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Abstract
The objective of this research is to present results of the performance (torque, power, thermal efficiency and 
specific fuel consumption) in a heavy-duty diesel engine when fueled with diesel-waste plastic pyrolysis oil 
(WPO) blends in full load condition. The tested engine is installed on an engine test bench and is attached with 
several sensors. The full factorial experimental design is performed to investigate both main and interaction 
effects. It is shown that fuel blends, engine speed and interaction of both factors significantly affect all engine 
performance parameters. The functional relationships between parameters are developed by second-order  
quadratic models. The result shows that the mathematical models are able to predict the performance  
characteristic with mean absolute percentage error (MAPE) in the range of 1.614 to 2.987%. The increase 
of mixing ratio to WPO 75% greatly decreases engine output torque and power approximately by 23.79%.  
Consequently, thermal efficiency can be reduced by 5.97% while specific fuel consumption can be increased 
by 31.22%. The results of error analyses, the graphical presentations, the discussions and conclusions are 
also presented. 
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1 Introduction

The world is facing two challenges of energy  
insufficiency and environmental crisis, mainly  
coming from dependence on fossil fuels. Many  
researches try to make quantitative assessment with 
respect to the global oil remaining resources [1-3].  
However, no one can accurately predict when the 
supplies of fossil fuels will be exhausted since 
there are several factors involved in the situation.  
However, it is believed that the production is very 
close to the peak and will become a global crisis. It is  
very urgent to strengthen the energy security of the  
country. Alternative energy derived from non-depleted 

resources is sustainable in the long term and still leaves 
gaps for research. Many researchers have studied 
the energy recovery from non-biodegradable wastes  
polymers such as municipal plastic wastes, waste 
tyres, etc. [4-6]. The method of energy recovery from 
plastic wastes does not give only a new alternative  
energy source but it is also a method of non- 
biodegradable waste management. Thus, this is one 
of the most interesting and satisfactory methods for 
current and future situations.
 Since plastic wastes commonly have high  
calorific value, approximately 18,000 to 38,000 kcal/kg, 
this can unquestionably be an alternative energy. 
Pyrolysis process converts them into other useful 
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hydrocarbon products. This process has been studied 
for a long time, and is sometimes called “thermal 
treatment” [7] or “thermal cracking” [8] or “thermo-
chemical decomposition” [9]. This process heats the 
material to high temperature around 450 - 600°C 
in the absence of air [10]. Then, the plastic wastes 
are decomposed into smaller fractions, which can 
be solid, liquid and gas residues. It is found that the  
properties of pyrolysis oil are similar to that of diesel 
fuel. Therefore, researchers began to run a diesel 
engine with pyrolysis oil. In the beginning research 
focussed on the engine condition and combustion  
characteristic more than the engine performance  
and emissions [6,11,12]. The research objectives  
are changed in the past couple of years and show  
more practical data such as Murugan and group 
[13,14] work on waste tyre pyrolysis oil in a single 
cylinder diesel engine. Their works focus on the  
effects of different mixing ratios on the diesel engine 
combustion characteristic, performance and emissions. 
However, the tests are conducted at the engine speed 
of 1500 rpm. 
 The applications of waste plastic pyrolysis  
oil (WPO) in the engines are also investigated.  
Mani and group [15] run WPO in a single-cylinder 
engine which aims to compare engine performances 
and emissions between diesel and WPO operations 
without any engine modification. The experiment 
presents compatible engine efficiency and variety  
of emission results. Some more researches have 
worked on engine modifications such as injection 
timing [16] and exhaust gas recirculation system 
[17]. The notification of these experiments is found  
that they investigate only at the rated engine speed, 
which does not cover the actual engine operating 
range and becomes a significant research gap in 
this field. 
 In order to fulfil this research gap, the present 
investigation is aimed at determining the effects of 
two process parameters, which are diesel-WPO mixing 
ratios and engine speeds. The most outstanding benefit 
of this study is the practical data from a large diesel 
engine are revealed over wide range of engine speed, 
which makes researches in this field approaching to the 
real applications. Moreover, this research is planned 
by using the full-factorial experimental design (FFD), 
which gives a benefit of presenting the interactive  
effects between fuel mixing ratio and engine speed 
as well. 

Figure 1: Research Methodology.

