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Abstract
An adaptive remeshing and photoelasticity techniques are presented to determine the stress intensity factors 
KI and crack-hard inclusion interaction of a single edge cracked plate for two-dimensional fracture mechanics 
problems. The paper starts from describing two-dimensional linear fracture mechanics theory and an adaptive 
remeshing H method using the quadrilateral and triangular elements. The computational procedure and related 
finite element equations are explained. The photoelastic theory and its experimental procedure with the use of 
the stress optic laws are then described. The photoelasticity prototype is designed and built. Performance of 
adaptive remeshing method is evaluated by analyzing a single edge cracked plate made from polycarbonate. A 
crack plate with a hard inclusion is then studied for stress intensity factor and crack-hard inclusion interaction. 
The hard inclusion is made from aluminum. The KI stress intensity factor is found to be a function of the crack 
length per width. The results of adaptive remeshning method and the photoelasticity technique are compared 
with Brown’s study. This example demonstrates the efficiency of the adaptive remeshing method to provide  
accurate solutions as compared to those from the photoelastic technique. Then, crack-hard inclusion interaction is 
studied by varying stress intensity ratio and E ratio. The crack-hard inclusion interaction behavior is formulated  
in exponential equation, i.e. cracking tip shielding function. The cracking tip shielding function shows that 
maximum stress intensity ratio reduces rapidly if E ratio increases. The normalized stress intensity factor is as 
a convergence exponential function of E ratio.
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Research Article

1 Introduction

Nowadays composite materials are widely used to 
make a part or all in many products and machine. 
The popular usage is from the benefit of light weight, 
low product cost and easy to build. Nonhomogeneous  
material is one physical property of composite material.  
An arbitrary strength or failure is still occurred and 
should be studied how to control or predict. Life  
prediction under crack propagation is interested to 
define the arrangement of composite composition. 

Young modulus ratio of inclusion and plate is influence 
to crack tip characteristics. Propagation of crack can be 
predicted by the stress intensity factors KI near crack 
tip on composite material. Several numerical methods 
and nondestructive experimental techniques (NDT) 
are currently used to determine phenomena of crack  
propagation. Photoelasticity technique is one of NDT 
has been employed to determine the stress intensity  
factors and inclusion effect [1]–[6]. Its principle is based 
on the optic–experimental interference by analyzing  
the maximum shear stress induced in the transparent 
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or birefringent of the photoelastic model under loading  
and crack tip configuration. The phenomenon is  
observed by looking through the optical elements, i.e., 
the polarizer and analyzer of the polariscope as shown 
in Figure 1. The results provide information that can 
be applied directly to metal prototypes by using the 
law of similarity. At present, the stress intensity factor  
and crack propagation characteristics are studied in 
several numerical methods, i.e. the finite element 
method [7]–[10], the meshless method [11], [12], the 
manifold method with virtual crack extension [13], 
and the boundary element method [14], [15]. Some 
researchers have evaluated crack-inclusion interactions 
and crack tip shielding by photoelasticity technique 
[16]–[19] and other experiments [20]–[23]. 
 In this paper, theory of two-dimensional linear  
elastic fracture mechanics is first described. The adaptive  
finite element method with 8-node quadrilateral  
elements near the crack tip is explained. Photoelasticity 
technique is then described. The stress intensity factors  
KI varied with crack length ratios (a/W), between 
0.2 and 0.6, on single edge cracked plate is used to 
compare results of photoelasticity technique, adaptive 
finite element method, and Brown [24]. Next, inclusion 
effect is investigated. Hard inclusion with cylinder 
diameter 3.6 millimeters on single edge cracked plate 
is selected to study the phenomena of stress intensity 
factor KI by vary crack length ratios (0.2 to 0.6) and 
constant modulus of elasticity ratio (Einclusion/Eplate, 
Er = 28) using adaptive finite element method and 
photoelasticity technique. An adaptive finite element 
method is then used to predict stress intensity factors 
KI and crack tip shielding on single edge cracked 
plate varied crack length ratios (0.2 to 0.6) and young  
modulus ratios (1.1 to 50). Finally, cracking tip shielding  

function depending on young modulus ratio and crack 
length ratios is estimated.

