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Abstract
The present study was conducted in order to screen lactic acid bacteria which have the probiotic properties.  
A total of 82 isolates of lactic acid bacteria was preliminarily screened from fermented vegetables. Most strains 
exhibited autoaggregation ability, cell surface hydrophobicity and antimicrobial activity against food-borne 
pathogens Escherichia coli O157:H7 DMST 12743 and Salmonella Typhimurium ATCC 13311. The results  
revealed that 23 isolates possess some desirable probiotic properties and were selected to determine other  
probiotic properties including antibiotic resistance, coaggregation ability with E. coli O157:H7 DMST 
12743 and S. Typhimurium ATCC 13311, heat tolerance at 65°C for 60 min and the ability to survive under  
gastrointestinal tract condition pH 2.0 and 8.0. From probiotic properties determination mentioned above, 
it was observed that the strain KMUTNB 5-9, KMUTNB 5-36 and KMUTNB 6-21 were found to meet all the 
criteria and could be considered as potential probiotic. The identification of the strains based on 16S rDNA 
sequencing analysis indicated that the strain KMUTNB 5-9, KMUTNB 5-36 and KMUTNB 6-were identified 
to be Pediococcus pentosaceus.

Keywords: Probiotic properties, Pediococcus pentosaceus, Lactic acid bacteria, Screening, Fermented vegetables

1 Introduction

Probiotic cultures have been exploited extensively 
by the dairy industry as a tool for the development of 
novel functional products [1]. The global probiotics  
market which included foods supplements and  
ingredients was valued at US$21.6 billion in 2010 
and was expected to reach US$31.1 billion by 2015  
[2]. Traditionally, most probiotic products are  
marketed in the form of yoghurt and fermented milk.  

However, an increase in the vegetarianism throughout  
the developed countries, there is also a demand  
for the vegetarian probiotic products [3]. Therefore, 
a number of carriers (such as cereals, fruits, and 
vegetables) for probiotics have been developed  
to determine their suitability for designing new  
non-dairy probiotic foods [4-6].
 Probiotic is generally used to name the  
microorganisms associated with the beneficial  
effects for the humans and animals [3]. The majority  
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of probiotic microorganisms belong to lactic acid 
bacteria genera Lactobacillus and Bifidobacterium.  
However, strains of Pediococcus and some yeasts 
have also been found as suitable candidates 
[7]. Probiotics are defined by FAO/WHO [8] as  
‘‘live microorganisms which, when administered 
in adequate amounts, confer health benefit on 
the host.’’, To achieve health benefits, probiotic 
foods need to contain an adequate amount of live  
microorganisms and available at high concentrations 
of at least 106-107 CFU/g at the time of consumption 
[9,10]. The beneficial effects of probiotics on human 
health has been claimed by several studies such as 
alleviation of lactose intolerance, prevention and 
reduction of diarrhea symptoms, reduction of the risk  
associated with mutagenicity and carcinogenicity,  
inhibition of intestinal pathogens, prevention of  
inflammatory bowel disease and modulation of the 
immune system [1,11-14]. In order to use as probiotic,  
the microorganism must fulfill several criteria  
including the ability to survive passage through the 
upper gastrointestinal tract, tolerance to human gastric  
juices, alkaline bile secretions in the presence of  
hydrolytic and proteolytic digestive enzymes during 
their transit through the gut. Additionally, probiotic 
bacteria must have the ability to adhere to epithelial 
surfaces, antibiotic resistance and antagonistic 
activity toward pathogens [1,8,11,15]. Several 
technological aspects have to be considered in 
probiotic selection such as viability during processing 
and stability in production and during storage [16,17]. 
These properties make it possible to screen and 
select specific probiotic strains for both food and 
technological uses. Taheri et al. [18] also suggested 
that aggregation and cell surface hydrophobicity 
could be used for preliminary selection of probiotic 
bacteria which have been proposed as an indirect 
method for evaluation the adhesion ability of bacteria 
[32]. In addition, coaggregation ability of lactic acid 
bacteria with pathogenic microorganisms may serve 
as a barrier which blocks colonization by pathogens 
in the intestines [19-21]. Therefore, the objective 
of this study was to select potential probiotics from 
fermented vegetables which possessed probiotic 
traits including autoaggregation, cell surface 
hydrophobicity, antimicrobial activity, antibiotic 
resistance, coaggregation ability, heat tolerance and 
tolerance to gastrointestinal tract conditions. 

2 Materials and Methods

2.1  Microorganisms 

Lactic acid bacteria isolated from fermented vegetables 
were preserved in de Man, Rogosa, Sharpe (MRS) 
broth (Difco, Detroit, MI, USA) containing 20% 
(v/v) of glycerol (Panreac Quimica SAU, Barcelona, 
Espana) and stored at -20°C. For routine analysis, 
the strain was subcultured twice in MRS broth and 
was incubated at 37°C for 24 h. The pathogenic  
bacteria Escherichia coli O157:H7 DMST 12743 and  
Salmonella  Typhimurium ATCC 13311 were  
purchased from the Department of Medical Science, 
Ministry of Public Health, Thailand. The indicator  
strains were grown in tryptic soy broth (TSB) 
(Difco, Detroit, MI, USA) at 37°C. All strains were 
subcultured twice and incubated at 37°C for 24 h 
under microaerobic-static condition and then used as  
inoculum. According to safety guidelines for the 
treatment of pathogenic bacteria, E. coli O157:H7 
DMST 12743 and S. Typhimurium ATCC 13311 were 
destroyed by moist heat (autoclave) at 121°C for 15 
min before disposal.

