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Abstract
This paper presents a hybrid metaheuristic algorithm to solve the hybrid flow shop scheduling problem 
(HFSP) with family setup times. Many conditions of HFSP have been extensively studied in recently years and  
metaheuristics and local search algorithms have also been developed to yield better solutions for multi-objective 
HFSP. HFSP in this work is based on a harddisk drive manufacturer. An effective NSGA-II integrated with 
migrating birds optimization (MBO) called MBNSGA-II is proposed to improve the quality of solutions for  
bi-objective HFSP. Makespan and total tardiness time are the objectives of this HFSP.  MBO is added to mutation  
operation of genetic algorithm to improve the Pareto front. Next, various sizes of benchmark problem are  
utilized to evaluate the performance of NSGA-II and MBNSGA-II. The comparisons of two algorithms consisting  
of NSGA-II and MBNSGA-II are provided by using the numerical examples. It is obvious the Pareto fronts 
obtained from MBNSGA-II are adjacent to the approximated true Pareto front. In terms of inverted generational 
distance (IGD) which is the index of convergence and diversity of the solution set, the performance of proposed 
MBNSGA-II outperforms NSGA-II.
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1 Introduction

This paper proposed a hybrid algorithm of migrating  
birds optimization and NSGA-II (MBNSGA-II) to 
handle the hybrid flow shop scheduling problem 
(HFSP) with family setup times. Normally, a job does 
not require the setup time if it follows a job belong 
to the same family [1]. However, there is a slightly 
difference for family setup time in the production line 
of head gimbal assembly (HGA). A magnetic disk 
requires two type HGAs including up and down type 

that belong to the same family. Thus, a group of order 
including order of up type and order of down type is 
typically issued to HGA production line. Change over 
between two jobs within the same family needs a quick 
setup time. Major setup time is applied when changing 
between two families.
 Some production lines are comprised of several 
types of machine integrated into a flow shop assembly 
line. Due to unbalanced capacity of each machine, 
some processes or stages require more than one  
machine. The general definition for HFSP is that at 
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least one stage has identical machines. This HFSP has 
been applied in many manufacturing such as textile, 
semiconductors, assembly process of IC, Hard disk 
drive, assembly and electronic assembly process. Since 
these manufacturing require specific machine for each 
process, the standard machines are used as system  
integration. That is why machines having low capacity  
are required more than one machine. In production 
planning, the scheduling of job orders is our interest. 
In real world problems, the performances of scheduling 
are measured by at least two key performance indices. 
Typically, the makespan and total tardiness time are 
considered as the key objectives of scheduling.  
 HFSP is one of the NP-hard problems which 
is hard to solve [2]. The multi-objective of HFSP 
has been studied with various conditions. The group 
scheduling in HFSP with bi-objective was discussed 
by Bozorgirad et al. [2]. Behnamian and Ghomi [3] 
proposed a hybrid metaheuristic for HFSP considering  
machines with different speeds and sequence-dependent  
setup times. The minimization of makespan and total  
resource allocation costs were the objectives of 
this research. The Non-Dominated Sorting Genetic  
Algorithm II (NSGA-II) for multi-objective of reentrant  
HFSP was done by [4]. Others multi-objective of  
reentrant HFSP can be found in [5], [6]. The bi-objective  
HFSP having sequence-dependent setup times and 
limited buffer spaces was studied by [7]. The multi-
objective HFSP with sequence-dependent setup times 
was presented in [2], [8]. The objectives for HFSP 
which were found in these papers [1]–[8] including 
minimization of makespan, total tardiness of jobs, total 
resource allocation cost, total weighted completion 
time, total weighted tardiness, and maximum tardiness. 
 Since HFSP and multi-objective HFSP can be 
classified as the NP-hard problem, the metaheuristic  
algorithms and hybrid metaheuristic algorithms were 
developed to determine the optimal or near optimal with 
reasonable computational time. The Non-Dominated  
Sorting Genetic Algorithm II (NSGA-II) was utilized 
to solve the multi-objective HFSP in [4], [7], [9]. The 
Pareto genetic algorithm adopting the Minkowski 
distance-based crossover operator and additional local 
search strategies was used to determine the solutions 
for multi-objective HFSP [4]. The results revealed 
that the proposed algorithm was superior to NSGA-II. 
Abyaneh and Zandieh [7] utilized the Sub-population 
genetic algorithm II (SPGA-II), NSGA-II and the local 

