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Abstract
The coefficient of variation is useful to measure and compare the dispersion of the data when different units are 
used in different datasets. This article aims to propose new confidence intervals for the ratio of two independent  
coefficients of variation with delta-lognormal distribution. The proposed methods include the concept of the 
generalized confidence interval and the method of variance estimate recovery. They are applied with three 
methods, variance stabilizing transformation, Wilson score method, and Jeffreys method. The performance of 
the confidence intervals was assessed by the coverage probabilities and the expected lengths via the Monte 
Carlo simulation. The outcomes of the simulation study showed that the generalized confidence interval is 
appropriate to construct the confidence interval for the ratio of delta-lognormal coefficients of variation. Two 
rainfall datasets from Nakhon Ratchasima, Thailand are used to demonstrate the proposed confidence intervals.

Keywords: Generalized confidence interval, Method of variance estimates recovery, Variance stabilizing  
transformation, Wilson score method, Jeffreys method, Rainfall
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1 Introduction

Nowadays, the global climate is changing with the 
causes being El Niño, the warm phase of the El Niño 
Southern Oscillation, together with the Madden-Julian 
Oscillation (MJO) in the Indian and Pacific oceans and 
the Indian Ocean Dipole (IOD) in the Indian Ocean. 
The MJO and the IOD influence the seasonal and 
annual rainfall, respectively [1]. Especially, Thailand 
is located in a tropical area near the equator and is 
directly affected by these phenomena. Moreover, it is 
influenced by the Southwest Monsoon current during 
the rainy season and the Northeast Monsoon current 
during the cold season. Furthermore, Thailand is  
located between the source of tropical cyclones in both 
the east (the Pacific Ocean and the South China Sea) 
and the west (the Bay of Bengal and the Andaman Sea). 
These storms move through Thailand around three to 

four times a year, mainly through the north and northeast  
of the country. On many occasions, there has been 
heavy rain that has often caused flooding and resulted 
in loss of life and damage to property. Therefore, this 
study on the variability of rainfall amount in each area 
by measuring the coefficient of variation is particularly 
important and could be useful to predict future rainfall 
and thereby prevent flooding in areas particularly  
affected by heavy rain. In addition, the ratio of the  
coefficients of variation of rainfall between two areas is 
of interest. Furthermore, the applications of rainfall data 
can be even more interesting, such as Ananthakrishnan  
and Soman [2] illustrated the relationship between 
the accumulated percentage of the rain amount and 
the number of rain days in a rainfall series using a 
normalized rainfall curve (NRC) and Shimizu [3] 
proposed a probability model to represent rainfall data 
as such data usually includes zero observations and a 
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few datasets with delta-lognormal distribution. For 
delta-lognormal distribution, it is a combination of 
lognormal distribution and zero observations which is a 
binomial proportion. This distribution is often applied 
to many researches; see, e.g., [4]–[10].
 The coefficient of variation is the statistical  
measure of the dispersion of data when the different 
data series have different units or awfully different 
mean. It is defined as the ratio of the standard deviation  
to the mean. The coefficient of variation is widely 
used in statistical inference, such as in the construction  
of confidence intervals which are investigated under 
normal and non-normal distribution. For normal  
distribution, there are several researchers who have 
studied methods to construct the confidence intervals 
for parameters of interest. This can be seen in the 
researches of Wong and Wu [11], Tian [12], Donner 
and Zou [13], Wongkhao et al. [14], and Hayter [15].  
Moreover, non-normal distributions must be considered.  
For instance, Sangnawakij and Niwitpong [16]  
constructed confidence intervals for coefficients of  
variation in the two parameter exponential distributions,  
Niwitpong [17] suggested new confidence interval for 
the coefficient of variation of a lognormal distribution 
with restricted parameter, and Yosboonruang et al. [18], 
[19] presented the methods to construct confidence  
intervals for the coefficient of variation with a delta-
lognormal distribution. In addition, the ratio of the 
coefficients of variation must be regarded when  
constructing confidence intervals, for example, Verrill 
and Johnson [20] obtained confidence interval for the 
ratio of coefficients of variation in a normal distribution,  
Buntao and Niwitpong [21] used two concepts, the 
generalized pivotal approach (GPA) and the method 
of variance estimate recovery (MOVER) based on 
Wald interval, to construct confidence intervals for the 
ratio of coefficients of variation of a delta-lognormal 
distribution, Nam and Kwon [22] proposed confidence 
intervals of the ratio of two coefficients of variation for 
lognormal distributions including Wald-Type method, 
Fieller-Type method, log method, and MOVER, and 
Hasan and Krishnamoorthy [23] proposed confidence 
intervals for the ratio of coefficients of variation of two 
lognormal distributions based on MOVER and fiducial 
approach. It can be seen that several researches used 
inference statistics for the coefficient of variation of 
two populations in terms of the ratio of the coefficients 
of variation. 

 This article is interested in inference for the 
ratio of two independent coefficients of variation of 
two delta-lognormal distributions. From the concept 
of Verrill and Johnson [20] that applied rainfall series 
with the confidence intervals for ratio of coefficients of 
variation, this article emphasized ratio of coefficients 
of variation to compare the dispersion of rainfall in 
two flooding areas by establishing confidence intervals  
using new methods which are based on the concept 
of the generalized confidence interval (GCI) and 
MOVER based on variance stabilizing transformation 
(VST), Wilson score method, and Jeffreys method. 
The next section presents two methods to construct 
confidence interval. Then, a simulation study and an 
empirical study are used to illustrate the performance 
of confidence intervals. Finally, the conclusion is 
presented in section 4.

2 Method

Given  be  
a vector of random sample that contains zero and  
positive observed values. The zero observed values 
(ni(0)) have a binomial distribution and the skewed 
positive observed values (ni(1)) have a lognormal 
distribution of which ni = ni(0) + ni(1). Aitchison [24] 
described the distribution of such observations is a 
delta-lognormal distribution with . 
The probability density function of delta-lognormal 
distribution is expressed by de la Mare [25] as

 (1)

where δi is a probability of positive values ,  
μi and  are mean and variance of positive observations  
distribution which is a lognormal distribution, I0[xij] 
is an indicator function such as the value is 1 when 
xij = 0 and 0 otherwise, and I(0,∞)[xij] has the value 0 
when xij = 0 and 1 when xij > 0. By Equation (1), the 
first term is a probability mass function of a binomial 
distribution and the second term is a probability density 
function of lognormal distribution. Let Yij = ln(xij) has a 
normal distribution with Yij : N(μi, ). Aitchison [24]  
derived mean and variance of a delta-lognormal  
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distribution as [Equations (2) and (3)]

 (2)

and

 (3)

Then, the coefficient of variation which is a ratio of 
standard deviation and mean of Xij, denoted by ηi, can 
be expressed [Equation (4)]

 (4)

Since the ratio of coefficients of variation was of  
interest and Xij are independent, the ratio of coefficients 
of variation is simply [Equation (5)]

 (5)

 To construct the confidence intervals for the ratio 
of two independent coefficients of variation of the 
delta-lognormal distribution, two methods comprised 
of GCI and MOVER based on VST, Wilson score 
method, and Jeffreys method are investigated next.