2.2  Preparation of fermented vegetables

The vegetables including Chinese cabbage, pumpkin, 
carrot and spring onion were selected for fermentation.  
All vegetables were chopped, shredded or sliced into 
small pieces and mixed with 5% (w/w) salt, 2.5% 
(w/w) table sugar and 2.5% (w/w) water from washing 
rice. Then, mixed vegetables were placed in a glass 
jar and poured with hot water until full. A chopstick 
or knife was used to poke down into the jar (around 
the sides) to remove air bubbles. Finally, the glass lid 
was closed over the jar. The fermentation was carried 
out at 40°C for 5 days. 

2.3  Autoaggregation assay

Autoaggregation assays were performed according to 
Del Re et al. [22]. Overnight cultures were harvested by 
centrifugation at 4000 g for 15 min. The cell pellets were  
washed twice and resuspended in sterile phosphate  
buffer saline (PBS) to give viable cell counts of  
approximately 108 CFU/mL. The cell suspensions  
(4 mL) were vortexed for 10 s. During incubation 
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at room temperature for 5 h, 0.1 mL of the upper  
suspensions was transferred to another tube containing  
3.9 mL of PBS and the optical density (ODt) was 
measured at 600 nm. The autoaggregation percentage 
is expressed as  × 100, where ODt represents 
the optical density at 5 h and OD0 is the optical density 
at t = 0. 

2.4  Cell surface hydrophobicity

Cell surface hydrophobicity was determined by the 
method of Kos et al. [23] with minor modifications. 
Overnight cultures were harvested by centrifugation 
at 4000 g for 15 min. The cell pellets were washed 
twice and resuspended in sterile 0.85% NaCl solution 
to give an optical density of 0.5 at 600 nm (A0). To 
test tubes containing 3 mL of washed cells, 1 mL of 
toluene (Panreac Quimica SAU, Barcelona, Espana) 
was added. The mixtures were vortexed for 90 s. After 
incubation at room temperature for 15 min, the aqueous 
phase was removed and its optical density at 600 nm 
(A1) was then measured. The percentage of cell surface  
hydrophobicity was calculated as 1-  × 100].

2.5  Antimicrobial activity 

Antimicrobial activity of lactic acid bacteria strains 
were tested using an agar well diffusion method. 
Overnight culture (200 µL) of E. coli O157:H7 DMST 
12743 or S. Typhimurium ATCC 13311 was mixed 
with 20 mL of melt tryptic soy agar (approximately  
106 CFU/mL) and poured onto sterile Petri-dishes. 
Wells (7 mm-diameter) were punched out of the solid 
agar with a sterile cork borer. Overnight culture of  
lactic acid bacteria (50 μL) was introduced into the wells 
and the plates were incubated at 37°C for 24 h [24]. 
Antimicrobial activity was measured by examining  
the diameters of the inhibition zones around the wells by 
vernier caliper. The inhibitory activity corresponding  
to the diameters of the inhibition zones were expressed 
in mm. 

2.6  Antibiotic resistance assay

Antibiotic sensitivity of lactic acid bacteria was  
determined by the Bauer-Kirby method. The optical 
density at 600 nm of the overnight culture was adjusted 
to 0.08-0.1 (1-2 × 108 CFU/mL). The inoculums were 

spread evenly over the entire surface of the MRS 
agar plates. Subsequently, paper discs containing the  
antibiotics of Penicillin 10 IU/IE/UI, Cepfoxitin 30 μg, 
Bacitracin 10 IU/IE/UI, Kanamycin 30 μg, Rifampin  
5 μg, Streptomycin 10 μg, Clindamycin 2 μg, Nalidixic 
acid 30 μg, Trimethoprim 5 μg, Vancomycin 30 μg, 
Gentamicin 10 μg, Oxacillin 1 μg, Ciprofloxacin 5 μg, 
Novobiocin 30 μg, Ampicillin 10 μg, Chloramphenicol 
30 μg, Tetracycline 30 μg and Erythromycin 15 μg  
(BD BBLTM, Becton Dickinson, MD, USA) were laid 
on the plates. After incubation at 37°C for 24 h, the  
inhibition zones were measured inclusive of  the diameter  
of the discs (7 mm-diameter). Results were expressed 
as sensitive, S (≥ 21 mm); intermediate sensitive,  
I (16-20 mm) and resistant, R (≤ 15 mm) [25]. 

2.7  Coaggregation assay

Coaggregation between selected lactic acid bacteria 
and E. coli O157:H7 DMST 12743 or S. Typhimurium 
ATCC 13311 was determined. The cell suspensions 
were prepared by the same manner as described in the 
autoaggregation assay. Equal volumes (2 mL) of lactic 
acid bacteria and pathogen cell suspension were mixed 
together in pair by vortexing for 10 s. Control tubes 
were set up at the same time, containing 4 mL of each 
bacterial suspension on its own. The optical density at 
600 nm of the suspensions was measured after 5 h of 
incubation at room temperature. Samples were taken 
using the same procedure as in the autoaggregation 
assay. The percentage of coaggregation was calculated 
using the equation of Handley et al. [26]: 

 where x and y represent lactic acid bacteria 
and pathogen, respectively and (x+y) represents the  
mixture of lactic acid bacteria and each pathogen.

2.8  Heat tolerance 

Heat tolerance of the strains was determined according to 
Ding and Shah [27]. Overnight cultures were incubated  
at 65°C. The viable cell number was monitored at 0, 
30 and 60 min. 
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2.9  Simulated gastrointestinal tract tolerance  
determination

2.9.1 Preparation of washed cell suspension

Lactic acid bacteria was grown in MRS broth at 37°C 
for 24 h. Cell culture of each test strain was centrifuged 
at 4000 g for 10 min. After washing twice with sterile 
saline, the cell pellet was resuspended in the same  
solution. The viable cell count of washed cell suspension  
was determined prior to assay of transit tolerance [28]. 

