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Abstract
The paper aims to compare the accuracy and robustness of the characteristic finite element method (CFEM) 
and characteristic finite volume method (CFVM) for solving convection-diffusion-reaction problems on  
two-dimensional triangular grids. The tests are performed on a square unit domain, to which an advective field is 
imposed in a domain. The results show that the CFEM gives less accurate solution than CFVM for the rotation 
of a slotted-cylinder and rotation of Gaussian cone problems. Moreover, CFEM gives oscillate solution while 
the CFVM provides an oscillation-free solution for the skew flow to the grid problem.
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1 Introduction

Many science and engineering applications require the 
simulation of time-dependent convection-diffusion-
reaction equations. The convection is defined as the 
movement of substance due to the fluid transport 
medium, the diffusion is referred to the dispersion of 
a substance involved in the process throughout the 
physical domain of the problem, and the reaction is 
the process of interaction through which the substances 
are generated or consumed. Generally, the scale of the  
diffusion is smaller by several orders of magnitude 
compared to the size of the advective flow field. A main  
feature of the convection- and reaction-dominated is 
the presence of the sharp layers as a part of the solution. 
The accurate simulation of such processes requires 

numerical methods such that able to compute sharp 
layers without an occurrence of spurious oscillations. 
 The standard Galerkin finite element method 
usually yields oscillatory solutions for convection-
dominated problems [1]. Many methods have been 
proposed to overcome the instability and inaccuracy of 
the solution. The shock-capturing procedure [2] is the  
usual remedy for these difficulties. Among the stabilizing  
schemes, the characteristic Galerkin scheme has been  
developed by applying the time-stepping technique as the 
basis [3], [4]. The explicit characteristic Galerkin scheme 
based on the Taylor series expansion is an attractive  
one due to its simple implementation and fast calculation.  
The scheme uses a characteristic approximation to trace 
advection in time and combine with a low-order mixed 
finite element spatial approximation of the equation.  
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Moreover, the scheme is locally conservative on the 
discrete level such that fluid is transported along with 
the approximate characteristics.
 Recently, the author proposed an explicit  
characteristic finite volume method that can provide 
stabilized numerical solutions for pure advection and 
advection-dominated diffusion problems [5]–[7]. The 
idea of the characteristic-based scheme is used to  
discrete the Lagrangian derivative as the function of 
time.  An explicit finite volume method based on the cell-
centered scheme is employed to derive the discretized  
equations. The Galerkin finite element technique is  
applied to estimate the gradient quantities at the cell faces.  
The finite volume method is applied to discretize the 
equation because of it some of the important features.  
Firstly, it may be used on arbitrary geometries, using 
structured or unstructured grids. Secondly, it is the local  
conservativity of the numerical fluxes, that is the numerical  
flux is conserved from one discretization cell to its 
neighbor [8].
 The objective of this research work is to compare 
the computational efficiency of the CFEM and CFVM 
for solving two-dimensional convection-diffusion-
reaction problems on structured triangular grids. 
The paper is organized as follows. In Section 2, the 
governing equations and numerical formulations are 
presented. Then, the schemes are examined by three 
benchmark test cases to evaluate their accuracy and 
robustness in Section 3.

2 The Numerical Scheme

2.1  The characteristic convection-diffusion-reaction  
equation 

The governing differential equation for the two-
dimensional convection-diffusion-reaction equation is

 (1)

subject to the boundary conditions [Equations (2) and (3)]

 (2)

 (3)

with  with , and the 
initial condition is defined for  with  by 

[Equation (4)]

 (4)

where ϕ is the scalar quantity, v = v(x) is the given 
convection velocity vector, ε ≥ 0 is the diffusion  
coefficient, κ is the reaction coefficient, and t ∈ (0,T] 
for T < ∞ .
 By applying a characteristic approximation to 
trace advection in time, as explained in Ref. [5]–[7] 
to Equation (1) yields [Equation (5)]

 (5)

where all terms are to be evaluated at x' = x'(t) . 
 Then, by carrying out a Taylor series expansion, 
the convection term reappears in the equation along with 
an additional second-order term.  This second-order  
term acts as a smoothing operator that reduces the 
oscillations arising from the spatial discretization of 
the convection terms. The fully explicit characteristic 
convection-diffusion-reaction equation is given by

 (6)

 Together with the use of the divergence-free 
assumption ∇ ∙ v = 0 , Equation (6) could be written 
finally in the conservation form as

 (7)