2.1  The generalized confidence interval

GCI is used to construct the confidence intervals 
using the generalized pivotal quantity (GPQ). This 
method was recommended by Tsui and Weerahandi 
[26]. Given  is a vector of  
random samples with the probability density functions 

, where δi and  are the parameters 
of interest and μi is the nuisance parameters. In order to  
construct the confidence intervals, the GPQs 

,  w h e r e   
is the observed sample, is not depend on the  
unknown parameters. Likewise, the observed value of  
R  is not depend on the nuisance 
parameters. Then,  is the   
confidence interval for parameters of interest, where 

 and  be the α/2 th and (1 – α/2) th percentiles  
of . Since δ i and  are the  

parameters of interest, therefore the GPQs for δi and 
 are desired.

 Considering the GPQs for , Wu and Hsieh [10] 
used the idea of Krishnamoorthy and Mathew [27] to 
find the GPQs for  as follows [Equation (6)]

 (6)

where  has chi-square distribution 
with ni(1) – 1 degrees of freedom. 
 Subsequently, the GPQs for δi are applied with 
three concepts, such as VST, Wilson score method, and 
Jeffreys method as in the following.

2.1.1 The variance stabilizing transformation for the 
generalized confidence interval

 To construct GPQ for δi, it uses VST to approximate  
the normal of the binomial distribution which was 
derived by Wu and Hsieh [10] as [Equation (7)]

 (7)

where  , N(0, 1)  

as . Since GPQ for  and  does not depend 
on the unknown parameters and the observed value 
of R does not depend on the nuisance parameters, the 
pivotal quantity for ηi is [Equation (8)]

 (8)

By Equations (5) and (8), the pivotal quantity for ζ   
can be expressed by [Equation (9)] 

 (9)

Therefore, the  confidence interval for ζ  
using VST for GCI is [Equation (10)]

 (10)
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where  and  are the th 
and th percentiles of the distribution of 

, respectively.

2.1.2 The Wilson score method for the generalized 
confidence interval 

For binomial distribution, Li et al. [8] obtained 
GPQ for δi by applying the score interval which was  
presented by Wilson [28] as follows [Equation (11)]

 (11)

where Ziw has a standard normal distribution. It is seen 
that  is an approximate GPQ because it does not  
depend on unknown parameters. Moreover, the observed  
value (see detail in [8]) does not depend on nuisance 
parameter. The pivotal quantity for ηi is [Equation (12)]

 (12)

 The pivotal quantity for ζ is formed by using 
Equations (5) and (12) as

 (13)

Therefore, the  confidence interval for ζ 
using Wilson score method for GCI is [Equation (14)]

 (14)

where  and  are the th 
and th percentiles of the distribution of 

, respectively.

2.1.3 The Jeffreys method for the generalized confidence  
interval 

Since ni(0) have a binomial distribution, the standard  
conjugate priors for these distributions are beta  
distributions [29]. Brown et al. [29] recommended the 
Jeffreys interval for the binomial proportion which 

uses the Jeffreys prior, . For GCI, Tian 
[12] suggested the GPQ for δi which uses beta variables  
as [Equation (15)]

 (15)

By Equations (4), (6), and (15), the pivotal quantity 
for ηi is [Equation (16)]

 (16)

Then, the pivotal quantity for ζ using Jeffreys method 
is expressed [Equation (17)]

 (17)

Therefore, the  confidence interval for ζ  
using Jeffreys method for GCI is [Equation (18)]

 (18)

where  and  are the th 
and th percentiles of the distribution of 

, respectively.

Algorithm 1
(For k = 1 to M)
• Generate  from ;

• Compute  and ;

 (For l = 1 to m)
• Generate Zi from standard normal distribution;
• Generate Ui from chi-square distribution with 

ni(1) – 1 degrees of freedom;

• Generate  from beta 
distribution;

• Compute  from Equation (6),  from  
Equations (7), (11), and (15) and  from 
Equations (9), (13), and (17);

(End l loop)
• Obtain an array of  's;
• Compute the  and ;
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• If , then set ; else,  
 set  and compute ;
(End k loop)
• Compute the mean and standard deviation of the  
 coverage probabilities;
• Compute the mean and standard deviation of the  
 lengths.

2.2  The method of variance estimates recovery

To construct the confidence intervals for the functions 
of two parameters, MOVER introduced by Zou and 
Donner [30] and Zou et al. [31] is another method 
which can be used. This article focuses on the ratio 
of two independent coefficients of variation. The  
parameters of interest,  and , can be estimated by 

 and . The estimators  and  will be substituted 
into Equation (4), as below [Equation (19)]

  and  . (19) 

Thus, the  two-sided confidence interval 
for ζ is given by [Equation (20)]

 (20)

According to Donner and Zou [13], the lower and the 
upper bounds can be applied as follows

 (21)

and

 (22)

 By the coefficients of variation, the confidence 
limits for  and δi are used in Equations (21) and (22). 
Firstly, consider the confidence intervals for . Since 
the unbiased estimator for  is [Equation (23)]

 (23)

where  is a chi-square distribution with   

 degrees of freedom. The coverage probability of 
it at the significance level α is [Equation (24)]

 (24)

Thus, the lower and the upper bounds for  can be 
expressed as [Equation (25)]

 (25)

2.2.1 The variance stabilizing transformation for the 
method of variance estimates recovery

The VST was presented by DasGupta [32], this used 
the delta method for construction. The sample size 
ni(0) has a binomial distribution with the proportion of 
zero values . By using the delta method, Wu and 
Hsieh [10] obtained VST of a binomial distribution  
which approximated normal distribution to be the 
arcsine square-root transformation. For parameter δi 
and samples size ni, VST is  (see details  

in [32] and [10]). By Guan [33],   

. 

Then,   

as . Hence, the  asymptotically 
confidence interval for δi is [Equation (26) and (27)]

 (26)

Let

  and  
 (27)

Therefore, the  confidence interval for δi  
using VST is [Equation (28)]

 (28)
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where

and

2.2.2 The Wilson score method for the method of  
variance estimates recovery

The Wilson score method was first presented by 
Wilson [28]. To construct the confidence interval, 
the limits of this method can be obtained by the score 
method. For binomial proportions, Brown et al. [29] 
and Donner and Zou [34] established the confidence 
interval using the Wilson score method. Thus, the 
confidence interval for δi is [Equation (29) and (30)]

 (29)

Let

  and   (30)

Therefore, the  confidence interval for ζ  
using Wilson score method is [Equation (31)]

 (31)

where

and

2.2.3 The Jeffreys method for the method of variance 
estimates recovery

Brown et al. [29] recommended Jeffreys method which 
had the alternative intervals construction for binomial 
distribution. It used beta prior for binomial proportion 
[35]. Given a prior and a posterior for δi as  
and , respectively. In this article, 
one set , following Blom [36], is the 
Jeffreys prior. Jeffreys prior limits for δi is [Equations 
(32) and (33)]

 (32)

Let

  and   (33)

Therefore, the  confidence interval for ζ  
using Jeffreys method is [Equation (34)]

 (34)

where

and

Algorithm 2
(For k = 1 to M)
• Generate  from ;
• Compute  and ;
• Generate Zi from standard normal distribution;

• Generate  from beta distribution;
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• Compute li and ui from Equations (27), (30), and (33);
• Compute the 95% confidence intervals for ζ from  
 Equations (28), (31), and (34);
• If , then set ; else, set  and  
 compute ;
(End k loop)
• Compute the mean and standard deviation of the  
 coverage probabilities;
• Compute the mean and standard deviation of the  
 lengths.

