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Abstract
This research evaluated a catalyst activity for hydrodesulfurization (HDS) of a petroleum fraction and the mixture  
of partially hydrodeoxygenated bio-oil (HBO), which was hydrodeoxygenated woody tar (HWT) and the  
petroleum fraction, which was light gas oil. As results, 340ºC of reaction temperature and 2 hours of reaction 
period provide positive influence on the catalyst activity. Oxygen and nitrogen compounds in bio-oil exhibit an 
inhibiting effect on the HDS. Synthesized catalysts supported on titanium-rich and pure titania carriers indicate 
higher activity than those supported on pure alumina, since TiO2 acts as an electronic promoter in catalysts. 
The electronic promotion of Mo by Ti has a limitation, accordingly, 310CoMoAT (1:0.75) catalyst presents the 
best catalytic behavior. The approach from this research can contribute a direction for further improvement of 
co-processing bio-oil productions as a sustainable fuel invention.

Keywords: Coprocessing bio-oil, Hydrodesulfurization, Bio-oil woody tar, Hydrodeoxygination, Mixed oxide 
catalyst support

1 Introduction

Increasing Asian population and energy consumption 
have surged continuously in the world and the increases  
influence many countries; including Japan and Thailand,  
to search for alternative sources of renewable energy. 
Consequently, research on a bio-oil production has 
gained significance with the prospective to solve the 
fossil fuel resource running out and also environmental  
problems, especially to reduce greenhouse gas  
emissions. Biofuel is one of recent growing interests  

and it has been strongly recommended as an alternative  
fuel. Biofuels are impelling food prices and starving 
underprivileged people. From those effects, researchers  
pay more attention to a second generation of biofuels 
which does not impact a food supply. One of biofuel 
productions is conversion of biomass into bio-oil by 
fast or slow pyrolysis followed by a suitable bio-oil 
upgrading process. The bio-oil products resulting  
from a biomass pyrolysis possess high oxygen contents  
that include three main families of compounds: (1) small  
acids, aldehydes and ketones, (2) sugar-derived 
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compounds and (3) lignin-derived phenolics [1,2].  
Bio-oil typically contains almost 15-40 wt% of oxygen  
compounds [3].Those oxygen compounds affect 
bio-oil to have some undesirable properties, such as;  
high viscosity, non-volatility, poor heating value,  
corrosiveness, immiscibility with fossil fuels, thermal  
instability and a tendency to polymerize during  
storage and transportation [4]. Accordingly, it is  
necessary to reduce the oxygen content to be lower than 
2 wt%, as same as the oxygen content in traditional  
petroleum [5]. Hydrodeoxygination (HDO) which 
is a bio-oil upgrading technology is the major 
reaction for eliminating oxygen. The upgrading  
technique interest for this project is two-step  
upgrading bio-oil, since it is an economical technique. 
Initially, bio-oil is partially hydrodeoxygenated;  
however, the oxygen content in bio-oil is unsatisfied 
for an oil refinery process. Secondly, a coprocessing  
of the HBO and petroleum fraction in a HDS  
process can be applied for an oil refinery plant. 
The petroleum fractions are known to contain high 
amounts of sulfur compounds causing environmental  
problems during the combustion of petroleum fractions.  
The elimination of sulfur is, therefore, extremely 
important. HDO process is also required for the  
renewable gasoline and diesel productions. The HDO 
typically takes place during the hydroprocessing of  
petroleum fractions as well as HDS, the saturation of 
olefins or aromatics, hydrodenitrogenation (HDN)  
and hydrodemetallization [6]. 
 This research target was assigned to work on 
the investigation of the HDS reaction of a petroleum 
fraction and the mixture of HBO and a petroleum 
fraction. An inspection of HBO reaction occurring in 
the duration of HDS was also manipulated. The main 
objective of this work was to evaluate the catalyst  
activity for HDS reaction of light gas oil (LGO) which 
is a diesel fraction on and the mixture of LGO and 
HWT, collected from middle distillation (HWT-MD). 
Catalysts used in this project are in the groups of NiMo 
and CoMo, since conventional NiMo and CoMo on the 
surface of alumina are typically used for deep HDS 
[7]. In order to improve a catalyst activity for HDS, 
the research addressed a synergistic effect of mixed 
oxide supports on the HDS catalyst activity. The oxide  
support used in this research is an alumina/titania  
support, since alumina and titania have attracted  
curiosity in the vision of a higher HDS activity [8].