search algorithm to search for the best solutions for  
bi-objective HFSP under sequence-dependent setup 
times and limited buffers. The modified versions of both 
SPGA-II and NSGA-II could yield the better solutions.  
NSGA-II based memetic algorithm was also proposed 
by [9] in order to solve multi-objective parallel flow 
shop scheduling problem. 
 Other algorithms were also used in determining 
better quality of solution for multi-objective HFSP. 
Metaheuristic algorithms such as Tabu search [2], 
Lorenz non-dominated sorting genetic algorithm 
(L-NSGA) [5], [10], Strength pareto evolutionary  
algorithm 2 (SPEA2) [5], Iterated pareto greedy (IPG) 
algorithm [6], Novel neighborhood search (NSG) [11] 
etc. were tested with multi-objective HFSP. The HFSP 
was solved by discrete artificial bee colony algorithm 
[12] and tabu search heuristic algorithm [13]. A  
coevolutionary algorithm [14] utilizing global agents 
and local agents was applied to obtain the solutions 
for multi-objective HFSP. The performance metrics 
presented in [14] including: 1) dominating ratios 
(DR), 2) mean ideal distance (MID), 3) spread of 
non-dominated solution (SNS), and the best of each 
objective function (BEO). These metrics were used 
to compare the performance of proposed algorithms.  
Other metaheuristics which are ant colony optimization  
algorithm [15] and hybrid algorithm between artificial 
bee colony and tabu search were also developed to 
solve HFSP [16]. 
 Recently, a new metaheuristic algorithm namely 
migrating bird optimization (MBO) algorithm was 
introduced by Duman et al. [17] which is able to solve 
the problems in a variety of areas effectively. This  
algorithm was inspired from the v-formation of the bird 
flocks to fly the long distances in V shape. The MBO 
has attracted the attention of researchers to deal with 
many different scheduling problems [18]–[23]. Pan 
and Dong [18] developed an improvement version of 
MBO to enhance the HFSP that tried to minimize the 
total flow time. Zhang et al. [19] applied the modified 
MBO to solve the single objective hybrid flow shop 
with lot-steaming to minimize the total flow time. 
The algorithm was also increased efficiency by using  
various neighborhood searches. Meng et al. [20] also 
studied the flow shop with lot-streaming to determine 
the makespan minimization. This research utilized 
MBO with the harmony search to create the effective 
solutions. A tabu list and neighborhood search and other 
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mechanisms were utilized in the permutation flow shop 
scheduling under the condition of sequence dependent  
setup times of which its objective is to minimize the 
makespan [21]. Gao and Pan [22] developed MBO 
with the shuffled multi-swarm micro-MBOs in order 
to solve the multi-resource-constrainted flexible job 
shop scheduling, effectively. In addition, MBO based 
on Pareto dominance relationship was applied for the 
multi-objective hybrid flow shop rescheduling problem 
[23]. The proposed algorithm was efficiently used to 
solve for three minimization objectives which were the 
makespan, the job start deviation, and the change in 
machine assignment after job cancellation.
 It is obvious that the hybrid metaheuristics have 
been interested by many researchers due to their  
capability in solving the complex hybrid flow shop 
scheduling which is the NP-hard problem. Thus, this 
paper adopts a strong characteristic of Migrating birds  
optimization to the framework of Non-dominated sorting  
genetic algorithm II (NSGA-II) called MBNSGA-II. 
The remaining sessions are organized as following: 2) 
problem description, 3) NSGA-II and Migrating Birds 
Optimization Algorithm, 4) computational results and 
discussions, and 5) conclusions and future works.