3 Results

3.1  Simulation study 

The performances of the confidence intervals for the 
ratio of the independent coefficients of variation of 
two delta-lognormal distributions were compared. For 
this simulation, random samples were used to generate  
15,000 sets from a delta-lognormal distribution and 
5,000 pivotal quantities for GCI with combinations of 
sample sizes n1, n2 = 25, 50, 100; δ1, δ2 = 0.2, 0.5, 0.8; and 

 = 0.5, 1.0, 2.0. For this study, the cases with an 
expected non-zero value of less than 10 were discarded,  
thereby following the methodology of Fletcher [9] and 
Wu and Hsieh [10]. Coverage probabilities and expected  
lengths were used to evaluate the performances of the 
proposed confidence intervals based on the coverage 
probability closest to the nominal confidence level of 
0.95 and with the shortest expected length.
 The results in Tables 1 and 2 reveal that GCI  
outperformed the MOVER methods due to the coverage  
probabilities of the GCI methods being closest to the 
nominal level except for the cases where δ1, δ2 = 0.2, 
0.5 together with  = 0.5:0.5 or 0.5:1.0. Moreover,  
the expected lengths were short in nearly every case. 
In addition, the performance of GCI based on VST  
(CIgci.vst) is appropriate for unequal sample sizes with δ1, 
δ2  = 0.8, while GCI based on the Wilson score method 
(CIgci.w) performed the best for both equal and unequal 
sample sizes together with δ1, δ2 = 0.2, 0.5. GCI based 
on Jeffrey’s method (CIgci.j) is recommended in cases 
of equal sample sizes and δ1, δ2 = 0.8. Moreover, the 
MOVER methods based on VST (CIgci.vst), Wilson 
score method (CIm.w), and Jeffreys method (CIm.j) had 
coverage probabilities close to 1 in almost all cases. 

It is notable that the expected lengths in cases with 
equal variances were longer than cases with unequal 
variances.

3.2  An empirical study

Rainfall data series from two rain stations at Ban Thap 
Tawi Water Supply and Ban Lert Sawat School, Sikhiu 
District, Nakhon Ratchasima, Thailand, collected by 
the Lower Northeastern Region Hydrological Irrigation  
Center, were used to illustrate the efficacy of the 
methods used to establish confidence intervals in this 
article (the datasets are reported in Table 3). These 
were used because there is often flooding in this area 
during the rainy season, and thus it is imperative to 
monitor rainfall amounts to mitigate adverse effects 
due to this. Because the dispersion of rain can usually 
be clarified using the coefficient of variation, statistical 
inference based on this can be used on rainfall data to 
aid planning to cope with repeated flooding.
 To analyze the data, we first considered the 
dispersion of both datasets (shown as histograms in 
Figure 1), which revealed that the positive observations 
for each area are right-skewed. The minimum Akaike 
information criterion (AIC) was used to analyze their 
distributions. The results in Table 4 indicate that the 
distributions of the positive values from both areas 
are lognormal since their AIC values were less than 
for other distributions. Moreover, normal Q-Q plots of 
the log-transformed data series presented in Figure 2  
confirm the minimum AIC analysis. Since the rainfall  
series from both areas include zero observations 
with binomial distributions, the two datasets follow 
delta-lognormal distributions. The statistical summary 
of the rainfall data from the Ban Thap Tawi Water 
Supply station is n1 = 72, δ1 = 0.8472,  = 4.1400, 

 = 1.3737, and  = 0.2831 and that from the Ban 
Lert Sawat School station is n2 = 72, δ2 = 0.8056,  
= 4.1198,  = 1.2783, and  = 0.2744. The ratio of 

 and  is ζ = 1.0317. The 95% confidence intervals 
for ζ are reported in Table 5. These results indicate 
that the expected lengths for GCI were shorter than 
those of the MOVER methods, and thus GCI can be 
used to construct confidence intervals for the ratio of 
the independent coefficients of variation of these two 
rainfall series.
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Table 1: The coverage probabilities and expected lengths of 95% two-sided confidence intervals for the ratio 
of two independent coefficients of variation of the delta-lognormal distribution: equal sample sizes

n1 : n2 δ1 : δ2
Coverage Probabilities (Standard Deviation) Expected Lengths (Standard Deviation)

CIgci.vst CIgci.w CIgci.j CIm.vst CIm.w CIm.j CIgci.vst CIgci.w CIgci.j CIm.vst CIm.w CIm.j

25:25 0.5:0.5 0.5:0.5 0.9827 0.9824 0.9824 0.9986 0.9986 0.9973 1.4678 1.4468 1.4559 2.1792 2.1312 2.0195
(0.1305) (0.1315) (0.1315) (0.0374) (0.0374) (0.0516) (0.5643) (0.5595) (0.5604) (0.8431) (0.8231) (0.8007)

0.5:1.0 0.9728 0.9721 0.9724 0.9964 0.9963 0.9936 1.1858 1.1750 1.1798 1.7094 1.6789 1.6050
(0.1627) (0.1646) (0.1638) (0.0599) (0.0610) (0.0797) (0.4291) (0.4255) (0.4266) (0.6637) (0.6491) (0.6328)

0.5:2.0 0.9623 0.9615 0.9620 0.9886 0.9876 0.9843 0.8673 0.8626 0.8645 1.1718 1.1551 1.1125
(0.1906) (0.1925) (0.1912) (0.1062) (0.1107) (0.1242) (0.3398) (0.3371) (0.3383) (0.5231) (0.5130) (0.4963)

1.0:1.0 0.9687 0.9679 0.9687 0.9943 0.9938 0.9921 2.6845 2.6718 2.6756 3.8783 3.8220 3.6700
(0.1742) (0.1764) (0.1740) (0.0755) (0.0785) (0.0887) (2.3226) (2.3161) (2.3144) (3.3235) (3.2732) (3.1509)

1.0:2.0 0.9587 0.9585 0.9584 0.9875 0.9871 0.9841 1.7778 1.7722 1.7749 2.5063 2.4752 2.3872
(0.1989) (0.1995) (0.1997) (0.1110) (0.1127) (0.1250) (1.4730) (1.4695) (1.4673) (2.1710) (2.1402) (2.0647)

2.0:2.0 0.9578 0.9574 0.9578 0.9845 0.9839 0.9811 10.7520 10.7360 10.7481 15.9337 15.7511 15.2480
(0.2011) (0.2020) (0.2011) (0.1234) (0.1257) (0.1363) (35.3567)(35.3057)(35.5486)(55.3430)(54.5906)(52.7463)

0.8:0.8 0.5:0.5 0.9669 0.9695 0.9683 0.9949 0.9962 0.9912 1.2300 1.2290 1.2227 1.7000 1.7031 1.6167
(0.1788) (0.1721) (0.1753) (0.0715) (0.0615) (0.0934) (0.3735) (0.3695) (0.3687) (0.5115) (0.5060) (0.4922)

0.5:1.0 0.9578 0.9601 0.9592 0.9903 0.9918 0.9885 0.9076 0.9100 0.9064 1.1917 1.2021 1.1497
(0.2011) (0.1958) (0.1978) (0.0982) (0.0902) (0.1065) (0.2703) (0.2684) (0.2678) (0.3717) (0.3713) (0.3592)