2.9.2 Preparation of simulated gastric and small 
intestinal juices 

Simulated gastric juice was prepared by means of  
suspension of pepsin (1:10,000, ICN, Sigma, Basingstoke,  
Hampshire, UK) in sterile 0.5% NaCl to a final  
concentration of 3 g/L and adjusted to pH 2.0 with 
concentrated HCl. Simulated small intestinal juice was 
prepared by suspension of pancreatin USP (P-1500, 
Sigma, Basingstoke, Hampshire, UK) in a sterile 0.5% 
NaCl to a final concentration of 1 g/L with 0.45% bile 
salt content (Oxoid, Basingstoke, Hampshire, UK) and 
adjusted to pH 8.0 with sterile 0.1 mol/L NaOH [28].

2.9.3 Determination of gastrointestinal tract tolerance 

Aliquot (0.2 mL) of each washed cell suspension was 
transferred to a sterile tube, mixed with 0.3 mL sterile 
0.5% NaCl and finally blended with 1.0 mL of simulated  
gastric juice (pH 2.0). The viable cell number was  
determined after exposure for 60, 90 and 180 min. 
Then, cell suspension after exposure to simulated  
gastric juice (pH 2.0, 180 min) was centrifuged at 
4000 g for 10 min. After washing twice with sterile 
saline, cell pellets were subsequently resuspended in 
simulated small intestinal juice (pH 8.0 with 0.45% 
bile salt) [29]. The suspensions were incubated at 37°C 
for 240 min. The samples were taken at 60 and 240 min  
during exposure to simulated small intestinal juice.

2.10 Analytical procedure 

2.10.1 Determination of viable cell counts

Viable cell counts were determined on MRS agar 
supplemented with 0.5% CaCO3. The plates were  

incubated at 37°C for 24 h. The viable cell counts were 
expressed as log10 value/mL. The percentage of cell 
survival was defined as follows: survival rate (%) =  

 × 100, where N represents the number of viable  
cells (CFU/mL) after exposure and N0 denotes the initial  
viable cell count (CFU/mL) prior to exposure [30].

2.10.2 Identification of lactic acid bacteria

DNA extraction was described by Marmur [31]. PCR 
amplification of 16S rRNA genes was carried out.  
The amplified genes were sequenced and analyzed 
according to the method of Yukphan et al. [32]. Two 
primers, 27F (5'–AGA GTT TGA TCC TGG CTC 
A–3') and 1492R (5'–GGT TAC CTT GTT ACG ACT 
T–3'), were used. The sequences were aligned with 
sequences in GenBank using the BLAST program.

2.10.3 Statistical analysis

Each result was expressed as the mean ± S.D. 
of three determinations. The data were assessed  
using analysis of variance (ANOVA) with a level 
of significance at P < 0.05. Significant divergences 
among mean values were determined with Duncan’s 
multiple range tests. All statistical analyses were  
performed using SPSS Software, version 12 (SPSS, 
now a part of IBM Corp.; White Plains, NY, USA).

3. Results and Discussion 

A total of 82 isolates of lactic acid bacteria was  
preliminarily screened from fermented vegetables 
for their ability to produce acid on MRS agar 
supplemented with CaCO3 used as an indicator for acid- 
producing strains [33].  All isolates were Gram-positive,  
coccus, facultative anaerobic, catalase-negative and 
homofermentative characteristic. Their optimum 
growth temperature was 37°C, however all isolates grew 
slowly at 45°C. Also, it was observed that the addition 
of salt resulted in decrease growth of lactic acid bacteria  
strains and all strains could not grow at 10% NaCl. 

3.1  Autoaggregation ability and cell surface  
hydrophobicity 

Aggregation and cell surface hydrophobicity were 
used to preliminary screen for probiotic properties 
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which have been proposed as an indirect method 
for evaluation the adhesion ability of bacteria [18].  
Autoaggregation of probiotic strains means the  
clumping of bacterial cells from the same strain [20] 
and appeared to be necessary for adhesion to intestinal 
epithelial cells [23]. Furthermore, autoaggregation 
capability could be useful in forming biofilms in  
gastrointestinal (GI) tract colonization, which are ways 
to form a barrier against colonization by pathogens 
[21]. As shown in Table 1, most isolates exhibited  
a strong autoaggregation after 5 h incubation.  
The strain KMUTNB 5-8 showed the highest  
autoaggregation ability of 96.09%, while KMUTNB 
5-27 did not show autoaggregation ability. According  
to Lee et al. [20], P. pentosaceus D56 isolated 
from Jeotgals exhibited autoaggregation ability of 
45.2% followed by P. pentosaceus F66 (41.1%) and  
P. pentosaceus A24 (40.4%) after 5 h incubation. 
Moreover, P. pentosaceus (15a) isolated from cooked 
meat products showed autoaggregation capacity of 
43.83% after 24 h incubation [21]. 
 Bacterial adhesion to hydrocarbon indicates  
bacterial cell surface hydrophobicity that plays a 
key role in first non-specific interaction between  
microbial cells and mucus or epithelial cells [34]. The 
percentage of cell adhering to toluene, apolar solvent, 
demonstrated hydrophobic cell surface property. Of 
all test strains, a significant difference (P < 0.05) in 
cell surface hydrophobicity was observed. The strain 
KMUTNB 5-9 exhibited the greatest cell surface  
hydrophobicity ability of 54.69% followed by 
KMUTNB 5-22 (33.22%) and KMUTNB 6-17 
(30.18%), respectively. However, 9 isolates (KMUTNB 
5-2, KMUTNB 5-5, KMUTNB 5-8, KMUTNB 5-12, 
KMUTNB 5-17, KMUTNB 5-21, KMUTNB 6-26, 
KMUTNB 6-27 and KMUTNB 7-3) did not show 
this ability. Osmanagaoglu et al. [34] revealed that  
P. pentosaceus OZF isolated from human breast 
milk exhibited cell surface hydrophobicity of 34% in  
n-hexadecane. Furthermore, P. pentosaceus D56 and 
P. pentosaceus F66 showed 33.71% and 19.93% cell 
surface hydrophobicity in xylene, respectively [20].  
Lapsiri et al. [35] also reported that 7 strains of  
L. plantarum TISTR 2072, TISTR 2073, TISTR 2074,  
TISTR 2075, TISTR 2079, TISTR 2081 and TISTR 
2082 exhibited cell surface hydrophobicity in toluene 
ranging from 47.14 to 99.79%. Hydrophobic property  
is generally thought to be correlated with bacterial  

