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Abstract 
A level set method based on the characteristic finite volume formulation is presented. The method solves the 
evolving interface problems with zero level set along their interfaces. The idea of the characteristic-based 
technique is implemented to derive a level set equation in two dimensions. An explicit finite volume 
formulation is employed to discretize the equations applicable for arbitrary grids. The paper focuses on 
numerical simulation of the motion of an interface under an internally generated velocity field for constant 
motion in the normal direction. Several test cases are presented to evaluate the performance of the proposed 
method. Results are compared with the exact solutions or those in the literatures. 
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1 Introduction

Many techniques have been developed to predict the 
behavior of interface evolution consist of capturing 
or tracking the motion of an interface as it evolves 
such as the Marker-and-Cell (MAC) [1], Volume-of-
Fluid (VOF) [2] and level set methods [3]. Computer 
simulation for interface motion problems by using 
the level set principle was firstly introduced by Osher 
and Sethian [3]. The level set methods have gained 
popularity mainly due to its simplicity. Applications 
of level set method for moving boundaries and 
interfaces problems exist in many fields such as the 
crystal and crack growth, bubbles and droplets 
deformation, multiphase flows, multifluid flows, 
front propagations and fluid-structural interactions 
[3-5]. Numerical simulation of interface motion 
problems using the level set principle is determined 
by advecting a relatively smooth field, ?, whose zero 
level set is the interface. To predict the flow 
phenomena accurately, the interface needs to be 
tracked precisely in both time and space. Many 
numerical techniques with high-order solution 
accuracy have been used to discretize the level set 
equation such as the finite difference, finite element 
and finite volume methods. For example, Fedkiw [9] 
proposed a numerical method for modeling 
multimaterial flow where the level set function is 
defined at every Eulerian grid node while φ is defined 
analytically at each Lagrangian interface node. The 
third-order ENO-LLF scheme and third-order TVD 

Runge-Kutta scheme were applied to achieve high-
order accurate solution. Tanguy et al. studied a level 
set method for solving vaporizing two-phase flow 
problem, where a fifth-order Weighted Essentially 
Non-oscillatory (WENO5) scheme is used to 
discretize the convective term [10]. The Petrov-
Galerkin finite element method was also used to 
discretize the level set equation to achieve high-order 
accuracy solutions on unstructured meshes [11]. 
Recently, the high-resolution flux-based finite 
volume method has been introduced for 
approximating the level set equation on unstructured 
grids [12]. Conceptually, the flux-based level set 
method is based on the first order accurate 
approximation, but the second-order approximation 
is extended to achieve high-resolution method. 
The objective of this work is to develop an explicit 
finite volume method for solving the characteristic 
level set equation in two-dimensional domain by 
focusing on simulation of the motion of an interface 
under an internally generated velocity field for 
constant motion in the normal direction. In this 
paper, the concept of characteristic-based scheme 
[10], for approximating the Lagrangian derivatives in 
time, is used to derive the characteristic level set 
equation. An explicit finite volume method is applied 
to the characteristic level set equation to develop the 
discretized equations for the spatial domain. The 
presentation of the paper starts from the explanation 



 
Phongthanapanich S. / AIJSTPME (2013) 6(3): 11-17 

 
12 

of the theoretical formulation in Section 2. The 
conventional finite volume discretization of the 
characteristic level set equation is then presented in 
Section 3. The performance of proposed method is 
then evaluated in Section 4 by using three examples. 
These examples are: (1) the rotation of expanding 
and shrinking circle, and (2) the reversed vortex test. 
 
2 Characteristic level set formulation 

Let φ  be a level set function describes the evolving 
interface implicitly by its zero level set. The level set 
equation [4, 5] for the moving interface advected by 
a velocity v  where the interface moves in the normal 
direction with a velocity can be written by 

0=∇+
∂
∂ φφ a

t
 (1) 

where a  is a velocity field for constant motion in the 
normal direction, 0>a  the interface moves in the 
normal direction, and when 0<a  the interface 
moves opposite the normal direction. When φ  is a 

signed distance function (with 1=∇φ ), Eq.(1) 

reduces to at −=∂∂φ , and the values of φ  either 
increase or decrease, depending on the sign of a . 
For some type of application such as crystal growth 
or combustion, the velocity may be defined by 

Nv a=  (2) 

where v  is a unit normal vector to the interface given 
by φφ ∇∇=N . Then the advection-diffusion form 
of the level set function can be written as, 

0=∇⋅+
∂
∂ φφ v

t
 (3) 

where ),( txφφ =  defines the implicit interface by its 
zero level set, and is chosen to be positive outside 

)( +ΩΩ , negative inside )( −ΩΩ , and zero on 
interface ( IΩ∂ ), and ),0( Tt ∈  for ∞<T . The 
initial condition is defined for Ω∈x  with 2R⊂Ω  
and IΩ∂∪Ω∪Ω=Ω −+  by )()0,( 0 xφφ =x . 