0.5:2.0 0.9551 0.9566 0.9558 0.9803 0.9814 0.9770 0.6239 0.6264 0.6249 0.7620 0.7697 0.7428
(0.2072) (0.2038) (0.2056) (0.1391) (0.1351) (0.1499) (0.1948) (0.1942) (0.1942) (0.2628) (0.2645) (0.2556)

1.0:1.0 0.9553 0.9564 0.9552 0.9859 0.9872 0.9831 1.8278 1.8265 1.8231 2.3478 2.3688 2.2830
(0.2067) (0.2042) (0.2069) (0.1178) (0.1124) (0.1290) (0.9088) (0.9057) (0.9046) (1.1561) (1.1631) (1.1302)

1.0:2.0 0.9554 0.9559 0.9561 0.9781 0.9796 0.9762 1.1795 1.1804 1.1786 1.4490 1.4636 1.4188
(0.2064) (0.2053) (0.2050) (0.1465) (0.1414) (0.1524) (0.5979) (0.5967) (0.5950) (0.7646) (0.7718) (0.7481)

2.0:2.0 0.9515 0.9519 0.9517 0.9743 0.9753 0.9711 4.1834 4.1824 4.1795 5.2196 5.2784 5.1332
(0.2149) (0.2139) (0.2143) (0.1583) (0.1551) (0.1676) (4.7046) (4.7011) (4.6921) (5.9701) (6.0325) (5.8766)

50:50 0.2:0.2 0.5:0.5 0.9874 0.9867 0.9875 0.9996 0.9995 0.9991 1.6028 1.5717 1.5851 2.4656 2.3685 2.3132
(0.1115) (0.1144) (0.1113) (0.0200) (0.0216) (0.0305) (0.8923) (0.8869) (0.8933) (1.4225) (1.3552) (1.3476)

0.5:1.0 0.9797 0.9776 0.9788 0.9980 0.9980 0.9969 1.3757 1.3542 1.3632 2.0805 2.0087 1.9637
(0.1409) (0.1480) (0.1441) (0.0447) (0.0447) (0.0559) (0.6645) (0.6587) (0.6600) (1.1015) (1.0484) (1.0400)

0.5:2.0 0.9642 0.9635 0.9639 0.9917 0.9914 0.9892 1.0495 1.0372 1.0421 1.5137 1.4714 1.4407
(0.1858) (0.1875) (0.1866) (0.0909) (0.0923) (0.1034) (0.4793) (0.4737) (0.4754) (0.8158) (0.7778) (0.7729)

1.0:1.0 0.9763 0.9753 0.9765 0.9971 0.9967 0.9957 3.7055 3.6816 3.6934 5.8088 5.5969 5.4993
(0.1520) (0.1551) (0.1516) (0.0535) (0.0571) (0.0652) (6.0543) (6.0490) (6.1052) (9.6992) (9.2973) (9.2472)

1.0:2.0 0.9650 0.9642 0.9645 0.9929 0.9923 0.9918 2.4756 2.4612 2.4687 3.9099 3.7789 3.7179
(0.1838) (0.1858) (0.1851) (0.0842) (0.0872) (0.0902) (3.7239) (3.7266) (3.8121) (6.4683) (6.1973) (6.2154)

50:50 0.2:0.2 2.0:2.0 0.9606 0.9598 0.9605 0.9903 0.9893 0.9875 37.1133 37.0390 36.8115 64.7610 62.2522 61.5205
(0.1946) (0.1964) (0.1949) (0.0982) (0.1031) (0.1110) (387.1329) (385.2160) (367.1065) (677.2387) (648.3719) (644.1015)

0.5:0.5 0.5:0.5 0.9820 0.9818 0.9822 0.9985 0.9985 0.9975 0.8895 0.8820 0.8856 1.2862 1.2714 1.2314
(0.1330) (0.1337) (0.1322) (0.0383) (0.0383) (0.0496) (0.1917) (0.1904) (0.1911) (0.2781) (0.2743) (0.2745)

0.5:1.0 0.9727 0.9725 0.9721 0.9963 0.9962 0.9951 0.7391 0.7353 0.7371 1.0310 1.0215 0.9946
(0.1629) (0.1634) (0.1648) (0.0610) (0.0615) (0.0696) (0.1485) (0.1474) (0.1481) (0.2240) (0.2211) (0.2195)

0.5:2.0 0.9561 0.9559 0.9557 0.9867 0.9865 0.9849 0.5635 0.5620 0.5628 0.7254 0.7204 0.7059
(0.2050) (0.2053) (0.2058) (0.1144) (0.1156) (0.1221) (0.1230) (0.1223) (0.1227) (0.1835) (0.1815) (0.1781)

1.0:1.0 0.9647 0.9643 0.9640 0.9942 0.9942 0.9926 1.3351 1.3310 1.3327 1.8414 1.8278 1.7871
(0.1845) (0.1856) (0.1863) (0.0759) (0.0759) (0.0857) (0.5140) (0.5130) (0.5134) (0.6912) (0.6860) (0.6772)

1.0:2.0 0.9575 0.9571 0.9570 0.9881 0.9878 0.9857 0.9514 0.9497 0.9506 1.2456 1.2381 1.2151
(0.2017) (0.2027) (0.2029) (0.1083) (0.1098) (0.1189) (0.3452) (0.3445) (0.3447) (0.4759) (0.4725) (0.4659)

2.0:2.0 0.9555 0.9553 0.9553 0.9853 0.9851 0.9838 2.8154 2.8129 2.8133 3.6851 3.6673 3.6080
(0.2063) (0.2067) (0.2067) (0.1205) (0.1213) (0.1263) (2.1458) (2.1437) (2.1400) (2.8117) (2.7970) (2.7604)
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Table 1: The coverage probabilities and expected lengths of 95% two-sided confidence intervals for the ratio 
of two independent coefficients of variation of the delta-lognormal distribution: equal sample sizes (Continued)

n1 : n2 δ1 : δ2
Coverage Probabilities (Standard Deviation) Expected Lengths (Standard Deviation)

CIgci.vst CIgci.w CIgci.j CIm.vst CIm.w CIm.j CIgci.vst CIgci.w CIgci.j CIm.vst CIm.w CIm.j

0.8:0.8 0.5:0.5 0.9675 0.9687 0.9683 0.9955 0.9956 0.9942 0.7793 0.7791 0.7771 1.0721 1.0713 1.0392
(0.1774) (0.1742) (0.1753) (0.0672) (0.0662) (0.0759) (0.1460) (0.1451) (0.1454) (0.1978) (0.1962) (0.1946)

0.5:1.0 0.9606 0.9620 0.9622 0.9911 0.9914 0.9895 0.5831 0.5841 0.5828 0.7584 0.7611 0.7416
(0.1946) (0.1912) (0.1907) (0.0941) (0.0923) (0.1018) (0.1069) (0.1064) (0.1063) (0.1458) (0.1454) (0.1432)

0.5:2.0 0.9527 0.9531 0.9525 0.9805 0.9807 0.9786 0.4122 0.4132 0.4127 0.4954 0.4974 0.4881
(0.2122) (0.2115) (0.2126) (0.1384) (0.1375) (0.1447) (0.0818) (0.0817) (0.0817) (0.1085) (0.1089) (0.1069)

1.0:1.0 0.9551 0.9558 0.9553 0.9869 0.9876 0.9855 1.0608 1.0607 1.0596 1.3367 1.3418 1.3138
(0.2070) (0.2056) (0.2067) (0.1139) (0.1107) (0.1197) (0.2978) (0.2973) (0.2971) (0.3683) (0.3693) (0.3641)