2 Experimental Methodology

2.1  Catalysts

Eight types of catalysts utilized in the experimental 
work were a sulfided cobalt-molybdenum and a nickel-
molybdenum supported on alumina or/and titania  
catalysts. Six prepared catalysts were prepared through 
a sol-gel method. The in-house catalysts diverged 
ratios of alumina and titania supports to monitor an 
influence of mixed oxide support on HDS and HDO 
activities. The other two catalysts (KF 752-1.5E and  
KF 846-1.3; Nippon Ketjen Co., Ltd.) were commercial  
catalysts.

2.2  Reactants

Reactants used for the HDS process comprised two 
types of oil. The first oil was LGO which represents 
a petroleum fraction and the second one was LGO-
HWT-MD (Hydrodeoxygenated woody tar-middle 
distillation) used for observing coprocessing bio-oil. 
The HWT-MD manufacture could be divided into two 
main parts. First, woody tar crude oil was partially  
hydrodeoxygenated in a slurry reactor at 400ºC and 
under 7.07 MPa of hydrogen pressure. The partially  
HWT was collected and then the product was  
distillated. Distillate products were light gas, middle 
distillate (HWT-MD, at 220-225ºC) and a residual. 
LGO-HWT-MD was created from the mixture of  
80 wt% of LGO and 20 wt% of HWT-MD. 

2.3  Sulfidation process

To activate all catalysts into a sulfide form, the  
catalysts were mixed with LGO and Dimethyl disulfide 
(DMDS) in a quartz tube covered by a small quartz 
capillary tube. The quartz tube was inserted into 
metal 80 mL-reactors at room temperature and then  
hydrogen gas was initially pressurized into the reactors 
at 3 MPa. Following, reactors were inserted into a tube 
furnace and swing mixer which was rose temperature up 
to 350ºC. The temperature of the system was ramping  
from room temperature to 350ºC in approximately 
an hour and remaining constant at 350ºC for 3 hours.  
Subsequent to sulfidation, reactors were removed from 
the furnace and cooled down until reactors’ temperature  
reached room temperature. Gas over LGO in the reactors  
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was collected into a sample bag and then the gas volume  
check was carried out. The sulfided catalysts were  
repeatedly washed with hexane and dried under nitrogen  
atmosphere via vacuum filtration process. Please note 
that the sulfided catalysts must be used rapidly after 
drying to prevent an oxidation reaction between the 
catalysts and oxygen in the air. This oxidation could  
affect on a catalyst activity. Finally, the catalyst products  
were kept in sample bottles and weighed to check an 
absolute amount of catalysts.

2.4  Hydrodesulfurization process

LGO and LGO-HWT-MD were carried out in batch 
reactors. Sulfided catalysts with 0.2000 g. were 
introduced into 50 ml-microautoclave reactors and  
the reactors were filled with 5.00 g of a reactant. The  
components inside the reactor were purged by 1.5 
MPa of hydrogen gas, subsequently the reactors were  
pressurized up to an initial pressure under 5 MPa. 
Please note that the hydrogen gas quantity before the 
reaction must be recorded to observe the hydrogen  
consumption during HDS reactions. Two sets of reactions  
were undergone in the same period using the swing 
tube furnace controlled by an electronic temperature 
controller. HDS reactions were operated under 320ºC 
and 340ºC and allowed to proceed for 1 and 2 hours. 
Afterwards, reactors were removed from the furnace 
and cooled down to room temperature. Gas in the 
reactors was collected for a volume measurement and 
further analyses. Liquid products in the reactors were 
purged by 3 MPa of nitrogen gas pressure. The nitrogen 
gas had been mixing for 15 minutes in swing mixer to 
ensure that hydrogen sulfide gas or undesirable gases 
would be purge from the liquid products. Catalysts in 
liquid products needed time to precipitate at least 20 
minutes. Lastly, liquid products were removed from 
reactors, separated from catalysts and filtered via a 
vacuum filtration technique.