2 Theory

2.1  Stress and stress intensity factor equation

The stress and stress intensity factors relationship 
in mode I and II based on 2D linear elastic fracture  
mechanics theory [25], neglect non-singular and 
higher-order terms, is expressed as,

 (1)

 (2)

 (3)

where KI and KII are the stress intensity factors for 
mode I (opening mode) and mode II (tearing mode); 
r and θ are the distance and the angle in the polar  
coordinates as shown in Figure 2; σx and σy are the 
normal stresses in x and y directions, respectively, and 
τxy is the shearing stress.
 The stress intensity factor at the crack tip (K) is 
explained by [26] [Equation (4)],

 (4)

where F is the geometry factor that depends on the 
dimensions of problem, σ∞ is the far-field stress and a 
is the crack length.
 By displacement extrapolation the stress intensity 
factors KI and KII can be determined near the crack tip. 

Figure 1: Photoelastic model under loading.
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These stress intensity factors are formulated in,

 (5)

 
 (6)

where E is young modulus, ν is the Poisson’s ratio, 
L is the element length, u and v are the displacement 
components in x- and y-directions, respectively, as 
well as κ is the elastic parameter and equals 3–4ν for 
plane strain problem and (3 – ν)/(1 + ν) for plane stress 
problem. The subscripts of u and v represent their  
positions for the nodes of the elements near the crack 
tip as depicted in Figure 3(a). Figure 3(b) provides 
detail of the 8-node quadrilateral element with their 
mid-side node positions, while nodes 1, 4, and 8 are 
collapsed and placed together at the crack tip.

2.2  Finite element formulation

The finite element equations can be derived from the 
2D governing differential equations of equilibriums.  
The derived finite element equations are written in 
matrix form as [Equation (7)],

[K] {u} = {F} (7)

where [K] is the element stiffness matrix [27], {u} is 
the vector of the element nodal displacements and {F} 
is the element load vector.
 Due to improve accuracy near crack tip the high-
order element interpolation functions is preferred. The 
eight–node quadrilateral elements (Q8) are selected to 
build a circular zone around the crack tip. Q8 element 

has mid–side nodes displaced from its nominal position 
to quarter points of the tip as shown in Figure 3(a). The 
radius of the circular zone is defined no longer than 
one–eight of the initial crack length, with roughly one 
element every 30° in the circumferential direction 
[28]. The four–node quadrilateral elements (Q4) are 
selected to connect the Q8 elements and construct the 
triangular elements (T3) in domain far from the crack 
tip as shown in Figure 4. KI and KII can be computed 
by substitute nodal displacement in Equations (5) and 
(6), respectively.

2.3  Adaptive remeshing technique

H method is implemented as the adaptive remeshing 
techniques in this paper. The initial finite element model  

Figure 2: State of stresses in polar coordinates from 
crack tip.

(a) A quarter–point eight–node quadrilateral element.

Figure 4: Combination of three element types  
surrounding crack tip.

(b) Quarter–point quadrilateral elements around crack 
tip
Figure 3: Eight-node quadrilateral element around 
crack tip.
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is first construct. Then, elements in the initial mesh 
is refined into smaller elements or larger elements 
[29]–[31]. The adaptive mesh technique generates 
an entirely new mesh based on the solution obtained 
from an earlier result on mesh [32], [33]. The core 
concept is to build a new mesh that consists of small 
elements in the high solution gradients domains and 
large elements in the other domains where low solution  
gradients appear. An appropriate element sizes at 
different locations in the domain is determined. The 
von Mises stress σ gradients is used as element size 
factor. The second derivatives of the von Mises stress 
at a point with respect to global coordinates x and y 
are required. Based on the principal directions concept 
from a given state of stresses at a point, the principal 
quantities in the principal directions X and Y where the 
cross-derivatives vanish are determined [Equation (8)]:

 (8)

 The principal quantities of each element are then 
calculated [Equation (9)],

 and  (9)

 These principal quantities are used to compute 
proper element sizes h1 and h2 in the two principal 
directions using the condition [34],

 (10)

where hmin is the specified minimum element size, and 
λmax is the maximum principal quantity for the entire 
model.
 Based on the condition shown in Equation (10), 
the element size is generated using the given minimum 
element size hmin. Specifying too small hmin may result 
an excessive number of elements. While specifying too 
large hmin may obtain an inadequate solution accuracy  
or excessive analysis and meshing cycles. These  
factors must be considered prior to generate a new 
mesh. The H method build an entirely new mesh with  
different nodal locations from the old mesh. Interpolation  

of the solution from the old mesh to the new mesh 
should be used to increase the analysis solution  
convergence.

