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Abstract
The upwind schemes had proved to be effective for solving a wide variety of high-speed compressible flow 
problems due to their accuracy and robustness concerning other schemes. The unstructured grids had been  
commonly used to discretize the complex geometry then it is necessary to evaluate the performance of the 
upwind schemes on unstructured grids. This paper presents a comparison study of the accuracy and numerical 
stability of the Roe’s FDS (RoeVLPA), HLLC, AUFS, and AUSMDV+ schemes on two-dimensional triangular 
grids. It is found that the AUSMDV+ scheme provides the most accurate solution and the AUFS scheme is the 
most dissipative scheme.
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1 Introduction

The shock capturing finite-volume methods are commonly  
used to predict shocks in various aerodynamic flow 
situations with considerable success. The calculations 
of numerical fluxes across cell interfaces have become 
an essential research topic. The numerical scheme 
relies on an approximate Riemann solver must have 
the ability to predict discontinuities, strong shocks, and 
the propagating waves velocity accurately. However, 
many pieces of evidence can be concluded that most 
shock capturing methods fall short in predicting very 
strong shocks [1]–[7]. Roe's flux difference splitting 
(Roe’s FDS) scheme [8] is known to possess good 
accuracy but to suffer from the numerical shock  
instability so-called the carbuncle phenomenon, violates  
entropy condition, and lacks positivity property. The 

method has some weakness and may fail or produce 
physically unrealistic numerical solutions for some 
problems including the high Mach number flow past a 
blunt body, the kinked Mach stem, and the moving shock 
in a straight duct from an odd-even grid perturbation.  
Many researchers [3]–[5] proposed the entropy fix 
methods to heal such numerical instabilities. It is found 
that the RoeVLPA scheme is a very accurate and robust 
scheme over a wide variety of high-speed compressible 
flow problems.
 The HLL Riemann solver has proved extremely  
reliable and robust [9]. The simplest HLL approximation  
assumes only one intermediate wave state between 
the two acoustic waves. The main drawback is that 
it cannot resolve contact discontinuities exactly. The  
inability of the HLL scheme to resolve contact and 
shear waves was alleviated through the development 
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of the HLLC (Harten, Lax, Van-Leer, Contact) scheme 
[10], [11] by adding a contact wave to the pre-existing 
two-wave HLL structure. Then it has been widely 
used in CFD due to its ability for capturing shock, 
rarefaction, and contact discontinuity accurately. 
However, the scheme may produce the numerical 
shock instability that often occurs near the shock for 
multidimensional problems [1], [5]. 
 The AUFS scheme [12] was proposed to split 
the flux vector of the Euler equations by introducing 
two artificial wave speeds. The direction of wave  
propagation is adjusted by these two wave speeds. 
If they are set to be the fastest wave speeds in two  
opposite directions, the method leads to the HLL 
approximate Riemann solver. The scheme is simple 
and can resolve sonic points smoothly. Moreover, 
the scheme can resolve exactly 1D stationary contact  
discontinuities. The robustness of the scheme is  
comparable with the exact Riemann solver. 
 The AUSM scheme [13] was presented as a simple,  
accurate, and robust method in comparison with  
existing numerical schemes and have become a very 
popular solution method. The scheme is developed by 
combining the accuracy of the FDS and the robustness 
of the flux-vector splitting scheme (FVS). Accuracy 
was improved especially on the boundary or in the 
shear layers. The attractive features of the AUSM 
scheme are 1) it does not require any characteristic 
analysis, 2) the ability to capture contact discontinuities  
exactly, and 3) require less computational time than 
many approximate Riemann solvers. Several attempts 
have been made in the following years to improve 
the original AUSM scheme. It is found that various  
AUSM-family schemes [14]–[16] can increase accuracy  
by reducing numerical diffusion and robustness for 
solving strong shock problems. Recently, the author 
proposes the AUSMDV+ scheme [17] by combining 
the highly accurate AUSMD+ scheme with the diffusive  
AUSMV+ scheme, and the shock-capturing switch is 
redefined to identify the shock region effectively. Many 
test cases presented to confirm that the AUSMDV+  
scheme can solve a wide range of high-speed compressible  
flow problems accurately without shock anomalies, 
especially where strong physical discontinuities exist.
 The objective of this work is to compare the 
numerical efficiency of the RoeVLPA, HLLC, AUFS, 
and AUSMDV+ schemes on structured triangular grids. 
The paper is organized as follows. In Section 2, the 

governing equations and numerical flux formulations 
are presented. Then, the schemes are examined by 
benchmark test cases to evaluate their accuracy and 
robustness in Section 3.