2.5  Quality and quantity analyses

All filtered oil products were analysed by a gas  
chromatography technique using a mass spectrometry  
detector (GC-MS; Hewlett Packard HP 6890), 
a flame ionization detector (GC-FID; Agilent 
6890N) and a sulfur chemiluminescence detector 
(GC-SCD; Agilent 04AA9185) to evaluate catalyst  

activities. The three detectors were applied for  
different propositions. GC-MS was used to identify 
chemical compounds in products, whereas GC-FID 
was used to determine hydrocarbon compounds in 
products. In the case of the GC-SCD, the detector 
utilized for defining amounts of sulfur compounds 
remaining in products. Furthermore, a nitrogen-sulfur  
analyser was also applied to analyse the quantity of 
nitrogen contents in products and to compute %HDN.

3 Results and Discussion

3.1  Catalyst sulfidation

Catalysts for hydrotreatment processes in refineries 
to eliminate heteroelements and polyaromatics from 
petroleum feedstocks are primarily prepared in the 
form of highly dispersed molybdenum oxide and 
promoters. For example, the conventional catalysts 
for HDS of diesel fractions are the Co-Mo/Al2O3 
and Ni-Mo/Al2O3. Since the catalysts are regularly 
prepared in an inactive form, they are subsequently 
exposed to a sulfiding atmosphere to be converted 
into the active form. The catalysts can be activated 
in the first step by a sulfiding agent either directly 
inside hydrotreating reactors or preimpregnation  
with polysulfides followed by a subsequent  
reactivation of the catalyst inside reactors. Hydrogen  
sulfide (H2S) has usually been used for catalysts 
sulfidation, H2S is, however, limited to laboratory  
scale applications. For that reason, some researchers  
turned to use organosulfide agents, such as  
dimethyldisulfide (DMDS: CH3-S-S-CH3) for the 
sulfidation of HDS or HDO catalysts. The use of 
DMDS can increase HDS performance, particularly 
CoMo/Al2O3 [9]. This research also chose DMDS 
as a sulfiding reagent for the catalyst sulfidations. 
After the sulfidation, catalysts were transformed 
to the sulfided form: Co-Mo-S or Ni-Mo-S. They 
will have a strong interaction with support if they 
have low degree of sulfidation. In the case of fully 
sulfidation, they will be held on the support surface 
by van der Waals forces. During the sulfidation 
hydrogen molecules interact with bridge sulfur of 
the Mo catalyst promoted by Co or Ni and then 
the heterolytic dissociation of the H2 occurs. In the 
heterolytic dissociation process a -SH group and 
hydride hydrogen bond with the atom of Co or Ni. 
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Kogan proposed that the hydride hydrogen begins  
a relocation of an electron from the atom of Co or Ni to 
Mo atom and then Mo accepts the electron [10]. This 
action causes Mo-S bonds declining and rupturing.  
Hydride hydrogen concurrently becomes positive and 
departs from Co atom for bonding sulfur atom. Mo-S 
bond weakens and breaks and then the formation  
of  H2S takes place. This process becomes a cycle until  
the sulfidation is complete (Figure 1).

3.2  Hydrodesulfurization

Hydrotreating processes of a diesel fraction are  
extensively practiced in an petroleum industry and one 
of the major interests in hydroprocessing is the removal 
of sulfur atoms via HDS. Examples of S-compounds 
found in diesel fraction are thiols (mercaptans), 
sulfides and disulfides, thiophenes, benzothiophenes 
and dibenzothiophenes. During the sulfidized catalyst 
is under hydrogen atmosphere in the period of HDS, 
a sulfur atom in the sulfidized catalyst surface reacts 
with hydrogen atoms; and then H2S is produced. 
Afterward, an anion vacancy site, which is an active 
site for HDS, is created. The sulfur elimination in 
a sulfur compound begins with nucleophilic attack 
by basic sulfur on the vacancy site. The C-S bond of 
the S-compound is cleaved and then a sulfur atom is 
remained at that vacancy. In terms of heterocyclic 
compounds, a rearomatization process will take place 
after the nucleophilic attack (Figure 2).