1.0:2.0 0.9539 0.9544 0.9541 0.9803 0.9811 0.9783 0.7098 0.7103 0.7099 0.8469 0.8505 0.8365
(0.2098) (0.2086) (0.2092) (0.1391) (0.1361) (0.1456) (0.1975) (0.1974) (0.1971) (0.2448) (0.2460) (0.2422)

2.0:2.0 0.9527 0.9530 0.9527 0.9759 0.9765 0.9748 1.8793 1.8792 1.8788 2.2189 2.2304 2.1980
(0.2124) (0.2117) (0.2124) (0.1535) (0.1516) (0.1567) (0.9356) (0.9351) (0.9355) (1.1039) (1.1101) (1.0972)

100:100 0.2:0.2 0.5:0.5 0.9877 0.9875 0.9873 0.9997 0.9997 0.9993 0.8938 0.8829 0.8876 1.3078 1.2819 1.2646
(0.1101) (0.1113) (0.1118) (0.0183) (0.0183) (0.0258) (0.2057) (0.2042) (0.2047) (0.3154) (0.3068) (0.3102)

0.5:1.0 0.9811 0.9799 0.9796 0.9981 0.9980 0.9973 0.8030 0.7960 0.7990 1.1473 1.1290 1.1160
(0.1363) (0.1405) (0.1414) (0.0439) (0.0447) (0.0516) (0.1642) (0.1626) (0.1633) (0.2616) (0.2541) (0.2553)

0.5:2.0 0.9617 0.9611 0.9613 0.9913 0.9909 0.9903 0.6575 0.6539 0.6552 0.8739 0.8649 0.8563
(0.1919) (0.1933) (0.1930) (0.0930) (0.0951) (0.0982) (0.1424) (0.1410) (0.1413) (0.2250) (0.2192) (0.2191)

1.0:1.0 0.9729 0.9723 0.9728 0.9975 0.9975 0.9968 1.4543 1.4473 1.4506 2.1010 2.0658 2.0486
(0.1625) (0.1642) (0.1627) (0.0496) (0.0503) (0.0565) (0.6309) (0.6296) (0.6307) (0.8972) (0.8791) (0.8800)

1.0:2.0 0.9601 0.9595 0.9598 0.9915 0.9911 0.9901 1.0916 1.0878 1.0895 1.5094 1.4895 1.4772
(0.1958) (0.1971) (0.1964) (0.0920) (0.0941) (0.0988) (0.4677) (0.4665) (0.4666) (0.6880) (0.6742) (0.6706)

2.0:2.0 0.9589 0.9582 0.9583 0.9899 0.9893 0.9882 3.5359 3.5300 3.5337 4.9568 4.8828 4.8587
(0.1986) (0.2001) (0.1998) (0.1002) (0.1027) (0.1080) (3.5260) (3.5212) (3.5237) (4.9298) (4.8464) (4.8429)

0.5:0.5 0.5:0.5 0.9807 0.9804 0.9805 0.9985 0.9985 0.9977 0.5877 0.5850 0.5863 0.8402 0.8353 0.8211
(0.1375) (0.1386) (0.1382) (0.0383) (0.0391) (0.0476) (0.0803) (0.0800) (0.0802) (0.1148) (0.1140) (0.1160)

0.5:1.0 0.9700 0.9695 0.9699 0.9959 0.9958 0.9952 0.4944 0.4931 0.4936 0.6815 0.6783 0.6691
(0.1706) (0.1719) (0.1708) (0.0642) (0.0647) (0.0691) (0.0635) (0.0632) (0.0632) (0.0943) (0.0936) (0.0941)

0.5:2.0 0.9565 0.9563 0.9559 0.9876 0.9873 0.9859 0.3863 0.3858 0.3860 0.4880 0.4864 0.4819
(0.2041) (0.2044) (0.2054) (0.1107) (0.1118) (0.1178) (0.0544) (0.0542) (0.0543) (0.0801) (0.0797) (0.0794)

1.0:1.0 0.9627 0.9624 0.9624 0.9947 0.9946 0.9933 0.8330 0.8316 0.8324 1.1293 1.1251 1.1118
(0.1896) (0.1902) (0.1902) (0.0728) (0.0733) (0.0814) (0.1884) (0.1882) (0.1884) (0.2480) (0.2470) (0.2461)

1.0:2.0 0.9561 0.9559 0.9561 0.9888 0.9886 0.9873 0.6104 0.6099 0.6102 0.7772 0.7749 0.7678
(0.2048) (0.2053) (0.2048) (0.1052) (0.1062) (0.1118) (0.1318) (0.1317) (0.1316) (0.1774) (0.1768) (0.1754)

2.0:2.0 0.9533 0.9531 0.9530 0.9841 0.9839 0.9825 1.5022 1.5015 1.5014 1.8804 1.8761 1.8618
(0.2111) (0.2114) (0.2117) (0.1250) (0.1257) (0.1313) (0.6121) (0.6118) (0.6113) (0.7571) (0.7554) (0.7516)

0.8:0.8 0.5:0.5 0.9660 0.9668 0.9663 0.9958 0.9958 0.9948 0.5251 0.5251 0.5244 0.7217 0.7211 0.7098
(0.1812) (0.1792) (0.1806) (0.0647) (0.0647) (0.0719) (0.0671) (0.0668) (0.0668) (0.0906) (0.0901) (0.0904)

0.5:1.0 0.9613 0.9622 0.9608 0.9927 0.9929 0.9917 0.3970 0.3974 0.3969 0.5151 0.5158 0.5089
(0.1930) (0.1907) (0.1941) (0.0853) (0.0838) (0.0906) (0.0489) (0.0488) (0.0489) (0.0664) (0.0663) (0.0661)

0.5:2.0 0.9507 0.9509 0.9511 0.9795 0.9799 0.9787 0.2842 0.2845 0.2843 0.3396 0.3402 0.3370
(0.2166) (0.2160) (0.2156) (0.1416) (0.1402) (0.1445) (0.0377) (0.0377) (0.0377) (0.0499) (0.0499) (0.0496)

1.0:1.0 0.9562 0.9565 0.9571 0.9869 0.9871 0.9862 0.6951 0.6951 0.6947 0.8707 0.8721 0.8627
(0.2047) (0.2041) (0.2027) (0.1136) (0.1130) (0.1167) (0.1269) (0.1267) (0.1267) (0.1555) (0.1557) (0.1546)

1.0:2.0 0.9528 0.9531 0.9528 0.9798 0.9799 0.9791 0.4730 0.4731 0.4730 0.5586 0.5597 0.5551
(0.2121) (0.2114) (0.2121) (0.1407) (0.1402) (0.1432) (0.0855) (0.0854) (0.0855) (0.1046) (0.1049) (0.1041)

2.0:2.0 0.9519 0.9518 0.9519 0.9755 0.9759 0.9745 1.1322 1.1322 1.1320 1.3104 1.3136 1.3044
(0.2141) (0.2142) (0.2141) (0.1547) (0.1533) (0.1575) (0.3370) (0.3369) (0.3369) (0.3875) (0.3886) (0.3862)
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Table 2: The coverage probabilities and expected lengths of 95% two-sided confidence intervals for the ratio of 
two independent coefficients of variation of the delta-lognormal distribution: unequal sample sizes

n1 : n2 δ1 : δ2
Coverage Probabilities (Standard Deviation) Expected Lengths (Standard Deviation)