2 Methodology

The methodology of this research is shown in Figure 1.  
Since the conventional experimental design  
involves the one-factor-at-a-time design which cannot  
take account of interactive effects among variables. 
Moreover, almost all of previous literatures are  
performed by only one replicate, which is acceptable  
for a time and cost consuming experiment. Thus, 
this research is performed based on FFD with three 
replicates. In each replicate, thirty raw data are  
collected. This means, at least, ninety raw data for each 
parameter are recorded, according to the purpose of 
statistical analysis.
 The experimentation is designed as follows.  
Four blends of diesel-WPO and six different  
engine speeds are tested. Consequently, twenty-four  
experimental runs are performed per one replicate. The 
most outstanding benefit of this technique, over the 
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conventional experimental design, is to analyze both 
individual and interaction effects. The sequence of fuel 
used is randomized, and within each fuel blend, the 
speed sequence is randomized. Engine performance, 
including torque (T), power (P), thermal efficiency  
(  ) and specific fuel consumption (SFC), are  
recorded. For the result and discussion purpose,  
average values are presented.
 The engine employed for the experimental work 
is a four-stroke six-cylinder diesel engine developing  
108 kW at 3200 rpm. The block diagram of the  
experimental setup is given in Figure 2. The engine 
specifications and fuel heating values are given in  
Table 1 and Table 2, respectively. The engine is  
installed on a Clayton water brake dynamometer, 
which is used to provide the engine load as shown 
in Figure 3. A Debimo airflow measuring blade and 
KIMO CP200 are fitted to the engine for airflow 
measurement. The fuel flow rate is measured on the 
geometric basis using a digital scale and a stopwatch. 
The cooling system has been designed as a closed 
loop system with a cooling tower. The system also 
consists of an engine coolant temperature controller.  
Several measuring equipments have been attached to the  
system throughout the investigation to collect raw 
data. 

Table 1: Engine specifications
Model Hino WO6D

Type 6-cylinder, 4-stroke diesel

Bore 104 mm

Stroke 113 mm

Displacement 5759 cc

Compression Ratio 16.5 : 1

Fuel System Direct Injection

Table 2: Fuel heating values
Fuel Heating Value (kJ/kg) Difference (%)

Diesel (WPO 0) 45517.14 * reference

WPO 25 44990.55 -1.158%

WPO 50 44894.32 -1.370%

WPO 75 44835.74 -1.498%

 
 The experiment is conducted at full load with  
engine speeds of 800, 1000, 1200, 1500, 1800 and  
2000 rpm. Four fuel blends are used during  
experiments including neat diesel fuel (WPO 0)  

Figure 2: Experimental setup.

Figure 3: Tested engine. 

and the blends of 25%, 50% and 75% with waste 
plastic pyrolysis oil by volume in the diesel (WPO 
25, WPO 50 and WPO 75) as shown in Table 3. 
The engine is started by diesel and then switched to 
waste plastic oil for the test. At the end of the test, 
the engine is run for a short period with diesel to 
flush out the waste plastic oil from the fuel line and 
injection system.

Table 3: Process parameters and levels
WPO Mixing Ratio 

Symbol: (W)
Engine Speed
Symbol: (S)

0%
25%
50%
75%

800, 1000, 1200, 1500, 1800, 2000 rpm
800, 1000, 1200, 1500, 1800, 2000 rpm
800, 1000, 1200, 1500, 1800, 2000 rpm
800, 1000, 1200, 1500, 1800, 2000 rpm

Total 4 levels 6 levels
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 In order to develop a functional relationship 
between the process and response parameters,  
mathematical model in the form of multiple  
regression equation is one of the most effective 
and economical techniques [18]. Each response  
parameter is plotted as a surface to which a  
mathematical model is fitted. The model for a  
multiple regression takes many different forms. 
However, it is found in previous research that the 
second-order models are normally applied [19,20] 
as shown in Equation (1) [21].

 (1)

 Equation (1) assumes that the response surface Y  
contains free term, linear term, squared term and cross 
product term, which have the coefficients .

3 Statistical and Mathematical Models

The effects of diesel-WPO blend and engine speed on 
engine performance are assessed by using 4 × 6 full 
factorial design with three replicates. Engine torque 
data are collected from the tested engine. Power, 
thermal efficiency and SFC are then calculated by 
Equations (2) to (4) [22]. 