3.3  Hydrodeoxygenation

One of the possible operating options for the  
production of advanced biofuels is the coprocessing 

of partially HBO in standard refineries, however;  
the properties of the HBO have not been appropriate  
for the coprocessing yet. Previous research suggested 
that the HBO should be sent to the distillation tower 
where the fractions could be diluted in different refinery  
cuts before sending to advance processing [11]. 
 Since cresol is one of the main oxygen compounds  
in HWT, the quantity of cresol was determined for 
the investigation of the HDO performance. The cresol 
can also convert from guaiacol throughout the HDO 
hydrotreating process. Cresol included in HWT-MD 
has three isomers: meta-cresol, para-cresol and ortho-
cresol. Many research papers reported that the isomers 
established the following order of HDO reactivity: 
meta > para > ortho [4]. The HDO of cresols is known 
to proceed by two pathways: a hydrogenation (HYD) 
and a direct deoxygenation (DDO) as exhibited in 
Figure 3. In the case of meta-cresol, it can transform 
to phenol during HDO process.

Figure 1: Mechanism of  H2 interaction during sulfidation  
process [10].

Figure 2: The HDS of dibenzothiophene on MoS2-based  
catalyst [9].

Figure 3: Schematic of cresol HDO mechanism via a 
DDO and HYD pathways [12,13].
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3.4  Effects of reaction temperature and time on 
catalyst screening

In this research, 320ºC and 340ºC of reaction  
temperatures were controlled to study the effect of 
reaction temperature on %HDS, %HDO and %HDN 
for catalyst screening. (Figure 4 and Figure 5)
 The 320ºC of temperature was initially used for 
the HDS process with the period of 1 and 2 hours. Please 
note that reaction temperature at 320ºC was selected  
from earlier work of JICA’s project demonstrated  
the effects of temperature on the HDO and HDS  
performances of bio-oil models. The %HDS values 
for HBO vary from 84% to 35% depending on catalyst  
types. To ensure that 320ºC was suitable for the  
hydrotreating processes of the coprocessing bio-oil, 
%HDO was also investigated. The HDO reaction was 
observed, because it may cause HDS restraining or  
competitive to presence of HDS. Low %HDO results of 
LGO-HWT-MD (Figure 5) indicated that 320ºC was not 
proper for the most of catalysts, especially the prepared 
catalysts. These results agree with the information from  
literature which stated that the HDS reaction of LGO is 
characteristically performed at 330-390ºC of reaction 
temperature and 3.0-5.0 MPa of total pressure, while 

HDO of bio-oil is typically operated under 330-350ºC 
[14]. Hence, temperature for HDS process was increased 
to 340ºC to enhance the performance of HDO. As  
anticipated, higher operating temperature enhances 
%HDS as well as a reactivity of HDS (Figure 4).
 Increasing reaction temperature to 340ºC may 
drive Mo-S bonds and C-S bonds in S-compounds  
rupturing, forming new bonds and creating new 
carbon compounds (Figure 2). Results of kinetics  
correspond to the tendency for %HDS (Figure 6). 

 (1)

 The deviations from regression approach (according  
to equation (1) and (2)) were attributed to rate constant 
determination that conveyed the HDS performance.
 The abbreviation S means sulfur content which 
can be separated into Sp (sulfur content of product) and 
Sf (sulfur content of feed), where n represents apparent 
reaction order. The symbol k means rate constant and t 
is reaction time. The 2.25 of reaction order kinetics was 
used in the calculation of the rate constants and plots 
from this reaction order revealed a good deviation,  
especially for LGO-HWT-MD.

 (2)

Figure 5: Relation between %HDO or %HDN and 
reaction temperature of LGO-HWT-MD.

Figure 4: Relation between %HDS and reaction  
temperature of LGO and LGO-HWT-MD. 
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 The quantity of  dibenzothiophene (DBT), 4-methyl- 
dibenzothiophene (4MDBT) and 4,6-dimethyl- 
dibenzothiophene (46DMDBT) were also observed  
through GC-SCD spectra. The spectra indicated that 
the amount of those sulfur compounds in all samples 
decreased with the increase in reaction temperature 
and time. At 340ºC of reaction temperature, %HDO 
of all reactions significantly increased and %HDO 
of some reactions increased higher than two times 
compared to the reaction running at 320ºC (Figure 5).  
An interesting point was found from GC-FID and  
GC-MS. The spectra of cresols from Figure 7 show that 
the quantity of o-cresol is lower than the quantities of 
p-and m-cresol. The result concurs with information 
mentioned in 3.3. The low o-cresol quantity appears 
to be associated with an entropic or steric effect [13]. 
 HBO also contains N-compounds, for instance, 
quinoline, tetrahydroquinoline, indole and indoline 
and it is important to deduct them to be lower than 
1%. HDN reaction occurring in the period of HDS 
process was also observed. The reaction temperature 
positively affects on HDN reaction. %HDN increases 

in a range of 5-28% depending on catalyst kinds  
as well as the temperature effects on HDN and HDO  
reactions (Figure 5).