2.2  The characteristic finite element method

Assuming a variation of ϕ within an element can be 
approximated by

 (8)

 (9)

where N is an element interpolation function. Applying 
the standard Galerkin weighting technique to Equation (6)  
to yield [Equation (10)]
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 (10)

 Because the hyperbolic nature of the convection-
dominated equation, a nonlinear viscous shock capturing  
operator is added to minimize the oscillations at the  
discontinuities in the curvature of the front. The operator  
[9] is given by [Equations (11) and (12)]

 (11)

and

 (12)

where σsc is a parameter used to control added viscosity 
(typically is 0.1), and he is a measure of the element e.  
Finally, applying the Green-Gauss theorem to Equation (9)  
also, using Equation (8) to obtain [Equation (13)]

 (13)

Where [Equations (14)–(22)]

 (14)

 (15)

 (16)

 (17)

 (18)

 (19)

 (20)

 (21)

 (22)

2.3  The characteristic finite volume method

The computational domain is first discretized into a 
collection of non-overlapping control volumes Ωi ∈ Ω,  
i = 1,...,N, that completely cover the domain such that 
Ω =  Ωi , Ωi ≠ 0 and Ωi ∩ Ωj = 0 if i ≠ j. To obtain the 
finite volume equation, Equation (7) is then integrated 
over the control volume   to yield [Equation (23)] 

 (23)

 Then the divergence theorem is applied to the 
spatial terms to yield a fully explicit characteristic-
based scheme for solving Equation (7) in the form 
[Equation (24)]

 (24)

where Nf is a number of adjacent cell faces, Γij is the 
segment of the boundary ∂Ωi between the two adjacent 
control volumes Ωi and Ωj, and the quantities at the 
time t = n are defined by [Equations (25) and (26)]

 (25)

 (26)

 Finally, the scalar quantity at the cell faces, , is 
approximated by applying Taylor’s series expansion 
in space such that
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 (27)

 For the opposite direction of velocity, the values   
 could be computed from Equation (27), but using 

the values from the neighboring cells according to 
the upwinding direction. Moreover, in this paper, the 
gradient term, ∇ , is approximated by the weighted 
residuals method, which is commonly used in the finite 
element technique [6]. 
 Finally, to ensure the stability of a numerical 
scheme, the CFL-like stability criterion must be fulfilled.  
In this paper, the time-step within each control volume 
i for both the CFEM and CFVM is determined from 
[Equation (28)]

 (28)

where vn.ij is the scaled normal velocity at Γij,   is 
the cell characteristic length, and 0 < C ≤ 1 .

3 Test Problems and Discussion

In order to illustrate the accuracy and robustness of 
these numerical schemes, three examples are examined 
by implementing a second-order accurate scheme. 
These examples are 1) the rotation of a slotted-cylinder, 
2) the rotation of a Gaussian cone, and 3) the skew flow 
to the mesh. All examples presented in this section 
were tested on structured triangular grids.

3.1  Rotation of a slotted-cylinder

This first problem is adapted from the rotation of a 
slotted cylinder problem, which was introduced by  
Zalesak [10]. It is a challenging pure-convection problem  
because the sudden change of the initial conditions 
and the shape of the rectangular slot in the domain 
Ω = [0,1]2 are difficult to capture by most numerical 
schemes. The rotating velocity field is imposed such 
that v(x) = (y – 0.5, 0.5 – x). The initial condition ϕ(x,0) 
is given by [Equation (29)]

 (29)

where r is the distance from the center of the domain 
(0.5,0.5). The time step for this example is set to be 
equal to the period required for one turn rotation. This 
example is performed on a uniform grid of 256×256. 
The exact solution at the final time step is then equal to 
the initial condition that is depicted in Figures 1 and 2.
 Figures 3 and 4 show that the CFEM scheme 
gives a dissipative solution and inaccurate position of 
a slotted-cylinder. Moreover, Figures 5 and 6 show that 
the CFVM scheme gives more sharpen and accurate 
solution.

Figure 1: Exact solution at the final time of problem 
3.1: 2D plot.

Figure 2: Exact solution at the final time of problem 
3.1: 3D plot.

Figure 3: CFEM solution at the final time of problem 
3.1: 2D plot.
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 Finally, the comparison of the solution along  
y = 0.5 is illustrated in Figure 7. It is seen that the CFVM 
scheme gives a more accurate solution than the CFEM 
scheme. It can capture the maximum and minimum  
values around the slot of the cylinder accurately.