2 The Numerical Scheme

2.1  The governing equation and finite volume method

The compact form of the two-dimensional Euler  
equations is

 (1)

where  and [Equation (2)]

 (2)

where ρ, u, v, p, E, and H denote density, x-velocity, 
y-velocity, pressure, total energy, and total enthalpy, 
respectively. The equation of state for a calorically 
perfect gas with a specific heat ratio γ = 1.4 is given 
by [Equation (3)]

 (3)

By integrating Equation (1) over a control volume, Ω, 
and applying the divergence theorem to the resulting 
flux integral

 (4)

where F is the numerical flux vector and  is the 
normal unit vector to the cell boundary. By applying 
explicit Euler temporal integration to the first term of  
Equation (4), the second term is approximated by the 
sum of the fluxes crossing the faces of the control 
volume to yield [Equation (5)]

 (5)
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where Sk is the interface area and  is the unit normal 
vector outward from the interface.

2.2  RoeVLPA scheme

The numerical flux vector at the cell interface between 
the left cell L and the right cell R of the RoeVLPA 
scheme [5] is written as [Equation (6)]

 (6)

where , αk is the wave 
strength of the kth wave, rk is the corresponding right 
eigenvector, Vn is the normal velocity, and a is the 
speed of sound at the cell interface. These eigenvalues   
λk are modified by applying the entropy fixed method 
to enhance the robustness of the scheme and can be 
written as [Equation (7)]

 (7)

where [Equations (8) and (9)]

 (8)

 (9)

 The constant value κ is usually less than or equal 
to one for the first-order scheme.

2.3  HLLC scheme

The HLLC scheme is an improved version of the HLL 
scheme by restoring the contact surface. The numerical 
flux vector at the cell interface between the left cell L 
and the right cell R of the HLLC scheme [10], [11] is 
written as [Equation (10)]

 (10)

Where [Equations (11)–(14)]

 (11)

 (12)

 (13)

 (14)

and α = L, R. We have to note that the contact wave 
speed, S*, always gives S*L = p*R. The wave speeds are 
computed from [Equation (15)]

 (15)

where  and  are the Roe-averaged velocity and speed 
of sound quantities.

2.4  AUFS scheme

The convective flux of the AUFS scheme [12] is split 
into two parts as [Equation (16)]

 (16)

where [Equations (17)–(26)]

 (17)

 (18)

 (19)
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 (20)

 (21)

 (22)

 (23)

 (24)

 (25)

 (26)

and α = L, R.

2.5  AUSMDV+ scheme

The AUSMDV+ scheme is the application of hybrid 
strategies based on existing numerical methods may 
combine some advantages of different upwind schemes 
for improving the accuracy and stability of numerical 
computations. It is obtained by blending the AUSMD+ 
and AUSMV+ schemes [18]. The AUSMV+ scheme 
is very stable but too diffusive, while the AUSMD+ 
scheme is highly accurate but marginally stable. To take 
advantage of its efficient shock-capturing capability,  
the AUSMDV+ scheme is a bias-averaging scheme 
toward the AUSMD+ scheme, as follows
 AUSMD+: For all AUSM-family schemes, the 
inviscid flux is explicitly split into convective and 
pressure fluxes as [Equation (27)]

 (27)

The numerical flux at the cell interface between the 
states QL and QR is given as [Equation (28)]

 (28)

Where [Equation (29)]

 (29)

 The common velocity C1/2 is expressed as  
[Equation (30)]

 (30)

 The calculation of the interface speed of sound  
C1/2, , and  are available in Ref. [18]. The new  
pressure flux of Kitamura and Shima [17] is implemented  
into the scheme.
 AUSMV+: To construct the improved low-diffusion  
flux-vector splitting scheme, a numerical flux that  
explicitly expresses the mass flux at the cell interface can 
be written in a general form [19] as [Equations (31)–(34)]

 (31)

where

 (32)

 (33)

 (34)

 AUSMDV+: To take advantage of its efficient 
shock-capturing capability, the AUSMDV+ scheme is 
a bias-averaging scheme toward the AUSMD+ scheme 
as follows [Equation (35)]
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 (35)

where s is defined by [Equation (36)]

 (36)

 Following several numerical experiments, a 
constant parameter K = 5 is taken.

3 Test Problems and Discussion

In order to illustrate the accuracy and robustness of 
three numerical scheme, they must be evaluated via 
the first-order accuracy to limit the effects of the 
complexity of higher-order accuracy implementation. 
The above three schemes have been evaluated using 
three test cases. The selected test cases are 1) the Sod 
shock tube, 2) the Toro strong shock wave, and 3) the 
double Mach reflection of a strong shock.