3.5  Effects of HDO and HDN reactions on HDS 
reaction

%HDS values demonstrated that LGO, which was  
diesel fraction, gave a greater %HDS (85-93%) than the 
one of LGO-HWT-MD (65-84%). In actuality, HDO 
and HDN reactions are suppressed in the presence  
of a sulphur having functionality, either in the same or 
in a separate  molecule with the oxygen and nitrogen 
functionalities [15]. It implies that HDO and HDN  
reactions account as competitive for HDS, since  
oxygen and nitrogen compounds necessitate similar 
anion vacancy site to sulfur. The purpose of eliminating  
oxygen and nitrogen atoms from the reactants is, 
therefore, required. Oxygen and nitrogen compounds 
would inhibit the HDS of sulfur compounds owing to 
competitive adsorption between the oxygen and sulfur 
included in the compounds [16]. 

Figure 7: Spectra of cresol and n-paraffins created from  
GC-FID and GC-MS.

Figure 6: Relative reactivity of  HDS reactions calculated  
from 2.25 of a reaction order.
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 According to previous work under JICA’s  
research, it is also possible that nitrogen compounds 
such as quinoline may poison the active site for HDS 
of S-compounds in bio-oil. The inhibiting effects were 
found to increase in residual S-compounds in the order 
as DBT (2.71−3.69 times) > 4MDBT (1.96−1.28 times) 
> 46 DMDBT (1.16 times) for HDS of LGO-HWT-MD.  
The inhibition was similar in the transformation of 
DBT and 4MDBT for all catalyst types. In the case of 
46 DMDBT, the inhibition was found in HDS reaction 
using NMA catalyst, however; the inhibiting effect on 
46 DMDBT was lower than the effects on DBT and 
4MDBT. It is interesting that the 46 DMDBT was 
increasingly dehydrosulfurized if  HDS of  LGO-HWT-
MD using CoMo catalysts. It is imperative to do further 
research achieve more understanding about these data.

3.6  Effects of catalyst types on HDS, HDO and 
HDN reactions

Molybdenum supported on alumina promoted by 
nickel or cobalt comprises the important catalysts for 
petroleum hydrotreating process. Thus, commercial  
catalysts (CMA and NMA) and the synthesized catalysts 
were ivestigated for a comparison. The commercial  
catalysts provided higher activity in LGO and LGO-
HWT-MD reactions those can be seen the evidences 
in Figure 4. 
 In terms of kinetics results, the rate constant values  
(k) of HDS using CMA (k = 2.0×10-4 ppm-0.25.hr)  
illustrated that CMA was the best catalyst for HDS of  
LGO, while k values of HDS using NMA (k = 4.0×10-5  
ppm-0.25.hr) was more suitable for LGO-HWT-MD. 
The k value of HDS using the prepared catalyst 
(310CoMoA) for LGO was 2.0×10-5 ppm-0.25.hr and 
the value for LGO-HWT-MD was 5.0×10-6 ppm-0.25.hr.  
It implies that 310CoMoA gives lower performance 
than the two commercial catalysts. (Figure 8).
 In this work, the data cannot explain whether 
which reaction pathway that CoMo and NiMo  
catalysts will promote. The catalysts ordinarily 
performed the HDS reaction of DBT, 4MDBT and 
46DMDBT through two pathways; HYD and direct 
desulfurization (DDS) for diesel fuel. As a state of 
art, the successive DDS pathway is more enunciated 
for the CoMo catalysts, but not for NiMo catalysts 
[17]. The HYD route is more important in the HDS of 
DBT and 46DMDBT over NiMo [18]. The synthesized  

310CoMoA catalyst has lower activity than the both 
commercial catalysts in the both cases. In terms of  HDO 
of LGO-HWT-MD, %HDO implies that commercial  
NMA establish more activity for HDO of cresols than 
the others do. As the results (Figure 5), %HDO values 
are pretty low for HDO of cresols that may be because 
of the effect of alumina support. Bui stated that the 
use of alumina support for CoMoS causes methyl-
substitution reactions after C (sp3)–O cleavage. The 
methyl-substituted reaction would create cresols, so 
higher amount of cresol than expected was detected  
[19]. HDN of LGO-HWT-MD gives the similar  
tendency of catalyst activities as HDO.  