adhesion to intestinal mucosa [20]. It has been suggested  
that bacterial cells with a high hydrophobicity usually 
form strong interactions with mucosal cells or adhere 
strongly to epithelial cells or mucus [34]. Mechanisms 
of adherence to an epithelial surface involve both 
receptor-specific binding and charge and hydrophobic  
interaction [36]. These differences in cell surface  
hydrophobicity could be due to variation in the level 
of expression of cell surface protein among strains of a  
species as well as due to environmental conditions which 
could affect the expression of surface protein [37]. 

3.2  Antimicrobial activity

As shown in Table 1, most strains exhibited antimicrobial  
activity against foodborne pathogen E. coli O157:H7 
DMST 12743 and S. Typhimurium ATCC 13311. 
The strain KMUTNB 5-11 displayed the highest  
antimicrobial activity against E. coli O157:H7 DMST  
12743 with inhibition zone of 10.45 mm while the 
strain KMUTNB 6-2 showed the greatest antimicrobial  
activity against S. Typhimurium ATCC 13311 with 
inhibition zone of 15.40 mm. Lin et al. [38] suggested  
that the antimicrobial activity of lactic acid bacteria relies 
on acidity, lactic acid or other organic acids produced.  
Other possible factors might be some bacteriocins which 
play roles at low pH values [39,40]. From preliminarily  
determination of probiotic properties including  
autoaggregation ability, cell surface hydrophobicity and  
antimicrobial activity, 23 isolates of lactic acid bacteria 
were found to complete these probiotic properties. 
The results revealed that the selected strains exhibited 
high autoaggregation ability of > 75%, cell surface  
hydrophobicity ability and antimicrobial activity against 
both foodborne pathogens E. coli O157:H7 DMST 
12743 and S. Typhimurium ATCC 13311 with average  
diameter of inhibition zones > 8.5 and 9.0 mm, respectively.  
Therefore, these 23 isolates (KMUTNB 5-3, KMUTNB 
5-4, KMUTNB 5-6, KMUTNB 5-9, KMUTNB 5-10, 
KMUTNB 5-11, KMUTNB 5-13, KMUTNB 5-14, 
KMUTNB 5-24, KMUTNB 5-34, KMUTNB 5-35, 
KMUTNB 5-36, KMUTNB 6-1, KMUTNB 6-2, 
KMUTNB 6-3, KMUTNB 6-6, KMUTNB 6-21, 
KMUTNB 6-23, KMUTNB 6-28, KMUTNB 6-29, 
KMUTNB 6-33, KMUTNB 6-34 and KMUTNB 6-39)  
were further evaluated on probiotic properties including  
antibiotic resistance, coaggregation ability, heat tolerance  
and tolerance to gastrointestinal tract conditions.
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Table 1: Autoaggregation ability, cell surface hydrophobicity and antimicrobial activity of 82 isolates of lactic 
acid bacteria

Isolates
Autoaggregation 

ability*
(% ± S.D.)

Cell surface 
hydrophobicity*

(% ± S.D.)

Antimicrobial activity* (mm. ± S.D.)