By following the idea described in [10], Eq. (3) is 
semi-discretized along the characteristic line so that it 
can be written in the form 

( ) 01 1 =−
∆ ∆−

+

xxx

nn

t
φφ   (4) 

where ),( tx′= φφ  and x′  is the path of the 
characteristic wave. The incremental time period t∆  
is from n  to 1+n , and the incremental distance x∆  
is from xx ∆−  to x . The local Taylor series 
expansion in space is applied to the second term on 
the left-hand side and to the right-hand side terms. 
The incremental distance x∆  along the characteristic 
path is then approximated by tn ∆=∆ + 2/1Vx , where 

2/1+nV

is the average velocity along the characteristic at time 
2/1+= nt  [10]. Finally Eq. (4) can be written in the 

fully explicit form 
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By applying some vector identities, the semi-discrete 
conservation form of the characteristic level set 
equation becomes 
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 (6) 

 
3 Explicit finite volume formulation 

The domain is first discretized into a collection of 
non-overlapping convex polygon control volumes 

Nii ,...,1, =Ω∈Ω , that completely cover the domain 

such that i
N
i Ω∪=Ω =1 , 0≠Ωi , and 0=Ω∩Ω ji  if 

ji ≠ . Equation (6) is integrated over the control 
volume iΩ  to obtain 

( )
[ ]

[ ]∫

∫
∫

Ω

Ω

Ω

+

⋅∇∇⋅−⋅∇⋅∇
∆

+

⋅∇+⋅∇∆−

=−

i

i

i

dt

dt

d

n

n

nn

xVVVV

xVV

x

φφ

φφ

φφ

)(
2

)(     

)(     

2

1

 (7) 

The divergence theorem is applied to some spatial 
terms on the right-hand side, and by using the 
approximation to the cell average of φ  over iΩ  at 

time nt  and 1+nt [11] for any control volume, the flux 
integral over iΩ∂  appearing on the right-hand side of 
Eq. (7) may be approximated by the summation of 
fluxes passing through all adjacent cell faces. Finally, 
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a fully explicit formulation for solving a 
characteristic level set equation is obtained in the 
form 
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The level set function at cell face at the time step nt , n
ijφ  

is approximated by applying the Taylor series expansion 
in space such that n

iiij
n
i

n
ij φφφ ∇⋅−+= )( xx  where ix  

and ijx  are the cell centroid and the face centroid 
locations. For the opposite direction of velocity, the 
values of n

ijφ  may be computed with the similar idea but 
by using the values from the neighboring control volumes 
according to the upwinding direction, such that 

n
jjij

n
j

n
ij φφφ ∇⋅−+= )( xx  [13]. 

 
4 Numerical experiments  

In this section, the performance of the proposed 
method is examined by using two examples. These 
examples are tested on both uniformed square and 
triangular grids. These examples are: (1) the 
circulation of a circle, and (2) the circulation of an 
expanding and shrinking circle.  
 
4.1 Circulation of a circle 

The first benchmark problem is a circulation of a 
circle in a square domain of )1,1()1,1( ×−−=Ω . This 
example has an analytical solution due to the 
Huygens’ principal so that the computed solution can 
be compared. Initially, the circle with radius of 0.25 
is centered at (0.25, 0.25) and is rotated with a 
divergence-free velocity field given by 

)2,2()( xy ππ −=xV  [19]. To assess to conservative 
of mass property of the proposed scheme, the 
problem is tested until the final time of ]1,0[=t . The 
circle rotates in the counter-clockwise direction for 
one turn, so that the exact solution at final time is the 
same as the initial condition. 
To assess the performance and order of convergence 
of the scheme, the simulations are performed on 

uniform square grids (S grids) S1 to S4 consisting of 
)25/1( 2525 =∆=∆× yx , 5050× , 100100× , and 

200200× , respectively. The AL ,1 -norm of the 
numerical error [12] is also used to measure the area 
conservative property during evolution of an 
interface which is defined by 

0

0
,1 A

AAL T
A

−
=   (9) 

where ∫Ω= xdHA n
n )(φ . 