 (2)

 (3)

 (4)

where  = Fuel flow rate (kg/hr) 

 The analysis of variance (ANOVA) is used 
to determine whether there are any significant  
differences between the means of three or more 
data set. Consequently, the significances of four 
levels of fuel blends and six levels of engine speeds 
are evaluated by ANOVA.  The main results of 
the ANOVA are revealed in appendix A. Both  
process parameters, including fuel blend (W) and  

engine speed (S), present the probability values  
(p-values) of 0.000. These values are less than 
0.05, which mean that both process parameters  
significantly affect engine performance at 95% 
confidence level. Moreover, the interaction between 
two parameters (W*S) cannot be negligible since 
their probability values (p-values) are lower than 
0.05 as well.
 The quadratic models of engine performance 
parameters in terms of fuel blend and engine speed 
are determined by multiple regression analysis, as 
shown in Equation (1). The results are presented by 
Equations (5) to (8) (see also appendix B).

 (5)

 (6)

 (7)

 (8)

 In order to evaluate the reliability of developed 
models, each level of process parameter is placed 
into equations (5) to (8) and calculates the predicted 
values. These predicted values are then compared  
to the measured value as shown in Tables 4 to 7.  
The differences between the predicted and measured  
values identify the existing error. There are many  
avai lable  methods such as  Mean absolute  
Error (MAE), Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE), Mean Absolute  
Percentage Error (MAPE), Relative Absolute Error 
(RAE) and Root Relative Squared Error (RRSE) 
[23]. The MAPE method is used in this step for the 
purpose of reporting since it meets five basic criteria 
for a good measure of error, which are measurement 
validity, reliability, ease of interpretation, clarity of 
presentation and support of statistical evaluation [24]. 
The most important point is that this method is a unit 
free measure [25], which is easily understandable to 
a wide range of readers as generally seen in many 
researches [26,27].



41

C. Poompipatpong et al. / KMUTNB: IJAST, Vol.7, No.1, pp. 37-45, 2014

Table 4: MAPE of torque characteristic model

WPO
(%)

Speed
(rpm)

Torque (Nm) Absolute
Deviation

Absolute 
Percentage 

of ErrorMeasure Predict

0
0
0
0
0
0
25
25
25
25
25
25
50
50
50
50
50
50
75
75
75
75
75
75

800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000

288.00
300.00
309.60
340.80
348.00
343.20
250.80
261.80
271.45
298.13
303.27
298.11
243.10
255.20
266.49
297.48
299.34
294.30
219.48
236.50
253.00
286.00
295.28
297.77

285.15
302.83
317.09
332.10
339.43
340.06
249.61
268.37
283.72
300.34
309.30
311.00
228.92
248.76
265.19
283.43
294.01
296.80
223.08
244.00
261.50
281.37
293.57
297.43

2.85
2.83
7.49
8.70
8.57
3.14
1.19
6.57
12.27
2.21
6.03
12.89
14.18
6.44
1.30
14.05
5.33
2.50
3.60
7.50
8.50
4.63
1.71
0.34

0.990
0.943
2.419
2.553
2.463
0.915
0.474
2.510
4.520
0.741
1.988
4.324
5.833
2.524
0.488
4.723
1.781
0.849
1.640
3.171
3.360
1.619
0.579
0.114

Mean Absolute Percentage Error (MAPE) 2.147%

Table 6: MAPE of efficiency characteristic model

WPO
(%)

Speed
(rpm)

Efficiency (%) Absolute
Deviation

Absolute 
Percentage 

of ErrorMeasure Predict

0
0
0
0
0
0
25
25
25
25
25
25
50
50
50
50
50
50
75
75
75
75
75
75

800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000

34.95
36.54
36.63
36.82
35.29
33.66
30.79
32.26
32.49
32.58
31.12
29.58
29.91
31.51
31.97
32.58
30.78
29.27
27.04
29.24
30.39
31.37
30.40
29.65

35.08
36.24
36.79
36.51
34.87
33.04
31.24
32.59
33.35
33.36
32.02
30.38
28.82
30.38
31.33
31.64
30.60
29.16
27.84
29.59
30.74
31.34
30.60
29.36

0.13
0.30
0.16
0.31
0.42
0.62
0.45
0.33
0.86
0.78
0.90
0.80
1.09
1.13
0.64
0.94
0.18
0.11
0.80
0.35
0.35
0.03
0.20
0.29