E. coli O157:H7 
DMST 12743

S. Typhimurium
ATCC 13311

KMUTNB 5-1  83.89 ± 0.44  10.99 ± 0.12  8.95 ± 0.05  9.15 ± 0.05
KMUTNB 5-2  10.71 ± 0.13  0.00 ± 0.00  9.25 ± 0.05  9.80 ± 0.70
KMUTNB 5-3  82.09 ± 0.35  12.33 ± 0.75  10.20 ± 0.50  10.65 ± 0.30
KMUTNB 5-4  81.83 ± 0.11  13.34 ± 0.81  9.55 ± 0.85  11.43 ± 0.73
KMUTNB 5-5  89.04 ± 0.10  0.00 ± 0.00  9.20 ± 0.70  9.63 ± 0.13
KMUTNB 5-6  76.57 ± 1.23  9.34 ± 1.85  9.30 ± 0.20  10.35 ± 0.85
KMUTNB 5-7  10.69 ± 0.10  7.19 ± 0.68  9.43 ± 0.23  9.18 ± 0.27
KMUTNB 5-8  96.09 ± 0.30  0.00 ± 0.00  8.48 ± 0.23  9.43 ± 0.33
KMUTNB 5-9  82.20 ± 0.10  54.69 ± 1.84  8.65 ± 0.08  10.53 ± 0.23
KMUTNB 5-10  86.68 ± 0.21  18.69 ± 1.17  9.78 ± 0.68  10.58 ± 0.33
KMUTNB 5-11  78.95 ± 0.52  12.34 ± 1.26  10.45 ± 0.25  10.50 ± 0.30
KMUTNB 5-12  79.43 ± 0.52  0.00 ± 0.00  9.60 ± 0.20  11.85 ± 1.55
KMUTNB 5-13  80.13 ± 0.21  20.60 ± 2.49  9.50 ± 0.00  9.30 ± 0.90
KMUTNB 5-14  75.38 ± 0.53  12.42 ± 0.65  9.58 ± 0.38  10.60 ± 0.50
KMUTNB 5-15  65.37 ± 0.32  14.60 ± 0.34  9.25 ± 0.85  8.95 ± 0.15
KMUTNB 5-16  64.58 ± 0.42  17.69 ± 2.89  9.40 ± 0.20  7.80 ± 0.40
KMUTNB 5-17  73.12 ± 0.21  0.00 ± 0.00  9.35 ± 0.25  9.90 ± 0.30
KMUTNB 5-18  70.42 ± 0.68  22.63 ± 2.23  9.00 ± 0.20  9.78 ± 0.43
KMUTNB 5-19  65.19 ± 0.34  17.86 ± 0.56  9.15 ± 0.35  8.68 ± 0.43
KMUTNB 5-20  67.46 ± 0.52  22.77 ± 2.11  8.10 ± 0.00  8.10 ± 0.10
KMUTNB 5-21  69.48 ± 0.95  0.00 ± 0.00  8.65 ± 0.05  9.13 ± 0.43
KMUTNB 5-22  74.50 ± 0.21  33.22 ± 3.32  8.50 ± 0.40  9.83 ± 0.08
KMUTNB 5-23  65.76 ± 0.00  13.41 ± 0.86  8.58 ± 0.33  9.98 ± 0.88
KMUTNB 5-24  81.81 ± 0.19  11.76 ± 0.17  8.85 ± 0.05  9.85 ± 0.75
KMUTNB 5-25  82.14 ± 0.11  16.99 ± 0.52  8.10 ± 0.70  9.85 ± 0.35
KMUTNB 5-26  75.43 ± 0.11  14.44 ± 0.74  8.05 ± 0.85  8.38 ± 1.38
KMUTNB 5-27  0.00 ± 0.00  4.44 ± 1.45  7.90 ± 0.60  8.75 ± 0.35
KMUTNB 5-28  73.72 ± 0.31  12.79 ± 0.74  7.53 ± 0.28  8.48 ± 0.23
KMUTNB 5-29  76.63 ± 0.41  15.88 ± 1.47  7.63 ± 0.33  9.75 ± 0.00
KMUTNB 5-30  77.72 ± 0.11  5.81 ± 0.78  7.45 ± 0.45  7.20 ± 0.10
KMUTNB 5-31  74.78 ± 0.09  17.80 ± 0.17  7.00 ± 0.00  11.13 ± 0.82
KMUTNB 5-32  75.98 ± 0.33  19.49 ± 0.17  7.00 ± 0.00  11.15 ± 0.80
KMUTNB 5-33  72.49 ± 0.52  15.93 ± 0.74  7.00 ± 0.00  11.50 ± 0.20
KMUTNB 5-34  84.91 ± 0.41  17.88 ± 0.33  9.93 ± 0.02  10.35 ± 0.15
KMUTNB 5-35  85.16 ± 0.44  18.89 ± 0.65  10.00 ± 0.50  9.90 ± 0.80
KMUTNB 5-36  81.20 ± 0.71  13.13 ± 0.81  9.40 ± 0.10  11.50 ± 1.30
KMUTNB 5-37  76.70 ± 0.53  7.56 ± 0.31  9.30 ± 0.40  7.55 ± 0.45
KMUTNB 5-38  68.28 ± 0.10  3.96 ± 0.62  9.23 ± 0.98  8.95 ± 0.15
KMUTNB 5-39  70.34 ± 0.50  20.00 ± 0.00  8.33 ± 0.08  8.58 ± 0.08
KMUTNB 5-40  71.92 ± 0.33  11.84 ± 0.14  7.00 ± 0.00  12.83 ± 0.43
KMUTNB 6-1  75.93 ± 0.11  13.08 ± 0.12  8.35 ± 0.45  14.60 ± 0.65
KMUTNB 6-2  78.55 ± 0.00  8.80 ± 0.36  8.23 ± 0.68  15.40 ± 0.20
KMUTNB 6-3  77.92 ± 1.35  11.41 ± 0.12  8.75 ± 0.05  11.55 ± 1.65
KMUTNB 6-4  55.04 ± 0.44  4.69 ± 0.47  7.65 ± 0.55  8.03 ± 0.48
KMUTNB 6-5  55.99 ± 0.00  2.75 ± 0.33  7.85 ± 0.05  10.00 ± 0.90
KMUTNB 6-6  80.76 ± 0.25  13.40 ± 0.00  8.45 ± 0.25  11.45 ± 0.25
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Table 1: Autoaggregation ability, cell surface hydrophobicity and antimicrobial activity of 82 isolates of lactic 
acid bacteria (Continued)

Isolates
Autoaggregation 

ability*
(% ± S.D.)

Cell surface 
hydrophobicity*

(% ± S.D.)

Antimicrobial activity* (mm. ± S.D.)