2 Problem Description

This paper studies the process of head gimbal assembly 
(HGA) shown in Figure 1. The HGA is made of a slider 
and a suspension. HGA is utilized to read and write on 
both sides of the hard disk drive platter or magnetic 
disk. There are two types of HGA which are up and 
down type to read or write top and bottom of platter. 
Therefore, each customer usually orders both types, 
equally. The HGA process of case study consists of five 
stages, including the assembly process to attach the 
slider on the suspension, cleaning, cutting and bending 
process at the tail of HGA, the testing and the cleaning, 
and some stages have the identical parallel machines.  
The buffers, which are assumed the unlimited buffers are  
installed between stages. This production line can be 
classified to be the sequence-independent setup times 
with family setup times. A special characteristic for 
HFSP in this paper is that the setup time between two 
types is shorter than the setup time between families. 
This production line can be considered as the hybrid 
flow shop assembly line. The scheduling of production 
batches is a vital activity for production planning and 

control. Therefore, the hybrid flow shop scheduling 
problem (HFSP) is our interest. Since HFSP is NP-
hard problem [2], a development of effective hybrid 
metaheuristic algorithm is the main focus of this paper. 
Bi-objective for scheduling of hybrid flow shop are to 
minimize the makespan and the total tardiness time of 
jobs because the delay of jobs will make a big impact 
to the customer which is the head-stack operation.
 The mathematical model from [24] is adopted 
and modified to represent the HFSP in this study.  
Bi-objective of this HFSP is to minimize the makespan 
and the total tardiness time of groups. Each group g 
comprises of two jobs including one job for up type 
and another job for down type. Two types of HGA are 
assigned to the same platter. Therefore, the tardiness 
time of each group is the maximum tardiness between 
two jobs within a group of order. The assumptions and 
constraints for this problem are shown as follows:

• All k jobs are available at the beginning of 
scheduling.

• All machines are not allowed to breakdown.
• The setup times is sequence-independent.
• Infinite buffers are installed between stages.
• Transportation time between stages is negligible.

 The parameters and indices can be presented as 
below:
M Number of stages, (i = 1,…,M) 
Ji Number of parallel machines in stage i, ( j ∈ Ji)
K Number of jobs, (k = 1,…,K)
G Number of group orders, (g = 1,…,G) 
cik Completion time of job k in stage i 
dik Departure time of job k from stage i
pijk Processing time of job k in stage i
Lk Due date of job k
Sikl  Setup time for changing from job k to job l at  
 stage i (if job k and job l belong to the same family,  
 it requires only quick setup time; otherwise,  
 longer setup is required.)
Q Large value
TT Total tardiness time of jobs
Cmax  Maximize completion time
Fgk 1 if job k is in group g; 0 otherwise
 The decision variables can be expressed as follows:

Figure 1: HGA assembly line with five processes or 
stages excluding buffers.

Assembly Cleaning Testing CleaningCut & Bend



W. Laoraksakiat and K. Asawarungsaengkul, “Bi-objective Hybrid Flow Shop Scheduling with Family Setup Times Using Hybrid Genetic 
and Migrating Birds Optimization Algorithms.”