2.4  Photoelasticity technique

The photoelasticity technique can determine the state 
of stresses and crack propagation on a transparent  
material under both the static and dynamic conditions 
[35]. The technique provides a function of the difference  
of the principle stresses (σ1–σ2) or the maximum shear 
stress τm and the isochromatic–fringe–pattern as,

 (11)

where fσ is the stress–optical constant, N is the order 
of the isochromatic fringe, and t is the specimen 
thickness.
 The maximum shear stress is related with the 
stress components in the form,

 (12)

 Similarly, by substituting Equations (1)–(3) into 
Equation (12), the relationship between the maximum 
shear stress and the stress intensity factors is obtained 
[36],

 (13)

 Similarly, by substituting Equation (11) into 
Equation (13), the stress intensity factor for the opening  
mode can be expressed in the form [Equation (14)],

 (14)

where rm is the distance from crack tip to the farthest  
point on a given isochromatic loop and θm is the inclination  
angle of the crack plane as shown in Figure 5. 
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 The position of the farthest point on a given 
isochromatic loop and the relationship between the 
stress intensity factors and the angle θm is obtained by 
minimizing Equation (13) with respect to θ (  = 0) 
to yield,

 (15)

 Equation (15) is used to determine the ratio of 
stress intensity factor (KII/KI) by measuring the angle 
θm at the point very closed to the crack tip. The stress 
intensity factor can be computed [35] by using the 
measured data from the two isochromatic loops along 
the line perpendicular to the crack plane (θ = 90°) [36] 
as expressed in Figure 6 [Equation (16)].

 (16)

 The photoelasticity prototype as depicted in  
Figure 7 is designed with the conceptual design as shown 
in Figure 1, built and used in this study. Photoelastic  
specimen was prepared and placed between polarizer  
and analyzer. Load condition is subjected on specimen  
and light source is on. Then isochromatic fringes can 
be investigated from the observer.

3 Applications

A single edge cracked plate under uniaxial tensile 
loading is used to evaluate the results of the adaptive 
remeshing technique and photoelasticity technique. 
The polycarbonate (PC) plates with dimensions of 
36 × 72 × 3 mm are selected. Stress-optical constant 
of PC is 7.0 kN/m. Yellow monochromatic light with 
wavelength 589 nm is used. A neat plate and plate with 
hard inclusions are also studied.
 A rectangular plate varied crack length per width 
(a/W) between 0.3 to 0.6 is used in the evaluation  
study. The plate is subjected to a far-field tensile stress 
of σ∞ = 1.1 MPa along both the top and bottom edges 
as depicted in Figure 8. Because of symmetrical half 
model, the upper half of the plate is only used as 
a computational domain. Four analysis cases were  
performed with the crack length per width of 0.3, 0.4, 
0.5, and 0.6. Figure 9 shows an example of the case 
of the crack length per width of 0.6. The adaptive 
remeshing model consists of six Q8-elements, six 

Figure 5: Distance rm and angle θm of isochromatic 
loop.

Figure 6: Distance rm of two isochromatic loops.

Figure 7: Photoelasticity Prototype.

Figure 8: Problem statement of single edge cracked 
plate under tensile loading.
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Q4-elements and 1,047 of the T3 elements, with the 
total of 576 nodes.
 The stress intensity factor for this problem is 
studied by Brown [24] following,

 (17)

 The computed stress intensity factor for the  
opening mode KI obtained from the adaptive remeshing  
model is 1.22410 and the photoelastic technique is 
1.22271, comparing to 1.22074 from Equation (17) 
with the differences of 0.28% and 0.16%, respectively.
 Figure 10 shows the photoelastic result using 
the photo camera technique [37] for the neat plate of  
a/W = 0.6. The measured distance ri for each fringe 
Ni, i = 1 to 4, for the top and bottom fringe images are 
used to determine the average stress intensity factors.  
In this example four analysis cases of crack length ratios  

of 0.3, 0.4, 0.5, and 0.6 are investigated. The stress 
intensity factor KI results of the neat plate calculated 
from the finite element method and the photoelasticity 
technique are compared with those given by Brown 
for a/W = 0.3, 0.4, 0.5, and 0.6 as shown in Figure 11. 
The figure shows good agreement of the solutions for 
all cases of the crack length ratio. In these cases, the 
average KI difference of adaptive remeshing model and 
photoelasticity technique is about 5.57%.
 Then, crack-hard inclusion interaction is studied. 
An additional cracked plate configuration is investigated  
under varied crack length per width (a/W) between 0.2 
to 0.599. Figure 12 shows the examples of cracked plate 
configurations at crack length per width (a/W) = 0.3  
and 0.58. A hole or hard inclusion position is fixed. 
The hard inclusion is made of magnesium alloy AZ61. 
Constant Ehard/Eplate ratio, Er = 28 is used. The stress 
intensity factor KI obtained from both methods on the 
plates with a hard inclusion and comparing with one 
on a neat plate is shown in Figure 13. For all cases of 
the crack length ratio, the stress intensity factor KI on 

(b) Boundary conditions
Figure 9: Adaptive remeshing model of single edge 
cracked plate with a/W = 0.6.