0.372
0.821
0.437
0.842
1.190
1.842
1.462
1.023
2.647
2.394
2.892
2.705
3.644
3.586
2.002
2.885
0.585
0.376
2.959
1.197
1.152
0.096
0.658
0.978

Mean Absolute Percentage Error (MAPE) 1.614%

Table 7: MAPE of SFC characteristic model

WPO
(%)

Speed
(rpm)

Efficiency (%) Absolute
Deviation

Absolute 
Percentage 

of ErrorMeasure Predict

0
0
0
0
0
0
25
25
25
25
25
25
50
50
50
50
50
50
75
75
75
75
75
75

800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000

226.32
216.47
215.93
214.84
224.12
234.97
259.94
248.11
246.33
245.64
257.23
270.56
268.15
254.50
250.88
246.15
260.58
274.03
296.98
274.60
264.24
256.01
264.14
270.82

227.02
217.51
212.86
215.01
228.09
242.89
257.26
246.08
239.76
239.40
249.99
263.12
277.27
264.42
256.44
253.58
261.66
273.13
287.06
272.55
262.89
257.53
263.11
272.91

0.70
1.04
3.07
0.17
3.97
7.92
2.68
2.03
6.57
6.24
7.24
7.44
9.12
9.92
5.56
7.43
1.08
0.90
9.92
2.05
1.35
1.52
1.03
2.09

0.309
0.480
1.422
0.079
1.771
3.371
1.031
0.818
2.667
2.540
2.815
2.750
3.401
3.898
2.216
3.018
0.414
0.328
3.340
0.747
0.511
0.594
0.390
0.772

Mean Absolute Percentage Error (MAPE) 1.653%

Table 5: MAPE of power characteristic model

WPO
(%)

Speed
(rpm)

Power (kW) Absolute
Deviation

Absolute 
Percentage 

of ErrorMeasure Predict

0
0
0
0
0
0
25
25
25
25
25
25
50
50
50
50
50
50
75
75
75
75
75
75

800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000
800
1000
1200
1500
1800
2000

32.34
42.11
52.15
71.76
87.93
96.35
28.16
36.75
45.73
62.78
76.63
83.69
27.30
35.82
44.89
62.64
75.63
82.63
24.65
33.20
42.62
60.22
74.61
83.60

32.49
43.35
54.05
69.81
85.21
95.28
26.80
37.38
47.80
63.14
78.11
87.89
24.36
34.66
44.80
59.70
74.25
83.75
25.16
35.17
45.03
59.51
73.64
82.85

0.15
1.24
1.90
1.95
2.72
1.07
1.36
0.63
2.07
0.36
1.48
4.20
2.94
1.16
0.09
2.94
1.38
1.12
0.51
1.97
2.41
0.71
0.97
0.75

0.464
2.945
3.643
2.717
3.093
1.111
4.830
1.714
4.527
0.573
1.931
5.019
10.769
3.238
0.200
4.693
1.825
1.355
2.069
5.934
5.655
1.179
1.300
0.897

Mean Absolute Percentage Error (MAPE) 2.987%
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 The example of the absolute percentage of error 
calculation is shown as follows. The predicted torque 
of WPO 0% at 800 rpm is calculated from equation 
(5) by substitute W = 0 and S = 800. It gives;

 Absolute deviation (Da) and Absolute percentage 
of error (APE) are then calculated by equations (9)  
and (10) [28].

 (9)

 (10)

This gives;

And;

 Finally, mean absolute percentage errors present 
very low values of 2.147%, 2.987%, 1.614% and 
1.653% for torque, power, efficiency and specific 
fuel consumption in the bottom row of Tables 4 to 7, 
respectively. MAPE value of less than 10% certifies 
the high accuracy for forecasting of the developed 
quadratic models [26]. 