CIgci.vst CIgci.w CIgci.j CIm.vst CIm.w CIm.j CIgci.vst CIgci.w CIgci.j CIm.vst CIm.w CIm.j

25:50 0.5:0.5 0.5:0.5 0.9814 0.9811 0.9812 0.9983 0.9983 0.9965 1.2421 1.2290 1.2357 1.8263 1.7984 1.7139
(0.1351) (0.1361) (0.1358) (0.0416) (0.0416) (0.0593) (0.5064) (0.5050) (0.5065) (0.7251) (0.7133) (0.6983)

0.5:1.0 0.9745 0.9737 0.9748 0.9968 0.9964 0.9949 0.9742 0.9668 0.9706 1.4111 1.3929 1.3345
(0.1575) (0.1599) (0.1567) (0.0565) (0.0599) (0.0710) (0.3769) (0.3756) (0.3755) (0.5531) (0.5444) (0.5347)

0.5:2.0 0.9597 0.9589 0.9595 0.9895 0.9895 0.9873 0.6883 0.6851 0.6867 0.9431 0.9332 0.9012
(0.1966) (0.1985) (0.1971) (0.1018) (0.1021) (0.1118) (0.2633) (0.2621) (0.2622) (0.3928) (0.3871) (0.3775)

1.0:1.0 0.9681 0.9674 0.9685 0.9943 0.9943 0.9917 2.3662 2.3595 2.3630 3.3301 3.2958 3.1798
(0.1758) (0.1776) (0.1748) (0.0755) (0.0751) (0.0906) (2.2065) (2.2022) (2.1953) (3.0279) (2.9925) (2.9223)

1.0:2.0 0.9599 0.9595 0.9595 0.9883 0.9880 0.9863 1.5093 1.5063 1.5085 2.1013 2.0823 2.0147
(0.1963) (0.1972) (0.1971) (0.1074) (0.1089) (0.1164) (1.3706) (1.3690) (1.3686) (1.9593) (1.9379) (1.8986)

2.0:2.0 0.9553 0.9551 0.9559 0.9840 0.9835 0.9812 9.9256 9.9171 9.9180 13.7743 13.6543 13.2521
(0.2066) (0.2070) (0.2053) (0.1255) (0.1275) (0.1358) (31.8452) (31.7701) (31.6338) (44.2537) (43.7562) (42.3321)

0.8:0.8 0.5:0.5 0.9691 0.9716 0.9709 0.9947 0.9955 0.9927 1.0500 1.0542 1.0500 1.4391 1.4562 1.3858
(0.1730) (0.1661) (0.1682) (0.0728) (0.0672) (0.0849) (0.3129) (0.3109) (0.3114) (0.4070) (0.4072) (0.4008)

0.5:1.0 0.9607 0.9628 0.9627 0.9902 0.9914 0.9879 0.7537 0.7580 0.7554 0.9990 1.0143 0.9689
(0.1944) (0.1893) (0.1894) (0.0985) (0.0923) (0.1092) (0.2265) (0.2255) (0.2258) (0.2958) (0.2970) (0.2910)

0.5:2.0 0.9553 0.9570 0.9560 0.9847 0.9853 0.9816 0.4925 0.4957 0.4946 0.6162 0.6259 0.6027
(0.2066) (0.2029) (0.2051) (0.1229) (0.1202) (0.1344) (0.1466) (0.1463) (0.1465) (0.1924) (0.1941) (0.1891)

1.0:1.0 0.9549 0.9554 0.9552 0.9859 0.9870 0.9833 1.6030 1.6062 1.6047 2.0297 2.0590 1.9868
(0.2075) (0.2064) (0.2069) (0.1178) (0.1133) (0.1283) (0.8399) (0.8398) (0.8406) (1.0221) (1.0331) (1.0103)

1.0:2.0 0.9531 0.9539 0.9532 0.9809 0.9815 0.9787 0.9850 0.9878 0.9870 1.2155 1.2334 1.1952
(0.2114) (0.2096) (0.2112) (0.1370) (0.1346) (0.1443) (0.4918) (0.4922) (0.4922) (0.6058) (0.6132) (0.5972)

2.0:2.0 0.9507 0.9509 0.9509 0.9721 0.9730 0.9701 3.8267 3.8331 3.8332 4.6457 4.7129 4.5846
(0.2166) (0.2162) (0.2160) (0.1648) (0.1621) (0.1702) (4.4557) (4.4621) (4.4569) (5.4160) (5.4861) (5.3574)

25:100 0.5:0.5 0.5:0.5 0.9807 0.9805 0.9805 0.9980 0.9983 0.9964 1.1473 1.1356 1.1419 1.6642 1.6403 1.5629
(0.1377) (0.1382) (0.1382) (0.0447) (0.0416) (0.0599) (0.4957) (0.4955) (0.4960) (0.6894) (0.6797) (0.6699)

0.5:1.0 0.9724 0.9721 0.9727 0.9972 0.9972 0.9944 0.8671 0.8598 0.8638 1.2510 1.2349 1.1818
(0.1638) (0.1648) (0.1631) (0.0528) (0.0528) (0.0746) (0.3662) (0.3658) (0.3660) (0.5176) (0.5103) (0.5023)

0.5:2.0 0.9658 0.9656 0.9663 0.9923 0.9923 0.9891 0.5696 0.5664 0.5680 0.7922 0.7839 0.7549
(0.1818) (0.1823) (0.1806) (0.0872) (0.0876) (0.1037) (0.2272) (0.2265) (0.2267) (0.3276) (0.3229) (0.3162)

1.0:1.0 0.9640 0.9634 0.9635 0.9930 0.9930 0.9901 2.2570 2.2514 2.2553 3.0999 3.0705 2.9669
(0.1863) (0.1878) (0.1875) (0.0834) (0.0834) (0.0992) (2.2019) (2.2010) (2.1948) (2.9115) (2.8809) (2.8122)

1.0:2.0 0.9609 0.9603 0.9606 0.9906 0.9897 0.9873 1.3491 1.3464 1.3485 1.8520 1.8361 1.7781
(0.1939) (0.1953) (0.1946) (0.0965) (0.1008) (0.1121) (1.2328) (1.2315) (1.2329) (1.6472) (1.6301) (1.5990)

2.0:2.0 0.9552 0.9549 0.9555 0.9823 0.9815 0.9805 9.8520 9.8474 9.8719 13.0937 12.9932 12.6240
(0.2069) (0.2076) (0.2061) (0.1317) (0.1349) (0.1384) (37.9743) (37.9299) (38.9848) (50.3828) (49.9748) (47.9015)

0.8:0.8 0.5:0.5 0.9679 0.9706 0.9692 0.9939 0.9945 0.9925 0.9612 0.9668 0.9632 1.3004 1.3211 1.2580
(0.1762) (0.1689) (0.1728) (0.0781) (0.0742) (0.0865) (0.2960) (0.2947) (0.2951) (0.3701) (0.3718) (0.3691)

0.5:1.0 0.9647 0.9674 0.9655 0.9929 0.9944 0.9907 0.6682 0.6727 0.6703 0.8879 0.9034 0.8614
(0.1845) (0.1776) (0.1826) (0.0838) (0.0746) (0.0962) (0.2006) (0.1999) (0.2003) (0.2529) (0.2543) (0.2507)