22 Applied Science and Engineering Progress, Vol. 14, No. 1, pp. 19–30, 2021

Tk Tardiness of each job k
xijk Binary decision 1 if job k is assigned to processor  
 j in stage i; 0 otherwise
Uk Binary decision 1 if tardiness of job k > 0; 0 otherwise
Rgk Tardiness time of job k in group g
Bg Binary decision 1 if at least one of tardiness of  
 job k in group g > 0; 0 otherwise
yijkl 1 if job k precedes job l on the processor j in  
 stage i; 0 otherwise
 The mathematical model is formulated as follows:

Minimize Z1(x) = Minimize CMAX

 = Minimize Max(cmk)  (1)

Minimize Z2(x) = Minimize TT = Minimize  (2)

Subject to:

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)
 

 (9)
 

 (10)

 (11)

 (12)

 (13)

 The objective functions (1) and (2) are to 
minimize the maximum makespan and the total of 
maximum tardiness time. Constraints (3) and (4) 

show that job k is processed on the first machine  
and successively on all downstream machines.  
Constraints (5) and (6) ensure that each job k leaves 
the line after completing on the last machine.  
Constraint (7) indicates that each machine starts  
immediately after each job leaves from the precedence 
machine. Constraints (8) and (9) determine two parts 
allocated to the same machine cannot be processed 
simultaneously. Constraints (10) and (11) express the 
tardiness time. Constraint (12) indicates the maximize  
completion time from the latest completion time of 
jobs on the last machine. Constraints (13) defines the 
maximum tardiness time of group g. 
 
3 NSGA-II and Migrating Birds Optimization 
Algorithm

This paper develops a hybrid algorithm to improve the 
performance of NSGA-II by integrating the migrating 
birds optimization into NSGA-II.  NSGA-II and MBO 
procedures are described in the following subsections.

3.1  Non-dominated sorting genetic algorithm-II 
(NSGA-II)

Non-dominated sorting genetic algorithm II (NSGA-II)  
developed by [25] is an algorithm to deal with the 
multi-objective simultaneously. It is the metaheuristic  
based on the genetic algorithm to find the pareto  
optimal solutions. NSGA-II proposes three important 
procedures including the fast non-dominated sorting 
which is a procedure that sorts a population into different  
non-domination levels, the crowding distance that is a 
procedure to calculate the density of each solution, and 
the crowded-comparison that is the comparison operator  
between two solutions belonging to the same front. 

3.2  The migrating birds optimization algorithm 
(MBO)

The original migrating birds optimization algorithm 
was developed by Duman et al. [7]. It was tested the  
performance in the quadratic assignment problem. MBO 
is a search algorithm inspired from the V- formation  
of the migrating birds. The method starts with the initial  
solutions or bird population. The best solution in the 
population becomes the leader bird and the other 
solutions become the follower birds. The leader bird 
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uses the neighborhood search to generate the neighbor  
solutions. The follower bird explores its neighbor  
solution by its solution and combines them with the 
best unused neighbor solutions from the predecessor 
bird as the V- formation. These steps are continued 
until a number of tours are reached. Then, the leader 
bird moves to the end of line and the next follower bird 
becomes the new leader. This algorithm is repeated 
until the stop criterion is met.
 
3.3  The hybrid migrating bird NSGA-II (MBNSGA-II)  
for HFS scheduling problem

The hybrid metaheuristic algorithm is proposed by 
combining migrating birds optimization and NSGA-II  
together. The proposed algorithm called hybrid migrating  
bird optimization NSGA-II (MBNSGA-II) tries to  
enhance the performance of NSGA-II and to obtain better  
quality of pareto optimal front for the bi-objective HFSP. 
 The procedure of MBNSGA-II for HFS problem 
shown in Figure 2 can be described as below:
 Step 1. Chromosome representation and initial  
solutions: The scheduling is a technique to sequence 
the jobs within limited resources. Thus, the permutation  
representation is used for the sequence of jobs in each 
stage. For the machine assignment, the first unoccupied 
machine is assigned in the chromosome. The chromosome  
for this problem is depicted in Figure 3. 
 From Figure 3, there are four jobs for sequencing,  
two stages and two parallel machines in each stage. The 
sequence of jobs in the first stage and the second stage 
are 4, 3, 2, 1 and 3, 4, 2, 1, respectively. Because there 
is no job assigned to both machines at the beginning 
of scheduling, so job 4 and job 3 are performed by the 
machine 1 and machine 2 in stage 1, respectively. Job 2  
is operated in the machine 1 that is the first available 
machine when comparing with the machine 2. Lastly, 
the job 1 is performed by machine 2.
 Step 2. Fitness evaluation: The fitness of each 
chromosome is used in the selection operator to create  
the next population. The non-dominated level is assigned  
as the fitness of chromosome by the fast non-dominated  
sorting method. Thus, the best fitness is the lowest  
level that is the first Pareto front. Moreover, the crowding  
distance that is the density of solutions around the  
particular solution is also assigned to each solution. 
The large crowding distance shows better diversity in 
the Pareto front. The crowding distance of solutions  