4 Results and Discussions

Generally, torque increases as engine speed increases 
until it reaches the maximum point. After that,  
it decreases at high engine speed, as shown in  
Figure 4. This is due to the friction loss and inability 
of the engine to ingest a full charge of air [22]. 
 It is observed that the mixtures of diesel-waste  
plastic oil decrease engine torque significantly in  
Figure 4. Even the heating values of each kind of fuel  
are compatible as already shown in Table 2, Figures 4 
and 5 show that the engine presents by average 12.92%  
lower torque and power than those of diesel while 

operating with WPO 25%. The differences increase up 
to 15.59% and 23.79% for WPO 50% and WPO 75%, 
respectively. The interaction between fuel mixing ratio 
and engine speed is markedly significant, especially 
in Figure 5. The graphs of diesel-WPO mixtures are 
getting more identical at high engine speed. Moreover, 
the gap between diesel and WPO graphs are getting 
larger as well. 
 This is the evidence that the Cetane number of 
waste plastic oil is lower and considerably brings up 
the longer ignition delay. Ignition delay identifies the 
period between the injection and start of combustion.  
This delay period depicts the trend to abnormal  
combustion in diesel engine and, consequently, leads 
to lower engine torque and power. This behaviour 
is also found in literatures [15,16]. Moreover, it is 
a known fact that the increment in engine speed  
increases the ignition delay [29]. This is the reason 
why the gap between diesel and WPO graphs are  
getting larger at high engine speed.

Figure 4: Variation of torque with fuel blend and 
engine speed.

Figure 5: Variation of power with fuel blend and  
engine speed.
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 Figure 6 shows that the average thermal  
efficiency of diesel operation is 35.65% while diesel-
WPO blends produce 31.47%, 31.00% and 29.68%. 
This is due to two main reasons, firstly, WPOs produce 
less output power with almost the same amount of 
fuel injection. The other reason is due to the fact that,  
in WPO combustion, the higher cylinder pressure 
generates a higher exhaust gas temperature together 
with higher heat losses [15]. 
 Theoretically, engine specific fuel consumption  
parameter is inversely proportional to thermal  
efficiency. Therefore, diesel presents the lowest  
specific fuel consumption. WPOs 25%, 50% and 
75% present higher values, respectively, as shown 
in Figure 7. 

5 Conclusion and Recommendation

The contribution of this research is to propose a model 
to investigate effects among diesel-WPO mixing ratios 

Figure 6: Variation of thermal efficiency with fuel 
blend and engine speed.

Figure 7: Variation of specific fuel consumption with 
fuel blend and engine speed.

and engine speeds. Waste plastic oil is blended into 
diesel in several mixing ratios and run by a heavy 
duty engine in order to investigate the effects on  
engine performance characteristic. Three mixing 
ratios including WPO 25%, 50% and 75% are tested 
at a wide range of engine speed and the results  
compared to those of diesel (WPO 0%). The statistical  
analysis using ANOVA reveals that mixing ratio, 
engine speed and the interaction are significant at  
95% confidence level. The second-order quadratic 
modelling is enough to fit the relations between  
process parameters and responses. MAPE method 
shows the errors in the range of 1.614 to 2.987%, 
which is considered very high accuracy in prediction.  
The benefit of this research is that the user can apply  
full-factorial design and quadratic modelling to  
practically predict the result in a number of diesel-
WPO mixing ratios and engine speeds.
 The experimental results show that, though 
the heating value of WPO is compatible to diesel, 
other fuel properties are also important. Lower Cetane  
number might lead to abnormal combustion which 
results in 23.79% reduction in output torque and power 
for WPO 75%. Thermal efficiency decreases up to 
5.97% with an increment of specific fuel consumption. 
 Even though the overall results from this  
investigation can be considered that WPO blends 
do not have performance compatibility to that of 
diesel, WPO is still attractive in the waste-to-energy  
viewpoint. Since it is not generated from conventional 
fossil fuel, the cost of WPO is then unquestionably 
cheaper and it helps the plastic waste management 
process.
 Operation cost and external costs, including 
fuel cost, pollution cost and country’s energy security 
scenario, should be integrated in future research for 
the cost-benefit analysis or optimization. WPO can 
then be a successful alternative fuel in a similar way 
to biodiesel.

APPENDIX A: Results of ANOVA

Figure A1: Result of ANOVA for torque.
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Figure A2: Result of ANOVA for power.

Figure A3: Result of ANOVA for thermal efficiency.

Figure A4: Result of ANOVA for SFC.

Appendix B: The estimated regression coefficient 
for response parameters from the statistical program.

Figure B1: Estimate regression coefficient for torque.

Figure B2: Estimate regression coefficient for power.

Figure B3: Estimate regression coefficient for thermal 
efficiency.

Figure B4: Estimate regression coefficient for SFC.
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