E. coli O157:H7 
DMST 12743

S. Typhimurium
ATCC 13311

KMUTNB 6-7  80.12 ± 0.88  21.62 ± 0.63  8.80 ± 0.70  7.50 ± 0.50
KMUTNB 6-8  80.83 ± 0.11  18.97 ± 4.88  8.10 ± 0.20  8.30 ± 0.40
KMUTNB 6-9  73.33 ± 0.44  8.09 ± 0.12  9.90 ± 0.00  8.10 ± 1.10
KMUTNB 6-10  82.44 ± 0.11  13.67 ± 0.60  9.40 ± 0.30  7.00 ± 0.00
KMUTNB 6-11  70.89 ± 0.43  4.01 ± 0.41  8.15 ± 0.15  8.20 ± 0.40
KMUTNB 6-12  63.55 ± 0.32  11.72 ± 0.00  7.00 ± 0.00  7.95 ± 0.65
KMUTNB 6-13  70.15 ± 0.31  12.73 ± 0.38  7.00 ± 0.00  10.08 ± 0.77
KMUTNB 6-14  77.54 ± 0.23  12.76 ± 0.14  7.00 ± 0.00  10.75 ± 0.65
KMUTNB 6-15  78.02 ± 0.82  12.50 ± 0.13  8.70 ± 0.10  10.60 ± 0.40
KMUTNB 6-16  75.49 ± 0.21  8.39 ± 0.61  7.40 ± 0.40  9.43 ± 0.33
KMUTNB 6-17  49.04 ± 0.33  30.18 ± 0.74  7.60 ± 0.20  13.78 ± 1.33
KMUTNB 6-18  34.19 ± 0.24  19.69 ± 0.27  7.00 ± 0.00  12.55 ± 1.25
KMUTNB 6-19  39.74 ± 0.12  2.12 ± 0.40  7.00 ± 0.00  12.50 ± 0.20
KMUTNB 6-20  52.83 ± 0.34  14.36 ± 0.00  7.60 ± 0.20  12.80 ± 0.85
KMUTNB 6-21  77.60 ± 0.22  9.93 ± 0.61  8.85 ± 0.05  14.40 ± 0.50
KMUTNB 6-22  62.19 ± 0.12  9.86 ± 0.38  7.45 ± 0.05  12.35 ± 1.05
KMUTNB 6-23  75.19 ± 0.21  6.10 ± 0.12  8.20 ± 0.10  12.15 ± 0.95
KMUTNB 6-24  66.77 ± 0.45  2.00 ± 0.38  7.38 ± 0.23  9.00 ± 0.90
KMUTNB 6-25  65.98 ± 0.41  2.74 ± 0.37  7.30 ± 0.10  7.98 ± 0.98
KMUTNB 6-26  58.15 ± 0.00  0.00 ± 0.00  7.10 ± 0.10  10.50 ± 0.30
KMUTNB 6-27  62.63 ± 0.11  0.00 ± 0.00  7.55 ± 0.25  9.60 ± 0.10
KMUTNB 6-28  77.07 ± 0.33  15.25 ± 0.50  8.00 ± 0.10  10.60 ± 0.60
KMUTNB 6-29  78.89 ± 0.21  5.92 ± 0.71  8.80 ± 0.10  10.40 ± 0.30
KMUTNB 6-30  75.41 ± 0.00  2.24 ± 0.95  7.45 ± 0.05  11.10 ± 0.00
KMUTNB 6-31  76.45 ± 0.51  6.60 ± 0.60  7.75 ± 0.35  11.15 ± 0.55
KMUTNB 6-32  69.81 ± 0.20  10.98 ± 0.77  7.78 ± 0.48  10.65 ± 0.15
KMUTNB 6-33  86.75 ± 0.00  11.94 ± 0.47  9.15 ± 0.05  11.05 ± 0.25
KMUTNB 6-34  75.65 ± 0.46  20.43 ± 0.16  9.40 ± 0.50  10.35 ± 0.15
KMUTNB 6-35  63.66 ± 0.69  6.75 ± 0.49  8.00 ± 0.80  9.30 ± 0.20
KMUTNB 6-36  61.74 ± 0.50  2.48 ± 0.15  7.20 ± 0.10  7.25 ± 0.25
KMUTNB 6-37  68.32 ± 0.31  3.30 ± 0.00  7.70 ± 0.20  7.00 ± 0.00
KMUTNB 6-38  60.51 ± 0.00  9.59 ± 0.80  7.50 ± 0.20  7.00 ± 0.00
KMUTNB 6-39  64.26 ± 0.30  12.34 ± 0.46  7.00 ± 0.00  7.00 ± 0.00
KMUTNB 7-1  60.64 ± 0.61  7.56 ± 1.44  8.65 ± 0.25  7.98 ± 0.33
KMUTNB 7-2  52.91 ± 0.53  2.39 ± 0.48  8.25 ± 0.05  7.05 ± 0.05
KMUTNB 7-3  51.78 ± 0.12  0.00 ± 0.00  8.25 ± 0.15  8.98 ± 0.98

* Values in the same column of each property were significant differences (P < 0.05).

3.3  Antibiotic resistance

Antibiotics are utilized by the medical and pharmacological  
industries to fight pathogenic bacteria. Resistance 
of probiotic strains to some antibiotics could be 
used for both preventive and therapeutic purposes in  
controlling intestinal infections [41]. In order to be 

used as probiotics, lactic acid bacteria must show an 
ability to resist various antibiotics and subsequently 
exhibit profitable effects on the health of the host [42].  
From the results, it was observed that all selected  
isolates resisted to Tetracycline, Cepfoxitin, Bacitracin,  
Kanamycin, Streptomycin, Nalidixic acid, Trimethoprim,  
Vancomycin, Gentamicin, Oxacillin, Ciprofloxacin 
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(a)

(b)
Figure 1: Coaggregation ability between lactic acid 
bacteria and E. coli O157:H7 DMST 12743 (a) and  
S. Typhimurium ATCC 13311 (b) Values with different 
lowercase letter (a–m) were significant differences by 
Duncan’s multiple range test (P < 0.05).

and Novobiocin with the inhibition zone of < 15 mm  
and intermediate resistance to Rifampin and  
Ampicillin. However, all isolates were susceptible  
to Clindamycin, Chloramphenicol, Penicillin and 
Erythromycin with the inhibition zone of > 21 mm.  
These results also agree with those of Borges et al.  
[43] that P. pentosaceus SB83 was resistant to 
Tetracycline and Vancomycin and sensitive to  
Chloramphenicol, Penicillin and Ampicillin. Klare et al.  
[44] also reported that 29 isolates of P. acidilactici 
and 20 isolates of P. pentosaceus were susceptible to 
Erythromycin and Clindamycin. The susceptibility 
and resistance to antibiotics of various strains were 
variable depending on the species [42]. 