3.1  Sod shock tube

The Sod shock tube problem [18], [20] is a common 
test case for the accuracy of numerical schemes. The 
solution of this problem can be described by solving 
the Euler equations which leads to three characteristics 
namely the shock wave, the contact discontinuity, and 
the rarefaction wave. The initial conditions for the left 
and right sides of an ideal gas are given by (ρ, u, p)L =  
(1.0, 0.0, 1.0) and (ρ, u, p)R = (0.125, 0.0, 0.1). The 1×0.1 
computational domain is discretized with uniform  
triangular elements into 400 and 40 equal intervals in 
the x and y directions, respectively. 
 Figures 1 shows the predicted density and  
distributions along the tube length and is compared 
with the exact solutions at a time t = 0.15. All 
schemes provide non-oscillate solutions. The zoom 
in of the shock wave, the contact discontinuity, and 
the rarefaction wave are depicted in Figure 2(a)–(c),  
respectively. It is seen that the accuracy of all schemes 
to capture shock wave and contact discontinuity are 
not significantly different as shown in Figure 2(a)–(b). 
Moreover, the AUSMDV+ scheme gives the most  
accurate solution and very close to the exact solution 
as shown in Figure 3(c).   

Figure 1: Comparison of numerical and exact solutions 
at time t = 0.15 for problem 3.1.

(c) Rarefaction wave
Figure 2: Zoom in on Figure 1.
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3.2  Toro strong shock wave

The initial conditions of this shock tube problem are 
given by (ρ, u, p)L = (0.1, 0.0, 1000.0) and (ρ, u, p)R = 
(0.1, 0.0, 0.1) [5], [21]. The difficulty of this problem 
is that the shock and the contact discontinuity are very 
close to each other.  It is thus very difficult for most of 
the numerical schemes to capture both the shock and 
the contact discontinuity within such a few elements.  
The same computational domain as described in  
problem 3.1 is used again. Figure 3 shows the predicted 
density and distributions along the tube length and are 
compared with the exact solutions at a time t = 0.012. 
There is no difference in the numerical solutions 
obtained from these four schemes. Figure 4(a)–(c) 
illustrated that four schemes provide a very similar 
solution; however, the AUSMDV+ scheme gives better 
expansion wave solution than the RoeVLPA, HLLC, 
and AUFS schemes.

3.3  Mach 2 reflection over a 46° wedge

The last problem is a Mach number 2 shock is reflected  
from a 46° wedge [5]. The wave configuration  
and an interferogram as obtained in shock tube  
experiment are shown in Figure 5. The computational  
domain is discretized by the structured triangular  
grids (∆x = ∆y = 1/250). Figures 6 to 9 show the 
density contours at the time t = 0.7 ms of the  
AUSMDV+, RoeVLPA, HLLC, and AUFS schemes, 

Figure 3: Comparison of numerical and exact solutions 
at time t = 0.012 for problem 3.2.

(c) Rarefaction wave
Figure 4: Zoom in on Figure 3.
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Figure 5: Interferogram of the Mach 2 reflection over 
a 46° wedge: Ms = 2 in the air at T = 298.65 K and  
p0 = 250 hPa (courtesy of K. Takayama).
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respectively. The results presented that all schemes  
provided a stable solution and similar to an experiment  
data given by Figure 5. By considering at the triple 
point and the length of the Mach stem, the AUSMDV+  
scheme gives the most accurate solution. The  
RoeVLPA and HLLC schemes show a similar  
solution with slightly shorter Mach stem compared 
to the AUSMDV+ scheme. The AUFS scheme is 
the most dissipate scheme then it gave the shortest 
Mach stem. 

4 Conclusions

The accuracy and robustness of the AUSMDV+,  
RoeVLPA, HLLC, and AUFS schemes for solving two-
dimensional high-speed compressible flow problems  
on structured triangular grids were investigated in 
this paper. The Sod shock tube and the Toro strong 
shock wave are chosen as the test cases because there 

are the exact solutions. It may be concluded that the 
AUSMDV+ scheme can capture an expansion wave 
accurately than other schemes. All schemes give a 
similar solution to the shock wave and the contact 
discontinuity. Finally, the Mach 2 reflection over a 
46° wedge is selected to test the robustness against 
the carbuncle phenomenon and the accuracy of the 
schemes. The AUSMDV+ scheme provided the most 
accurate solution, the RoeVLPA and HLLC schemes 
reported a similar solution, and the AUFS scheme gave 
the most dissipate solution with the shortest length of 
the Mach stem. 
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Figure 6: Density control of the problem 3.3: AUSMDV+. Figure 7: Density control of the problem 3.3: RoeVLPA.

Figure 8: Density control of the problem 3.3: HLLC. Figure 9: Density control of the problem 3.3: AUFS.
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