3.7  Effects of mixed oxide support on HDS reactions 

It is well known that a catalyst support also affects 
on HDS, therefore; one of enhancements of catalyst 
activities is a catalyst support modification. Mixed 
oxide supports have received high attention in current 
research. Molybdenum sulfide supported titania has 
attracted contemplation for HDS reaction. There was 
publication maintained that Mo catalysts supported 
on titania are four times more active for thiophene 
of the HDS than those supported on alumina [20].  
Conversely, using single titania support would face 
some impediments, because the titania support  
presents low specific surface area (titania ~50 m2/g 
and alumina ~ 200 m2/g) and poor thermal stability 
of the anatase phase at high temperatures [20]. The 
results from Figure 9 and Figure 10 substantiate that 
the incorporation of TiO2 into Al2O3 had a positive 

Figure 8: Relative reactivity of HDS reactions using 
different catalysts (at 340ºC) and they calculated from 
2.25 of a reaction order.
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influence on activity of CoMo catalysts for HDS of 
LGO and LGO-HWT-MD.
 It was found that catalyst supported on alumina - 
titania with 43 wt% (TiO2/ (Al2O3+TiO2)) or 1:0.75 by 
weight (Al2O3:TiO2) showed the highest HDS activity 
compared to catalysts supported on alumina -titania of 
other compositions. The relative reactivity plots also 
supported the %HDS values (Figure 10). The highest  
reaction rate constant appeared in reactions using catalyst  

supported on alumina - titania with 1:0.75 by weight 
of Al2O3:TiO2. These results are quite different from 
previous research. Maity studied on characterization 
of HDS catalysts supported on Al2O3-TiO2 for Maya 
heavy crude. They observed that intrinsic HDS activity 
was highest with TiO2:Al2O3 ratio of 1:1. That catalyst 
support showed 5 times higher than Al2O3 support and 
2 times higher than TiO2 supported catalysts [21].
 Olguin found that if TiO2/(Al2O3+TiO2) lower 
than 0.9, the supports appeared to have surface  
properties close to those of pure Al2O3 [8]. The  
difference of results may be due to rationale of feeds 
and catalysts preparation. The methodology of catalyst  
support preparation affected to catalytic activities 
[22]. Leliveld gave an explanation about catalyst 
support preparation whether during the preparation 
CoMoO4 can be formed on titania the promotion of 
Mo with Co. The CoMoO4 will provide less active  
sulfidation. Furthermore, it is not only the total amount 
of Ti in the support that is relevant, but also the 
structures of the TiO2 species on the surface. Spectra 
from GC-FID illustrated that CMA can convert DBT 
better than the others do, but a synthesized catalysts 
has better selectivity for HDS of 46DMDBT in LGO 
than the commercial CMA catalyst has (Figure 11).  
However, synthesized 310CoMoT catalyst accepts 
more retardant effect for HDS of DBT, 4MDBT and 
46DMDBT than the other catalysts do. That implies 
the isolated TiO2 does not increase significantly 
the HDS activity of those three S-compounds. To  
accomplish better activity, the presence of reducible 
surface TiO2-like structures is essential [23]. TiO2 acts 
as an electronic promoter in catalysts for HDS. 

Figure 9: Relation between %HDS and TiO2 in the 
mixed oxide support. 

Figure 11: GC-SCD spectra for HDS reactions using 
CMA and catalysts containing TiO2.