3.4  Coaggregation ability

Of 23 isolates, most strains exhibited coaggregation 
ability with both E. coli O157:H7 DMST 12743 
(1.92-53.12%) and S. Typhimurium ATCC 13311 
(3.25-53.28%) (Figure 1). However, KMUTNB 5-14 
and KMUTNB 5-24 did not show coaggregation  
ability with E. coli O157:H7 DMST 12743 and 
KMUTNB 5-6 did not have coaggregation ability with 
S. Typhimurium ATCC 13311. It has been suggested 
that probiotic microorganisms that have the ability 
to coaggregate with pathogens may be better able to 
kill undesirable bacteria because they could produce 
antimicrobial substances in very close proximity to 
them [34]. This result was in close agreement with the 
finding of Osmanagaoglu et al. [34] that P. pentosaceus  
OZF exhibited coaggregation ability with two  
enteropathogens E. coli LMG 3083 (ETEC) (12.99%) 
and S. Typhimurium SL 1344 (6.26%). Furthermore,  
Kos et al. [23] revealed that the coaggregation  
percentage of L. acidophilus M92 and pathogens  
were 15.11% with E. coli 3014 and 15.70% with  
S. Typhimurium, respectively. It could be indicated 
that coaggregation mechanisms between probiotic 
and pathogen could be involved in the reduction in 
pathogen adhesion to mucus. Additionally, Reid et al. 
[19] suggested that coaggregation ability of probiotic  
may enable the formation of a barrier to prevent  
colonization by pathogens.

3.5  Heat tolerance

A major challenge associated with the application of 

probiotic cultures in functional foods is the retention 
of viability during processing [16]. In this respect, the 
drying of live probiotic strains is a critical step in the 
preparation of concentrated probiotic food ingredients. 
The heat tolerance of selected lactic acid bacteria  
incubated at 65°C for up to 60 min was shown in 
Table 2. It was found that a slight decrease in viable 
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cell number of approximately 0.15-1.78 log CFU/mL  
was detected after exposure to 65°C for 60 min. 
The survival rate of all strains was in the range of 
1.66–70.49%. The highest survival rate of 70.49% was 
observed in KMUTNB 5-11 which was not significant 
difference (P > 0.05) from survival rate of KMUTNB 
5-9 (65.93% survival rate). Kim et al. [45] suggested 
that a temperature at 60°C was considered as the lethal 
temperature because the viability of L. acidophilus  
was significantly reduced but not all cells were killed. 
Additionally, Champagne et al. [46] suggested that 
temperatures over 65°C are highly detrimental to  
probiotic cultures. Heat tolerance of lactic acid bacteria 

is a complex process involving proteins with different 
roles in cell physiology, including chaperone activity,  
ribosome stability, stringent response mediation,  
temperature sensing and control of ribosomal  
functions [47,48]. From the results, 6 isolates of 
lactic acid bacteria (KMUTNB 5-3, KMUTNB 5-4, 
KMUTNB 5-9, KMUTNB 5-11, KMUTNB 5-36 and 
KMUTNB 6-21) that exhibited the ability to tolerate to 
high temperature at 65°C for 60 min (survival rate of 
45.87-70.49%, 0.15-0.34 log reduction) and also had 
coaggregation ability with both E. coli O157:H7 DMST 
12743 and S. Typhimurium ATCC 13311 were selected 
for further evaluation of gastrointestinal tract tolerance. 

Table 2: Viable cell number of 23 strains of lactic acid bacteria after exposure to 65°C for 60 min