The zero level contour plots of the exact and 
numerical solutions obtained from grids S1 to S4 at 
the final time of 1.0 is presented in Figure 1, and the 
conservations of the areas within the zero level 
contour are depicted in Figure 2.  

 
Figure 1: Zero level contours (S Grid). 

 
Figure 2: Conservation of area (S Grid). 
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To evaluate the efficiency of the proposed scheme on 
non-orthogonal grids, this example is tested again on 
uniform triangular grids (T grids) S1 to S4 and the 
results are shown by Figures 3-4. The figures show 
that the proposed method provides nearly circular 
interface simulation even though the grid size is 
relatively coarsened (such as grids S1 or S2). By 
comparing the results with those reported in Ref. 
[19], the proposed scheme yields improved solution 
accuracy especially on coarsen grid sizes.  

 
Figure 3: Zero level contours (T Grid). 

 
Figure 4: Conservation of area (T Grid). 

Figures 5-6 show the comparison of the level set 
function at 1=t  obtained from both S and T grids 
(grid S4, T4) for which the signed distance function 
is preserved during the simulation. The result shows 
that the solutions converge as grids are refined with 
the rate of convergence about two. 
 

 

Figure 5: Level set contours of grid S4  
at time 1=t  (S Grid). 

 
Figure 6: Level set contours of grid S4  

at time 1=t  (T Grid). 

 
4.2 Circulation of an expanding and shrinking 

circle 

The second tested case is a circulation of an 
expanding and shrinking circle in a square domain of 

)1,1()1,1( ×−−=Ω . This example also has an 
analytical solution derived from the Huygens’ 
principal so that the computed solution can be 
compared. Initially, the circle with radius of 0.25 is 
centered at (-0.4, 0) and is rotated with a non 
divergence-free velocity field (advection velocity and 
interface normal velocity). At time ]1,0[=t  the 
velocity field is given by 

φ
φππ

∇
∇

+−= 1.0)2,2()( xyxV   (10) 
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(a) 5.0=t  

 
(b) 1=t  

 
(c) 2=t  

Figure 7: Comparison of exact and  
numerical solutions (S grid). 

The circle is expanding and rotating in the clockwise 
direction. At a later time of ]2,1[=t  the velocity 
field is reversed such that 

φ
φππ

∇
∇

−−= 1.0)2,2()( xyxV   (11) 

The circle is then shrinking and rotating in the 
counter-clockwise direction. The exact solution at the 
final time is the same as the initial condition. 

 
(a) 5.0=t  

 
(b) 1=t  

 
(c) 2=t  

Figure 8: Comparison of exact and  
numerical solutions (T grid). 
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and the results are shown in Figure 8. These figures 
show that at the final time 2=t , the difference of 
the interface position between the exact and 
numerical solutions is very small for grids S3 and S4. 
These solutions highlight the ability of the proposed 
method that can provide nearly circular interface 
simulation even though some grid sizes are relatively 
coarsened such as grids S1 or S2. 

 
Figure 9: Level set contours and  

normal vectors (S1 grid). 

 
Figure 10: Level set contours and  

normal vectors (S2 grid). 

In the application of level set method for solving the 
incompressible two-phase flow problems, the 
calculation of the normal vectors is important. The 
accuracy of the predicted normal vectors is measured 
by plotting the level set contours and normal vectors 
obtained from grids S1 and S2 in Figures 9-10, 
respectively. The level set contours are distorted near 
the upper-left boundaries and the normal vectors are 
not perpendicular to the level set contours for grid 
S1. The solution accuracy for both the level set 
contours and normal vectors are improved for the 
finer grid S2. 

5 Conclusions 

The paper presents an explicit finite volume method 
for solving the characteristic level set equation in 
two-dimensional domain. The theoretical formulation 
of the characteristic level set equation based on the 
characteristic-based scheme was explained. The 
finite volume method was applied to derive the 
discretized equations for the spatial domain. Two 
numerical examples were used to evaluate the 
performance and to determine the order of accuracy 
of the proposed method. These examples showed that 
the method provides second-order accurate and 
converged solution with improved accuracy as the 
grid is refined. Results from these examples have 
also shown that the proposed method does not need 
the reinitialization in order to heal the distorted and 
stretched level set field. 
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