(a) Adaptive finite element model

Figure 10: Photoelastic result of single edge cracked 
plate with a/W = 0.6.

Figure 11: Comparative stress intensity factor KI for 
single edge cracked plate.
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a neat plate is higher than one on a plate with a hard 
inclusion. The KI on a neat plate is increased if a/W is 
increased. The KI difference between a neat plate and 
a plate with a hard inclusion is not significant if crack 
length per width (a/W) is small. The KI on a plate 
with a hard inclusion is decreased when a/W is greater 
than 0.57. When crack propagates close to crack-hard  
inclusion interface, the stiffness of a hard inclusion or  
E ratio on interface is more significant than KI and 
trend to stop crack propagation. This result implies that 
E ratio and crack length ratio affect to crack growth and 
crack-inclusion interaction, i.e. crack tip shielding. It 
shows good agreement of both solutions for all cases 
of the crack length ratio.
 Furthermore, more varied E ratio, i.e. E ratio = 
1.1, 1.2, 1.5, 2, 3, 4, 5, 10, 28, 50, and varied crack 
length per width (a/W) between 0.2 to 0.599 are studied.  

The adaptive remeshing technique is used to predict 
stress intensity factor KI. Figure 14 represents the stress 
intensity factor KI depending on E ratio and crack 
length ratio. If crack length per width is less than 0.4, 
E ratio is not affect to stress intensity factor KI quantity. 
The crack length per width is significant to KI when 
a/W is greater than 0.5. When E ratio increases, the 
maximum stress intensity factor KI, max will decrease 
as shown in Figure 15. Figure 16 shows the normalized 
stress intensity factor  is a function of E ratio, 

Figure 13: Stress intensity factor KI varied with crack 
length ratios on single edge cracked plate.

Figure 14: Stress intensity factor KI varied with E ratio 
and crack length ratios on single edge cracked plate.

Figure 15: Crack tip shielding curves varied with E  
ratio and crack length ratios on single edge cracked plate.

Figure 16: The normalized stress intensity factor 
 as a function of E ratio.

       (a) a/W = 0.3                     (b) a/W = 0.58
Figure 12: Position of a hole varied with crack length 
ratios on single edge cracked plate. 
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Er. This function is convergence in exponential form 
[Equation (18)],

 (18)

4 Conclusions

An adaptive remeshing technique using the eight-
node quadrilateral element near the crack tip and  
photoelasticity method are presented to analyze 
two-dimensional fracture mechanics problems. The 
proposed methods are used to determine the stress 
intensity factors and crack-hard inclusion interaction 
for a single edge cracked plate under uniaxial tensile 
loading.  The adaptive remeshing technique generates 
small elements in the crack region to increase solution 
accuracy.  Larger elements are generated in the other 
regions where the small stress gradients to reduce 
number of elements and the computational time. The 
photoelastic technique is also employed to obtain the 
stress intensity factors. The photoelastic prototype is 
designed and built to use in this study. The benchmark 
problem of single edge cracked plate under tensile 
loading was used to evaluate the performance of the 
adaptive remeshing technique. Results of the stress 
intensity factors obtained from the adaptive remeshing  
method and photoelastic technique are compared. 
These results have demonstrated the applicability 
and advantages of the adaptive remeshing method for 
providing accurate prediction of the stress intensity 
factors. The single edge cracked plate with a hard 
inclusion is used in the study of crack-hard inclusion  
interaction or crack tip shielding. An additional 
cracked plate configuration, i.e. single edge cracked 
plate with a hard inclusion is investigated under varied 
crack length per width (a/W) between 0.2 to 0.599. 
The cracking tip shielding function of stress intensity 
ratio and E ratio is studied for varied E ratio between 
1.1 to 50. The result shows that if E ratio increases, the 
maximum stress intensity factor KI will decrease. The 
result shows that the normalized stress intensity factor 
is as a convergence exponential function of E ratio.
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