Figure 10: Relative reactivity of HDS of LGO and 
LGO-HWT-MD (reaction temperature = 340ºC).
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 In TiO2, Ti3+ species perform as electron donors 
which can be effortlessly transferred. The Ti3+ can 
transfer through the conduction band of support to 
Mo 3d conduction band and this electron relocation 
gives an advantage for the promotion of molybdenum 
sulfidized catalysts (MoS2) used for the HDS reaction 
(Figure 12). As another fact, TiO2 has the character 
of semiconductor that can support charge transport 
in sulfidized catalysts in contrast to the insulating  
character presented by Al2O3. 
 At titania contents higher than 43 wt%, the  
percentage of HDS decreased approximately 3-6% for 
both cases. It has a limitation of TiO2 loading, since 
electronic promotion of Mo by Ti also has a boundary. 
The excessive weakening of Mo-S bonds could cause 
an unsuitable interaction between a sulfur compounds 
and an active site [23]. In the case of mixed oxides with 
low TiO2 content, titanium ions are bonded mainly via 
Ti-O-Al bridges instead of Ti-O-Ti bridges, therefore; 
the transfer of electrons does not happen as easy as 
for Ti-O-Ti bonds [24]. Sulfidation on mixed oxide  
supports (Al2O3-TiO2) is more efficient over composite 
supports than over pure Al2O3 or TiO2 [24]. Ramı ´rez 
also claimed that catalysts containing TiO2 is suitable  
for deep HDS, since there is the formation of a greater 
number of coordinatively unsaturated sites in the 
MoS2 active phase. The formation favors HDS via a  
46DMDBT pathway. Results from GC-FID consent with 
this claim as 310CoMoAT with 20 and 43 wt% could  
reduce 46DMDBT more than CMA in the LGO reaction. 
 The observation of HDN percentage gave the 
same tendency as the HDS percentage inclination  
(Figure 13). The maximum activity was observed in 
the reaction using the catalyst consisting of 43 wt%  
of TiO2 and the lowest activity went to catalysts  
containing 20 wt% of TiO2. 

 There is a little bit different in terms of HDO  
reaction. The 310CoMoAT containing 33 wt% of 
TiO2 gave highest activity for HDO of cresols in 
LGO-HWT-MD, however; the hydrotreating activity 
of synthesized catalysts were still low compared to 
commercial NMA and CMA catalysts (Figure 14). 
These results agree with the state in publication of Bui. 
HDO reactions principally occurred with lower rate for 
titania supported CoMoS system [3].

4 Conclusions

The result data of this study presented in this paper 
for synthesized HDS catalysts, many characteristics 
can be highlighted as following details. Even though 
reaction temperature at 320ºC can be used for HDO of 
bio-oil models, according to previous work of JICA’s 
project, it is not appropriate for HDO of cresols in 

Figure 12: Scheme of the promotional effect of  Ti over  
Mo-HDS catalysts [23].

Figure 13: Effect of TiO2 loading in the mixed oxide 
support on %HDN of LGO-HWT-MD reaction.

Figure 14: Effect of TiO2 loading in the mixed oxide 
support on %HDO of LGO-HWT-MD reaction. 
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the real coprocessing bio-oil as LGO-HWT-MD. 
Therefore, reactions were operated under 340ºC. The 
340ºC of reaction temperature and 2 hours of reaction  
period provided a positive effect on the catalyst  
activity. Actually, at least three reaction temperatures  
and periods should be investigated in order to  
determine the rate constant statistically. This work 
was preliminary work for catalyst screening via batch 
reactors to observe an initial catalyst activity for further  
catalyst development. The current work of the project  
are addressing on the investigations of optimum condition  
of a bio-oil HDS reaction and catalyst performances; 
selectivity, activity, kinetics and degradation, in a 
continuous reactor. 
 Throughout HDS reactions HDO and HDN  
reactions were observed, O- and N-compounds  
reveal inhibiting effect on the HDS reaction for 
LGO-HWT-MD.  In terms of catalyst support effects, 
Ni is a better promoter for Mo-A based catalyst for  
hydrotreating reactions. The synthesized catalysts  
supported on titanium-rich and pure titania carriers 
exhibit higher activity for HDS, HDO and HDN re-
actions than those supported on pure alumina, since 
TiO2 is an electronic promoter in HDS catalysts. The 
electronic promotion of Mo by Ti has a limitation, 
consequently the 310CoMoAT catalyst with 1: 0.75 
of alumina: titania ratio presents the best catalytic  
behaviour on the activity of HDS, HDO and HDN 
among other synthesized catalysts. The 310CoMoAT 
(1:0.25) shows the worst performance, because at 
low TiO2 content, the mixed oxide catalysts have 
more character of insulator for sulfinding catalysts. 
Sulfidation on mixed oxide supports (Al2O3-TiO2) is 
more efficient over composite supports than over pure 
Al2O3 or TiO2.
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