on each Pareto front are calculated. The distance  
of extreme solutions is determined as infinity value. 
For the other solutions, their distance is calculated  
by the Equation (14) as follows: 

 (14)

where Ii is the distance of solution i and Ii,m is the 
crowding distance of solution i in objective m.
 Step 3. Selection operator: The tournament  
method is used to select the chromosomes for crossover  
and mutation operation. There are 4 chromosomes are 
selected randomly. The best chromosome in this group 
wins the tournament if its non-dominated level or its 
crowding distance is better than others.

Figure 3: Chromosome representation.
Sequence of jobs machine assignment

Stage 1 Stage 2 Stage 1 Stage 2

4 3 2 1 3 4 2 1 1 2 1 2 1 2 1 2

Figure 2: Flow of MBNSGA-II.

Initialization
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Population and offsprings combination

Crossover
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Final pareto optimal front report

Set parameters

End

Stop criterion is met? No
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 Step 4. Crossover operator: Crossover operation is 
the method to generate a child by exchanging identical  
parts between two parents. The Partial-Mapped-
Crossover (PMX) is employed for the sequence of jobs 
and the 2-point crossover is performed for the machine 
assignment vector.
 Step 5. Mutation operator: After selecting the 
chromosomes to perform the mutation operation, MBO 
is applied for them to search the neighbor solutions. 
The swap or the insertion is performed to generate 
the neighbor solution at random between (0, 1). If 
the random number is not greater than 0.5, the swap 
method is used to generate the neighbor, otherwise, 
the neighbor is generated by the insertion. The step of 
MBO are repeated m tours to generate k–x neighbor  
solutions (except the leader bird) and shared x neighbor  
solutions with the next follower solution (bird) along the 
lines of V- formation. The current solution is replaced  
with the best neighbor solution if it cannot dominate the  
best neighbor solution. After the number of tours is 
reached, the leader bird is changed l times by the next  
follower bird. The steps of  MBO are presented as Figure 4.
 Step 6. Elitism and reproduction: The elitism is a 
procedure to keep the best fitness value and update it if 
the better fitness value is found in the next generation. 
However, the multi-objective cannot identify the best  
fitness as the single objective. Thus, the chromosomes with  
the first non-dominated level are copied to next generation  
after combining the parents and the offsprings.
 After offsprings are created by crossover and 
mutation operation, the parents and the offsprings 
are combined. Then, the non-dominated levels are 
identified and the crowding distances are calculated.  
The new population is filled from the lowest non-
dominated level to higher non-dominated level 
until equal or greater than the population size. If the  
number of chromosomes of new population are over 
the population size, the chromosomes having the 
lowest crowding distance in the last accepted non-
dominated level will continuously be eliminated to 
preserve the population size. 
 Step 7. Stopping criteria: The algorithm will be 
terminated when the maximum number of generations 
is reached.