0.5:2.0 0.9601 0.9623 0.9619 0.9894 0.9911 0.9873 0.4106 0.4138 0.4127 0.5244 0.5341 0.5117
(0.1957) (0.1906) (0.1914) (0.1024) (0.0941) (0.1118) (0.1216) (0.1214) (0.1217) (0.1550) (0.1562) (0.1531)

1.0:1.0 0.9555 0.9565 0.9554 0.9857 0.9871 0.9828 1.4915 1.4964 1.4951 1.8606 1.8917 1.8248
(0.2061) (0.2041) (0.2064) (0.1189) (0.1127) (0.1300) (0.7738) (0.7750) (0.7759) (0.9162) (0.9277) (0.9073)

1.0:2.0 0.9554 0.9556 0.9549 0.9821 0.9833 0.9808 0.8689 0.8721 0.8713 1.0711 1.0893 1.0536
(0.2064) (0.2060) (0.2075) (0.1325) (0.1280) (0.1372) (0.4425) (0.4433) (0.4439) (0.5320) (0.5389) (0.5265)

2.0:2.0 0.9511 0.9511 0.9509 0.9725 0.9734 0.9709 3.6075 3.6174 3.6173 4.2818 4.3503 4.2317
(0.2157) (0.2156) (0.2162) (0.1636) (0.1609) (0.1680) (4.1171) (4.1269) (4.1252) (4.8348) (4.9046) (4.7730)

50:100 0.2:0.2 0.5:0.5 0.9866 0.9860 0.9856 0.9995 0.9993 0.9989 1.4049 1.3732 1.3848 2.1540 2.0608 2.0250
(0.1150) (0.1175) (0.1191) (0.0231) (0.0258) (0.0326) (0.8365) (0.8315) (0.8302) (1.2790) (1.2177) (1.2207)

0.5:1.0 0.9806 0.9796 0.9798 0.9978 0.9977 0.9970 1.1619 1.1386 1.1468 1.7766 1.7053 1.6790
(0.1379) (0.1414) (0.1407) (0.0469) (0.0483) (0.0547) (0.6260) (0.6216) (0.6199) (0.9955) (0.9475) (0.9471)
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n1 : n2 δ1 : δ2
Coverage Probabilities (Standard Deviation) Expected Lengths (Standard Deviation)

CIgci.vst CIgci.w CIgci.j CIm.vst CIm.w CIm.j CIgci.vst CIgci.w CIgci.j CIm.vst CIm.w CIm.j

0.5:2.0 0.9661 0.9651 0.9659 0.9935 0.9928 0.9909 0.8576 0.8438 0.8486 1.2547 1.2113 1.1933
(0.1811) (0.1836) (0.1814) (0.0802) (0.0846) (0.0948) (0.4124) (0.4080) (0.4094) (0.6786) (0.6458) (0.6399)

1.0:1.0 0.9749 0.9739 0.9745 0.9977 0.9975 0.9962 3.2880 3.2586 3.2687 5.0053 4.8082 4.7544
(0.1563) (0.1593) (0.1575) (0.0476) (0.0503) (0.0615) (4.9844) (4.9549) (4.9770) (7.5763) (7.2449) (7.2298)

1.0:2.0 0.9674 0.9667 0.9667 0.9937 0.9936 0.9925 2.2248 2.2057 2.2107 3.4168 3.2894 3.2540
(0.1776) (0.1795) (0.1793) (0.0793) (0.0797) (0.0861) (4.9992) (4.9472) (4.9356) (7.3451) (7.0216) (7.3161)

2.0:2.0 0.9620 0.9613 0.9618 0.9895 0.9890 0.9874 37.9473 37.7594 38.0251 58.8394 56.4330 56.1167
(0.1912) (0.1930) (0.1917)  (0.1018) (0.1043) (0.1115)  (438.8534) (435.7528) (454.8939)  (679.7391)  (649.4999)  (651.3438)

50:100 0.5:0.5 0.5:0.5 0.9805 0.9807 0.9807 0.9987 0.9987 0.9981 0.7615 0.7564 0.7589 1.0990 1.0895 1.0596
(0.1382) (0.1377) (0.1377) (0.0356) (0.0356) (0.0432) (0.1731) (0.1726) (0.1730) (0.2455) (0.2431) (0.2443)

0.5:1.0 0.9729 0.9725 0.9727 0.9975 0.9973 0.9961 0.6080 0.6051 0.6067 0.8587 0.8525 0.8321
(0.1625) (0.1634) (0.1629) (0.0503) (0.0516) (0.0621) (0.1332) (0.1327) (0.1329) (0.1926) (0.1908) (0.1904)

0.5:2.0 0.9615 0.9612 0.9614 0.9902 0.9901 0.9877 0.4389 0.4377 0.4384 0.5777 0.5746 0.5638
(0.1923) (0.1931) (0.1927) (0.0985) (0.0992) (0.1101) (0.0940) (0.0936) (0.0938) (0.1371) (0.1359) (0.1347)

1.0:1.0 0.9669 0.9663 0.9662 0.9942 0.9939 0.9930 1.1635 1.1610 1.1621 1.5928 1.5840 1.5542
(0.1790) (0.1804) (0.1807) (0.0759) (0.0777) (0.0834) (0.4636) (0.4633) (0.4628) (0.6001) (0.5967) (0.5919)

1.0:2.0 0.9574 0.9568 0.9568 0.9887 0.9886 0.9873 0.7824 0.7813 0.7819 1.0335 1.0288 1.0122
(0.2020) (0.2033) (0.2033) (0.1056) (0.1062) (0.1118) (0.2975) (0.2972) (0.2972) (0.3940) (0.3918) (0.3870)

2.0:2.0 0.9557 0.9555 0.9557 0.9851 0.9845 0.9830 2.5526 2.5513 2.5537 3.2763 3.2644 3.2183
(0.2058) (0.2061) (0.2058) (0.1213) (0.1234) (0.1293) (2.1223) (2.1212) (2.1242) (2.6723) (2.6618) (2.6256)

0.8:0.8 0.5:0.5 0.9683 0.9697 0.9697 0.9957 0.9959 0.9947 0.6655 0.6672 0.6655 0.9124 0.9174 0.8916
(0.1753) (0.1715) (0.1713) (0.0652) (0.0642) (0.0724) (0.1238) (0.1233) (0.1236) (0.1598) (0.1598) (0.1609)

0.5:1.0 0.9641 0.9651 0.9641 0.9929 0.9934 0.9916 0.4831 0.4848 0.4837 0.6378 0.6425 0.6262
(0.1861) (0.1836) (0.1860) (0.0838) (0.0810) (0.0913) (0.0893) (0.0891) (0.0892) (0.1161) (0.1164) (0.1160)

0.5:2.0 0.9559 0.9563 0.9559 0.9831 0.9838 0.9818 0.3218 0.3230 0.3224 0.3972 0.4004 0.3920
(0.2054) (0.2044) (0.2054) (0.1288) (0.1263) (0.1337) (0.0603) (0.0602) (0.0602) (0.0781) (0.0785) (0.0776)

1.0:1.0 0.9549 0.9554 0.9545 0.9869 0.9869 0.9854 0.9203 0.9215 0.9207 1.1540 1.1623 1.1396
(0.2075) (0.2064) (0.2085) (0.1136) (0.1136) (0.1200) (0.2688) (0.2687) (0.2690) (0.3191) (0.3208) (0.3172)