3.2  Rotation of a Gaussian cone

The second example is the rotation of a Gaussian pulse 
in a square domain where the scalar field is rotated 
around the domain Ω = [0.5,0.5]2. The rotating velocity 
field with the angular velocity of 4 rad/s is imposed as 
v(x) = (–4y,4x). This example has been used widely for 
testing the numerical artifacts that occur on different 
schemes [6], [11]. The initial condition ϕ(x,0) is given 
by [Equation (30)]

 (30)

where σ = 0.0447. The final time is equal to π/2, which 
is the time period required for one turn rotation. this  
example is performed on a uniform grid of 128×128. 
The diffusion coefficient of ε = 10–4, in order to evaluate  
the robustness and accuracy of the method on a 
convection-dominated diffusion problem. The 2D and 
3D plots of the exact solution as shown in Figures 8 
and 9. Figures 10 and 11 show the numerical solution 
obtained from the CFEM scheme. Then the numerical  
solution obtained from the CFVM scheme is also 
shown in Figures 12 and 13. Moreover, the comparison 
of the numerical and exact solutions along the line  
y = 0 are presented in Figure 14.

Figure 4: CFEM solution at the final time of problem 
3.1: 3D plot.

Figure 5: CFVM solution at the final time of problem 
3.1: 2D plot.

Figure 7: Comparison of the solution along the line   
y = 0.5 at the final time of problem 3.1.
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Figure 6: CFVM solution at the final time of problem 
3.1: 3D plot.
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3.3  Skew flow to the grid

The last example is the skew flow problem presented by 
Hauke [7], [12]. This example considers the behavior  
of the numerical solutions under the convection-reaction- 
dominated diffusion condition in a square domain  
Ω = [1,0]2, with the initial condition ϕ(x,0) = 0. The 
four boundary conditions are ϕ(x = 0) = ϕ(y = 1) = 1 and  
ϕ(x = 1) = ϕ(y = 0) = 0. The velocity field is given by 
v(x) = (cos(π/6), sin(π/6)). The numerical solutions  

are examined in the steady-state condition. It is 
noted that the influence of boundary conditions on the  
algorithm is remarkable and leads to instability [12]. 
The parameters for this test are ε = 0.005 and κ = 100. 

Figure 8: Exact solution at the final time of problem 
3.2: 2D plot.

Figure 10: CFEM solution at the final time of problem 
3.2: 2D plot.

Figure 13: CFVM solution at the final time of problem 
3.2: 3D plot.
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Figure 9: Exact solution at the final time of problem 
3.2: 3D plot.
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Figure 11: CFEM solution at the final time of problem 
3.2: 3D plot.

Figure 12: CFVM solution at the final time of problem 
3.2: 2D plot.
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The analyses of these test cases are performed on the   
grid size. 
 The 3D plots of numerical solutions of the CFEM 
and CFVM schemes are depicted in Figures 15 and 16, 
respectively. Figure 15 shown that the CFEM scheme 
provides the oscillate solution along the boundaries   
ϕ(x = 0) = ϕ(y = 1) = 1 due to the abrupt change of 
the solutions. Moreover, the CFVM scheme gives 
non-oscillate solution along these boundaries. The 
examples confirmed that the CFVM scheme is an  
accurate and robust scheme for computing a wide range  
of convection-dominated diffusion-reaction problems.

4 Conclusions

The accuracy and robustness of the CFEM and CFVM 
schemes for solving two-dimensional convection-
diffusion-reaction problems on structured triangular 
grids are investigated in this paper. The characteristic 
convection-diffusion-reaction equation is derived. 
The finite element and finite volume is then used to 
discretize the characteristic convection-diffusion-
reaction equation. Three examples are used to test 
the accuracy and robustness of both schemes. For 
the rotation of a slotted-cylinder problem, the CFEM 
scheme provides the diffusive and inaccurate position  
of the slotted-cylinder solution while the CFVM 
scheme gives the sharpen solution with an accurate 
position of the slotted-cylinder solution. The CFEM 
scheme provides a less accurate solution than the one 
obtained from the CFVM scheme for rotation of a 
Gaussian cone problem. Finally, for the skew flow 
to the grid, the CFEM scheme provides the oscillate 
solution along the boundaries due to the abrupt change 
of the solutions. Moreover, the CFVM scheme gives a 
non-oscillate solution. We can conclude that the CFVM 
scheme is an accurate and robust method for solving 
the convection-dominated problems.
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