4 Results and Discussion

MBNSGA-II is evaluated by using the following data 

sets that are the combination of the number of jobs and 
number of stages (K, M). A number of jobs are 12, 18, 
24, 32, 40, 48, 56, 64 and 90. A number of stages are 
5 and 10 for 12 jobs to 56 jobs and 7 and 14 stages 
for 64 jobs and 90 jobs. The groups of order are 4, 6, 
6, 8, 8, 6, 8, 8 and 10 and the number of families is 2. 
Refer to [26], the processing time of job in each stage 
is a random value at interval [20, 100]. The setup time 
for switching family is generated uniformly [5, 40] 
and the setup time for changing types is uniformly 
distributed of [1, 4]. The number of machines in each 
stage is a random integer at the interval [1, 4]. The due 
date of each job k can be generated from the approach 
of Karimi and Davoupour [27] in Equations (15) and 
(16) as follows:

 (15)

 (16)

where dk is the due date of job k, r is the random 
number over interval [0, 1] and Pk is the sum of  
processing time on all stages.

Figure 4: Pseudo Code of MBO for mutation step in 
MBNSGA-II.

Algorithm: MBO for mutation step

Input:

Output:

n chromosomes for mutation, m, k, x, l

n offsprings

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

If mod(n) = 0 // The number of chromosomes is even number.//

Generate a new chromosome.

Combine a new chromosome with n chromosomes.

End if

Set the best solution as the leader.

Separate the others solutions equally to the left line and the right line as V-formation.

for l = 1 to l do

Improve the leader by local search to k neighbor solutions.

Replace the leader with the best neighbor solutions if the leader cannot dominate the best neighbor

solutions, otherwise, the leader is unchanged.

for i = 1 to m do

 for j = 1 to p do

Share x best unused neighbors from the precedence solution along the lines to the neighbor set of  j.

Generate k–x neighbors randomly.

Combine x solutions with k–x neighbors in set j

Evaluate the neighbor set j and replace the best solution of set j on the current 

solution cannot dominate the neighbor solution, otherwise, the current solution is unchanged.

 end for

end for

Replace the current leader with the next follew bird

end for

Update the non-dominated solutions
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4.1  Performance metrics

To evaluate the performance of each algorithm, the 
inverted generational distance (IGD), the spacing and 
the diversity are used in this paper. These metrics can 
be explained as follows.

4.1.1 The inverted generational distance (IGD) 

IGD [28] that is the average distance between true 
Pareto front solutions and the non-dominated solutions 
is applied to evaluate the algorithm. It can measure 
the convergence and diversity of the solution set on a 
single scale. Assume that P* is a set in the objective  
space along the true Pareto front. P is the set of  
solution points. The distance between P* and P is 
defined by Equation (17) as follows:

 (17)

where d(a, P) is the minimum euclidean distance from 
the point a in set P to P*. 
 Low value of IGD indicates the set P is very close 
to the true Pareto front.  However, the actual true Pareto 
front of HFSP is typically unknown. Therefore, the set 
of non-dominated solutions obtained from all the runs of 
all algorithms that are the reference set P* is used to be  
the representative of the approximated true Pareto front.
 After obtaining the results, the normalization 
method is used to rescale the value of each result by 
Equation (18) as follows:

 (18)

where Zy is the normalized value of data y of each 
objective, xy is the original.

4.1.2 The spacing metric (SP)

The spacing metric [29] is used to measure the  
distribution of the Pareto solutions on the Pareto 
front. The lower SP is desirable because the distances  
between points are equidistant. SP can be calculated 
by using Equations (19) and (20) as belows:

 (19)

 (20)

where K is the number of objectives. m, n = 1,…,N 
and N is the number of points in the Pareto front.  

 is the average of all dm. ,  are the value of 
objective.

4.2  Design of experiment for parameters setting

The optimal values of parameters are determined by 
Design of Experiment (DOE) using 2k factorial design. 
The parameters are comprised of the population size, the 
crossover rate, the number of generations, the number  
of tours and the number of leader birds. There are 4 
replications for each experiment plan. The response 
variable of this DOE is the IGD since the convergence  
and diversity metric are the major performances of 
this problem. The total runs of experiment plan for 
NSGA-II equals to 32 (2×2×2×4) while total runs of 
experiment for MBNSGA-II is 128 (2×2×2×2×2×4). 
Then, the levels of these parameters are shown  
Table 1. The optimal parameters for both algorithms 
obtained from the response optimizer are presented 
in Table 2.