1.0:2.0 0.9517 0.9522 0.9517 0.9809 0.9812 0.9795 0.5811 0.5821 0.5819 0.7020 0.7072 0.6953
(0.2143) (0.2134) (0.2143) (0.1370) (0.1358) (0.1418) (0.1656) (0.1656) (0.1658) (0.1989) (0.2001) (0.1975)

2.0:2.0 0.9535 0.9537 0.9541 0.9751 0.9754 0.9742 1.6727 1.6744 1.6740 1.9582 1.9727 1.9453
(0.2105) (0.2102) (0.2094) (0.1557) (0.1549) (0.1585) (0.8750) (0.8757) (0.8760) (1.0024) (1.0093) (0.9976)

Table 2: The coverage probabilities and expected lengths of 95% two-sided confidence intervals for the ratio of 
two independent coefficients of variation of the delta-lognormal distribution: unequal sample sizes (Continued)

Table 3: Rainfall series (mm) from Ban Thap Tawi Water Supply and Ban Lert Sawat School stations, Si Khiu 
District, Nakhon Ratchasima, Thailand since April, 2010 to March, 2016

Month
Ban Thap Tawi Water Supply, Si khiu District, 

Nakhon Ratchasima (Station 258A1)
Ban Lert Sawat School, Si Khiu District, 

Nakhon Ratchasima (Station 257A1)
2010 2011 2012 2013 2014 2015 2010 2011 2012 2013 2014 2015

April 107.3 289.4 81.2 55.4 114.8 25.8 95.1 115.9 99.2 108.2 50.8 23.8
May 51.2 245.8 153.2 87.9 36.0 36.7 19.6 223.5 115.5 111.6 186.3 53.5
June 148.8 169.8 128.3 138.5 49.1 101.3 67.3 28.4 41.9 131.5 56.2 64.3
July 123.1 80.1 64.1 111.9 75.0 48.0 123.9 67.5 95.2 84.6 40.3 99.6
August 137.7 104.9 89.6 88.6 100.2 74.2 244.1 95.4 65.0 31.8 148.7 145.6
September 292.2 301.9 204.7 454.7 252.2 185.5 124.3 229.5 329.9 340.0 91.9 246.1
October 564.1 252.2 64.0 318.1 16.0 109.1 454.4 144.7 27.8 276.3 55.6 165.9
November 0.0 10.0 18.3 0.0 20.6 8.8 0.0 0.0 34.0 3.5 62.0 26.2
December 0.0 0.0 0.0 0.0 15.0 40.0 0.0 0.0 0.0 0.0 6.0 20.5
January 0.0 21.1 12.5 0.0 3.5 8.6 0.0 19.5 5.8 0.0 22.8 37.3
February 82.5 11.3 0.0 0.0 23.3 0.0 17.8 0.0 0.0 0.0 35.7 0.0
March 3.3 21.4 25.5 78.4 68.8 16.3 2.4 156.4 33.5 0.0 11.2 0.0

Note: This rainfall series collected from website of Lower Northeastern Region Hydrological lrrigation Center (Nakhon Ratchasima, Thailand). (http://hydro-4.
com/3rainfalldata/rainmonth/rainmonth.htm)
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4 Discussion and Conclusions

In this study, we investigated methods for confidence 
interval construction consisting of VST for GCI and 
MOVER, the Wilson score method for GCI and 
MOVER, and Jeffrey’s method for GCI and MOVER 
for the ratio of the coefficients of variation of two 
delta-lognormal distributions. The performance of 
the confidence intervals evaluated via coverage  
probabilities and expected lengths reveal that GCI 
based on VST, the Wilson score method, and Jeffrey’s 
method were optimal as the coverage probabilities 
were close to the target in almost all cases and with 

the shortest expected lengths compared to the other 
methods. Indeed, overestimation occurred with the 
MOVER methods due to the coverage probabilities 
approaching 1, which is not ideal. Therefore, the 
GCI methods are recommended for constructing the 
confidence intervals for the ratio of the coefficients 
of variation of two delta-lognormal distributions. 
Moreover, the results of an empirical study coincided 
with those of the simulation study. Thus, we can infer 
that the GCI methods are appropriate for establishing 
confidence intervals for the ratio of the coefficients of 
variation when comparing two rainfall series.
 Note that in cases of  n1 : n2 = 50:50, 50:100, δ1 : δ2 

           (a) Ban Thap Tawi Water Supply station                                (b) Ban Lert Sawat School station
Figure 1: The density of rainfall series from Ban Thap Tawi Water Supply and Ban Lert Sawat School stations, 
Si Khiu District, Nakhon Ratchasima, Thailand.

            (a) Ban Thap Tawi Water Supply station                              (b) Ban Lert Sawat School station
Figure 2: The normal Q-Q plots of log-transformed datasets from Ban Thap Tawi Water Supply and Ban Lert 
Sawat School stations, Si Khiu District, Nakhon Ratchasima, Thailand.

Table 4: AIC results to check the distributions of positive values from Ban Thap Tawi Water Supply and  
Ban Lert Sawat School stations, Si Khiu District, Nakhon Ratchasima, Thailand

Stations
Distributions

Normal Lognormal Cauchy Exponential Weibull Gamma
Ban Thap Tawi Water Supply 835.6944 830.9085 863.5236 1137.0130 851.0799 831.7608
Ban Lert Sawat School 790.7373 788.9021 825.2753 1126.2610 802.4189 789.0713

Fr
eq

en
cy

Rainfall (mm)
500300 4002001000

0

20

10

30

40

Rainfall (mm)
600300 500200 4001000

Fr
eq

en
cy

0

20

10

30

40

Theoretical Quantiles
10 2–1–2

Sa
m

pl
e 

Q
ua

nt
ile

s

2

1

4

3

5

6

Sa
m

pl
e 

Q
ua

nt
ile

s

2

1

4

3

5

6

Theoretical Quantiles
10 2–1–2



501

N. Yosboonruang and S. Niwitpong, “Statistical Inference on the Ratio of Delta-Lognormal Coefficients of Variation.”

Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 489–502, 2021

= 0.2:0.2 and  = 2.0:2.0, the standard deviations 
of expected lengths were significant high. It caused of 
the expected number of the positive observations was 
small which is coincident with Fletcher [9]; moreover, 
the variances were large. Thus, the simulation study 
would not be expected to work well for such cases.  
 As a final remark, these results corresponded 
with those of Buntao and Niwitpong [21] in that GCI 
is the best choice for constructing confidence intervals 
for the ratio of the coefficients of variation of two 
delta-lognormal distributions. Whereas they proposed 
GPA based on the Wald method which worked well 
with large sample sizes (n1, n2 ≥ 100), our approach 
performed well with varying sample sizes.

Table 5: The 95% confidence intervals for the ratio 
of coefficients of variation of rainfall series from Ban 
Thap Tawi Water Supply and Ban Lert Sawat School  
stations, Si Khiu District, Nakhon Ratchasima, Thailand 

Methods
The confidence intervals for ζ 

Lower Upper Length
CIgci.vst 0.6482 1.6488 1.0006
CIgci.w 0.6482 1.6494 1.0012
CIgci.j 0.6492 1.6594 1.0102
CIm.vst 0.5870 1.8080 1.2210
CIm.w 0.5863 1.8113 1.2250
CIm.j 0.5997 1.7757 1.1760
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