Strains

Viable cell number (log CFU/mL ± S.D.)
Survival rate after 
exposure at 60 min

(% ± S.D.)Initial
After exposure to heat at 65°C for 60 min

30 min 60 min

KMUTNB 5-3  8.32 ± 0.01  8.19 ± 0.04  8.12 ± 0.05  62.98 ± 7.48b

KMUTNB 5-4  8.42 ± 0.02  8.15 ± 0.10  8.19 ± 0.01  59.96 ± 1.90b

KMUTNB 5-6  8.28 ± 0.02  8.25 ± 0.04  7.85 ± 0.06  37.08 ± 5.17e

KMUTNB 5-9  8.43 ± 0.06  8.35 ± 0.04  8.26 ± 0.01  65.93 ± 10.4ab

KMUTNB 5-10  8.66 ± 0.07  8.33 ± 0.06  7.55 ± 0.05  7.88 ± 0.93h

KMUTNB 5-11  8.47 ± 0.01  8.39 ± 0.01  8.32 ± 0.01  70.49 ± 2.38a

KMUTNB 5-13  8.54 ± 0.01  8.12 ± 0.07  6.76 ± 0.04  1.66 ± 0.17h

KMUTNB 5-14  8.38 ± 0.05  7.96 ± 0.01  7.84 ± 0.04  28.63 ± 2.35f

KMUTNB 5-24  8.28 ± 0.02  8.21 ± 0.05  7.82 ± 0.01  34.47 ± 1.12ef

KMUTNB 5-34  8.46 ± 0.01  8.19 ± 0.01  6.90 ± 0.06  2.78 ± 0.37h

KMUTNB 5-35  8.35 ± 0.13  8.02 ± 0.07  6.79 ± 0.35  3.11 ± 2.25h

KMUTNB 5-36  8.66 ± 0.03  8.20 ± 0.04  8.32 ± 0.03  45.87 ± 2.65d

KMUTNB 6-1  8.35 ± 0.05  8.21 ± 0.09  6.76 ± 0.03  2.51 ± 0.19h

KMUTNB 6-2  8.37 ± 0.03  8.22 ± 0.04  7.56 ± 0.04  15.53 ± 1.50g

KMUTNB 6-3  8.17 ± 0.01  7.95 ± 0.05  6.89 ± 0.07  5.27 ± 0.83h

KMUTNB 6-6  8.33 ± 0.01  8.10 ± 0.14  6.98 ± 0.03  4.48 ± 0.33h

KMUTNB 6-21  8.39 ± 0.02  8.24 ± 0.01  8.11 ± 0.08  52.93 ± 9.14c

KMUTNB 6-23  8.35 ± 0.04  7.70 ± 0.11  6.94 ± 0.01  3.93 ± 0.10h

KMUTNB 6-28  8.35 ± 0.07  7.50 ± 0.02  6.77 ± 0.04  2.61 ± 0.25h

KMUTNB 6-29  8.40 ± 0.06  8.01 ± 0.01  6.67 ± 0.08  1.89 ± 0.33h

KMUTNB 6-33  8.40 ± 0.02  7.71 ± 0.02  6.73 ± 0.07  2.14 ± 0.34h

KMUTNB 6-34  8.27 ± 0.07  8.08 ± 0.07  7.08 ± 0.01  6.31 ± 0.09h

KMUTNB 6-39  8.37 ± 0.13  8.01 ± 0.10  6.85 ± 0.05  2.96 ± 0.35h

Values in the same column of with different lowercase letter (a–h) were significant differences by Duncan’s multiple range test (P < 0.05).
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3.6  Viability of lactic acid bacteria during sequential 
exposure to simulated gastric and small intestinal 
juice

An important step toward the selection of potential 
probiotic candidates is to determine their resistance 
to the extreme conditions of the gastrointestinal tract. 
Barriers that test strains must overcome are stomach 
with low pH and digestive enzyme (i.e. pepsin) and 
the upper intestine which contains bile salt [28,49,50]. 
The results revealed that all of selected strains were 
found to exhibit the tolerance ability to simulated 
gastric juice at pH 2.0 for 180 min. After exposure 
to simulated gastric juice, the reduction in viable 
cell number of 1.91-2.55 log CFU/mL (0.29-1.25% 
survival rate) was observed (Figure 2). The strain 
KMUTNB 6-21 exhibited the highest survival rate of 
1.25% followed by KMUTNB 5-9 (0.69% survival 
rate) and KMUTNB 5-36 (0.68% survival rate). Then, 
the test strains were subsequently evaluated for their 
ability to tolerate under simulated small intestinal juice 
pH 8.0 with 0.45% bile salt which was considered as 
sufficient concentration to determine any resistant 
strains [51]. The capability to survive under small 
intestinal juice in the human intestine in order to take 
up residence and multiply in human large intestine 
is an important characteristic of lactic acid bacteria 
to be used as probiotic dietary adjuncts [52]. The 
results indicated that all strains showed the ability to 
survive under simulated small intestinal juice pH 8.0 
for 240 min. A small decrease in viable cell count of 
0.30-0.40 log CFU/mL was achieved. As shown in 
Table 3, it was found that KMUTNB 6-21 showed the 
greatest survival rate of 0.50% which was significant  
difference (P<0.05) from the survival rate of KMUTNB 
5-36 (0.34% survival rate) and KMUTNB 5-9 (0.33% 
survival rate). However, there was no significant  
difference (P>0.05) in survival rate of the strain 
KMUTNB 5-3, KMUTNB 5-4 and KMUTNB 5-11. 
From the results mentioned above, KMUTNB 5-9, 
KMUTNB 5-36 and KMUTNB 6-21 were able to 
withstand a high temperature of 65°C for 60 min 
which is a desirable characteristic for industrial strains 
as it could have a better chance of remaining viable 
during the drying process required for prolonged 
storage. Also, these 3 strains have the capability to 
maintain their high viable cell number after sequential  
exposure to simulated gastric and small intestinal juice.  

Consequently, the strain KMUTNB 5-9, KMUTNB 
5-36 and KMUTNB 6-21 were selected to identify  
their species based on 16S rDNA sequencing analysis.  
It was indicated that the strain KMUTNB 5-9, 
KMUTNB 5-36 and KMUTNB 6-21 was found to be 
Pediococcus pentosaceus with 99.58%, 99.72% and 
99.42% similarity, respectively.

Table 3: Survival rate of the selected strains after 
sequential exposure to simulated gastric and small 
intestinal juice

Strain

Survival rate after 
exposure to simulated 

gastric juice pH 2.0 
for 180 min
(% ± S.D.)

Survival rate after 
exposure to simulated 
small intestinal juice 
with 0.45% bile salt 
pH 8.0 for 420 min

(% ± S.D.)

KMUTNB 5-3 0.33 ± 0.05c 0.14 ± 0.03c

KMUTNB 5-4 0.33 ± 0.04c 0.14 ± 0.02c

KMUTNB 5-9 0.69 ± 0.13b 0.33 ± 0.05b

KMUTNB 5-11 0.29 ± 0.04c 0.12 ± 0.03c

KMUTNB 5-36 0.68 ± 0.12b 0.34 ± 0.06b

KMUTNB 6-21 1.25 ± 0.16a 0.50 ± 0.07a

Values in the same column of with different lowercase letter (a-c) were 
significant differences by Duncan’s multiple range test (P < 0.05).

4 Conclusions

In this study, P. pentosaceus KMUTNB 5-9, 
KMUTNB 5-36 and KMUTNB 6-21 isolated from 

Figure 2: Viable cell number of selected strains during  
sequential exposure to simulated gastric and small 
intestinal juice.
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fermented vegetables were found to meet all probiotic  
criteria observed in vitro and could be considered 
as probiotic. However, further in vivo evaluation of 
immunomodulatory function and the production of 
antagonistic substances such as bacteriocin studies 
will boost the application of the strain. 
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