Table 1: The levels of parameters for 2k factorial design

Parameters
NSGA-II MBNSGA-II

Low 
Level

High 
Level

Low 
Level

High 
Level

Population size 100 300 100 300
Crossover rate 0.4 0.8 0.4 0.8
Maximum generations 300 500 300 500
Number of tours 
(Small, Medium, Large) - - 8, 10, 1 10, 12, 12 

Number of leaders birds - - 2 5

Table 2: The optimum level of parameters

Parameters
NSGA-II MBNSGA-II

S M L S M L
Population size 300 300 300 300 300 300
Crossover rate 0.4 0.4 0.4 0.4 0.8 0.8
Maximum generations 300 300 300 300 100 100
Number of tours - - - 8 12 12
Number of leaders birds - - - 5 5 5
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4.3  Experimental results

The proposed MBNSGA-II is compared with NSGA-II  
for hybrid flow shop scheduling. These algorithms are  
coded in Matlab and run on PC with an Intel Core i7-8700  
3.20 GHz with 8 GB of Ram. Each algorithm is  
run 5 times for each problem. For the mutation step 
of MBNSGA-II, the number of neighbor solutions 
and the number of sharing solutions with the next  
follower solution along the V-formation line are 5 and 2,  
respectively. The results are presented in Table 3.
 There are three problem sizes classified by 
k×m. Table 3 shows the average of IGD value and 
the standard deviation from 5 runs. From Table 3, it 
reveals that the average IGD value of MBNSGA-II  
in most problems except 40×10 and 90×14 are lower  
than NSGA-II. The percentage of instances that  
MBNSGA-II outperforms NSGA-II is 88.88%. It is  
clear that MBNSGA-II is closer the approximated  
front than NSGA-II.

 Figure 5 to Figure 7 illustrate the box plots of 
IGD metric in each problem size including small, 
medium, and large size problems. The box plots 
show that the variance of IGD values obtained from  
MBNSAGA-II is significant less than those obtained 
from NSGA-II. These results indicate that MBNSGA-II  
performs better than NSAGA-II. The line plot that  
illustrates the average of IGD is presented in Figure 8. 
The line plot indicates that the average IGD values of each 
problem size from NSGA-II are higher than the average  
IGD values of each problem size from MBNSGA-II. 
Therefore, it is seen that MBNSGA-II outperforms 
NSGSA-II in terms of convergence metric.
 The results from spacing metric are illustrated by 
the box plots in the Figures 9 and 10. These plots reveal 
that the average and variation of SP values obtained 
from NSGA-II and MBNSGA-II are not significant 
different. Therefore, the IGD metric is considered 
to be the performance index of the hybrid flow shop 
scheduling problem in this paper.

Table 3: IGD metric values and spacing metric values found by each algorithm

Problem
Problem 

Size 
(k×m)

NSGA-II MBNSGAI-II

IGD SP IGD SP IGD SP

Mean Std. Mean Std. Mean Std. Mean Std.

