15: Graph of cross correlation function between 
noise residual from consumption rate with quantity of 
pigs and chickens.

Figure 16: Graph of time series for import rate data.

Figure 17: Graph of ACF and PACF of import rate. 
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time series model with the highest r-square value to 
forecast the import rate is the ARIMA (2,0,2) model. 
The results are demonstrated in Table 9 and can be 
developed equation as demonstrated in Equation (9).  
 From the analysis data in Table 9. It can be 
concluded that the Equation (11) can forecast the 
import rate by using previous values with an r-square 
of 0.307 and MAPE 232.256.

Table 9: Model fit statistics
Model Description

Model Type

Model ID Import Rate Model_1 ARIMA(2,0,0)
(0,0,0)

Model Statistics

Model Fit Statistics Ljung-Box 
Q(18)

Stationary 
R-square R-squared RMSE MAPE Statistics DF Sig.

.307 .307 .155 232.256 . 0 .
ARIMA Model Parameters

Estimate SE T Sig.
Import Rate Constant .189 .071 2.654 .026
AR Lag 1 –.339 .456 –.745 .475
Lag 2 .060 .495 .122 .905
MA Lag 1 –.814 12.039 –.068 .948
Lag 2 –.993 29.480 –.034 .974

ImportRatet = 0.189 – 0.339 ImportRatet–1 + 0.060 
ImportRatet–2 + 0.814 at–1 + 0.993 at–2 + at  (9)

 To test the correlation function between the noise 
residual from import rate with corn price and soybean 
price. From Figure 18 it can be seen that there are 
no cross correlations among the noise residual from 
import rate with corn price and soybean price.

3.2.6 Corn price data with rain, plant acreage, 
temperature, consumption rate, number of pigs, 
number of chickens and import rate

This process is to test for correlation directly among 
noise residual of the corn price data with rain, plant 
acreage, temperature, consumption rate, number of 
pigs, number of chickens and import rate data. The 
results are indicated as in Figure 19.
 From the cross-correlation function in Figure 19. 
It is clear that there are no factors correlated with the 
corn price data. The results of the analyses from 3.2.1 
to 3.2.6 are shown in Table 10.

Table 10: Cross correlation analysis summarization
Group Dependent Variable Independent Variable CCF

1 Corn Price
Corn Production N
Soybean Price Y

2 Corn Production
Rain N
Plant Acreage Y
Temperature N

3 Plant Acreage
Consumption Rate N
Import Rate N

4 Consumption Rate
Amount of Pig Y
Amount of Chicken Y

5 Import Rate
Corn Price N
Soybean Price N

6 Corn Price

Rain N
Plant Acreage N
Temperature N
Consumption Rate N
Amount of Pigs N
Amount of Chickens N
Import Rate N

Figure 18: Graph of cross correlation function between 
noise residual from import rate with corn price and 
soybean price.

Figure 19: Graph of cross correlation function among 
the noise residual of corn price data with rain, plant 
acreage, temperature, consumption rate, number of 
pigs, number of chickens and import rate data.
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 From Table 10, it can be concluded that corn price 
data have been affected only by the soybean price data 
solely. Hence, Equation (3) would be the appropriate 
forecasting equation for corn price data.

3.2.7 Soybean price time series data analysis.

From Equation (3), it is possible to know the soybean 
price in the prediction period (t). The soybean price 
data would then be analyzed. The soybean price 
time series data are plotted in Figure 20. This figure  

demonstrates that the data comprise a trend variation.  
The autocorrelation function (ACF) and partial  
autocorrelation function (PACF) can be used to determine  
the correlation between the data and the time lag data 
itself. The ACF and PACF are illustrated in Figure 21.
 As seen Figure 21, the ACF trends to decrease  
exponentially. The value of the PACF is significantly higher  
than zero at 1 lag significantly. Hence, the appropriate 
time series model to forecast the corn price is ARIMA 
(1,0,0) model. The results are demonstrated in Table 11.
 From the forecasting model for ARIMA (p,d,q) 
in Equation (1). Hence, the ARIMA (1,0,0) forecasting 
model for soybean price from the  model parameters 
is as shown in Equation (10).

Soybeanpricet = 0.3944 + 0.969 Soybeanpricet–1 (10)

 Hence, from Equations (3) and (10), the corn price  
forecasting model would be as given in Equation (11).

Figure 20: Graph of time series data of soybean  price. 

Figure 21: Graph of ACF and PACF of soybean price 
data.

Figure 19: (Continued) Graph of cross correlation  
function among the noise residual of corn price data with  
rain, plant acreage, temperature, consumption rate, 
number of pigs, number of chickens and import rate data.
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Cornpricet = 0.2098 + 1.161 Cornpricet–1 – 0.196 
Cornpricet–2 + 0.068 (0.3944 + 0.969 Soybeanpricet–1)
 (11)

 The next step is to forecast by using the second part 
of collected actual corn price data during January 2016 
to December 2016. To test the forecasting performance,  
the forecasting data would be tested with Holt-Winters 
Multiplicative Seasonal (HWMS) model and Holt-
Winters Additive Seasonal (HWAS) model. The 
forecasting values and fit graph from the ARIMA, the 
HWMS model and the HWAS model are demonstrated 
in Table 12 and Figure 22 respectively. The forecasting 
performance comparisons from 3 methods are shown 
in Table 13 which indicate that the ARIMA model  
generates the lowest forecasting errors of RMSE, 
MAPE and MSE during January 2016 to December 
2016 of 0.8678, 12.1009 and 4.7592 respectively.

Table 12: Forecasting data results

Period Actual Corn 
Price

Forecast
ARIMA HWMS HWAS

Jan-16 8.16 7.74 7.74 7.74
Feb-16 7.95 7.85 8 8
Mar-16 7.56 7.96 8.16 8.16
Apr-16 7.66 8.18 8.54 8.54
May-16 7.61 8.22 8.66 8.66
Jun-16 7.84 8.19 8.69 8.69
Jul-16 8.1 8.2 8.61 8.61

Aug-16 7.7 7.87 8.04 8.04
Sep-16 6.94 7.54 7.46 7.46
Oct-16 6.04 7.57 7.52 7.52
Nov-16 6.07 7.71 7.79 7.79
Dec-16 6.17 7.75 7.75 7.75

Table 13: Forecasting performance comparisons
Method RMSE MAPE MSE
ARIMA 0.8678 12.1009 0.7531
HWMS 1.078 16.8836 1.1627
HWAS 0.9759 14.6492 0.9524

4 Conclusions

This objective of this research is to establish the corn 
price forecasting model, to forecast the corn price by 
using the Box-Jenkins model and compare forecasting 
performance with other methods. The results indicate 
that a corn price forecasting model by using only the 
two previous data points with current soybean price 
can generate an r-square of 0.951 with a mean absolute 
per cent error at 4.653. This means that the forecasting  
equation can explain the variation of corn price at 95.1%  
with mean absolute per cent error (MAPE) at 4.651.
 The performance comparisons with the HWMS 
model and the HWAS model indicate that the ARIMA 
model can generate the lowest forecasting error. And 
the results of testing the ARIMA model with the actual 
corn price data during January 2016 to December 2016 
generated RSME, MAPE and MSE values at 0.8678, 
12.1009 and 0.7531 respectively.
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