Small

12×5 0.226 0.119 60.88 37.69 0.193 0.182 37.49 24.82

12×10 0.149 0.084 69.56 46.80 0.104 0.107 60.74 26.10

18×5 0.746 0.273 3.46 N/A 0.041 0.034 67.66 20.30

18×10 1.201 0.089 N/A N/A 0.012 0.013 56.25 27.71

24×5 0.144 0.130 308.93 134.66 0.140 0.167 183.89 167.79

32×5 0.981 0.057 N/A N/A 0.082 0.178 169.16 N/A

Medium

24×10 0.265 0.256 233.27 178.82 0.167 0.075 168.81 88.00

32×10 1.268 0.064 1.15 N/A 0.005 0.005 348.60 358.06

40×5 0.287 0.119 107.68 65.59 0.166 0.180 836.64 772.39

40×10 0.099 0.079 366.30 314.03 0.128 0.113 743.96 379.24

48×5 0.993 0.259 N/A N/A 0.106 0.069 1,263.13 1,655.28

56×5 1.131 0.059 109.32 68.77 0.016 0.013 536.79 268.35

Large

48×10 1.302 0.093 300.80 N/A 0.013 0.016 1,398.29 1,257.68

56×10 1.341 0.038 548.99 330.58 0.004 0.004 1,000.55 908.23

64×7 0.179 0.066 4,784.71 6621.61 0.117 0.105 1,047.44 849.62

64×14 0.247 0.093 719.14 670.96 0.194 0.124 726.00 1,061.75

90×7 0.211 0.082 1,281.27 1,483.47 0.128 0.185 2,278.42 1,352.66

90×14 0.167 0.085 1,629.37 1,303.70 0.197 0.196 1,354.19 628.46
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Figure 6: Boxplot of IGD for medium size problems.

Figure 7: Boxplot of IGD for large size problems.

Figure 9: Boxplot of spacing value of all instances. 

Figure 5: Boxplot of IGD for small size problems. Figure 8: The average of IGD of all instances in each 
problem size.

Figure 10: The average of spacing value of all instances  
in each problem size.
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Figure 12: Pareto front of each algorithm for small size problems. (a) Pareto front of 12×5 (b) Pareto front 
of 12×10 (c) Pareto front of 18×5 (d) Pareto front of 18×10 (e) Pareto front of 24×5 (e) Pareto front of 32×5.

Figure 11: Average number of non-dominated solutions from 5 runs in each algorithm.
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 The average number of solutions including in 
each Pareto front from both algorithms are displayed 
in Figure 11. It is obvious that an average number of 
solutions in a Pareto front from MBNSGA-II are more 
than or equal to those from NSGA-II. This implies 
that MBNSGA-II is more efficient in finding more  
diversified solutions in a Pareto than NSGA-II. Figure 12  
illustrates the Pareto fronts of the small size problems 
obtained from both algorithms.It is seen that the Pareto 
fronts of MBNSGA-II are close to the approximated true 
Pareto front. Thus, these graphical plots of Pareto fronts 
help us to confirm that MBNSGA-II can effectively  
determine the solutions that satisfies bi-objective which is  
minimization of makespan and total tardiness time of jobs.

5 Conclusions 

This paper focuses on the development a novel hybrid 
metaheuristic algorithm which NSGA-II is enhanced by  
migrating birds optimization (MBO). The multi-objective  
hybrid flow shop scheduling with family like HGA  
production line has been discussed. There are two objectives  
which are to minimize the makespan (Cmax) and the total  
tardiness of jobs. The pareto front is the set of solution  
that each solution cannot dominate other solutions in 
that frontier. Migrating birds optimization is designed 
to be performed in the mutation operation using swap 
and insertion to generate new chromosome. IGD that is 
a metric for measuring the convergence and diversity 
of the Pareto front is employed to measure the quality 
of solutions or Pareto front.  It is found that 16 out of 
18 of the tested HFSP problems, the proposed hybrid 
metaheuristic algorithm (MBNSGA-II) successfully 
yields much better quality of Pareto fronts comparing to 
NSGA-II, since MBNSGA-II can yield Pareto front with  
the lowest IGD. The diversity of solutions of  MBNSGA-II  
is also outperforms NSGA-II. From the performance 
metric results, it means that migrating birds optimization  
procedure can enhance the genetic algorithm to  
explore more diversified solutions, which are close to the  
approximated true Pareto front. MBNSGA-II is able to 
provide decision maker with the best quality of solutions.  
 Further research is to develop other hybrid  
metaheuristic algorithms to obtain better solutions for HFSP.
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