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Abstract
Microfibrillated cellulose (MFC) was prepared by controlling the re-precipitation of cellulose prepared 
in the mixture form of NaOH/Urea solubilized microcrystalline cellulose (MCC) and starch. The cellulose  
re-precipitation was carried-out in an HCl bath, resulting in a MFC form having relatively lower crystallinity 
than MCC. The XRD pattern of MFC indicated the partially crystalline structure arising from the imperfect 
orientation of a cellulose chain obstructed by a starch molecule in the precipitation step. Interestingly, the 
MFC morphology exhibited a web-like structure with a diameter in the range of 10-20 nm. The water retention 
value of MFC was extraordinarily high due to its extremely small diameter having high surface area. Further, 
surface silanization of MFC with organosilane was carried out. Then, the modified MFC was melt-mixed with 
polypropylene (PP) matrix via a simple melt mixing technique. The morphology and crystallization of the  
PP/MFC composites were measured. The morphology of organosilane treated MFC exhibited agglomeration of 
10 microns in diameter with layered structures arising from the packing of microfibrils. The FTIR spectra showed 
hydrophobic characteristics of treated MFC observed by the disappearance of original cellulose hydroxyl group 
and bound water. The crystallinity of treated MFC increased when compared to the untreated MFC, indicating 
that cellulose chains of unmodified MFC underwent re-orientation occurring in the modification step due to its 
high crystallinity characteristic. For the PP/MFC-composite containing MFC loading, faster crystallization and 
higher spherulite growth rate, in case of higher MFC loading, were observed. In addition, the spherulite size 
decreased with an increase in the crystallization temperature. However, the degree of crystallinity was fairly 
independent on the MFC-loading. Therefore it can be concluded that the addition of MFC might enable shorter 
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1 Introduction

Polypropylene (PP) is the most widely used and fastest 
growing classes of thermoplastic polymers found in 
various industries. It exhibits a good balance between 
physical and mechanical properties as well as an ease 
of processability at a relatively low cost. However,  
the usage of PP is still limited by its comparatively  
low modulus and stiffness when compared to  
engineering plastics [1]. To overcome these limitations, 
an incorporation of reinforcing fibers such as glass  
fibers/carbon fibers or fillers such as calcium carbonate  
[2], titanium dioxide, [3] and silicon dioxide, [4-6],  
is the most popular method. Moreover, several attempts 
have been used either natural fibers [7] or synthetic  
fibers [8] to enhance the properties of polymer. Polymer/ 
cellulose composites are interesting branches in the 
field of composite materials [9-15]. Chemically, the 
structure of cellulose consists of anhydroglycoside 
repeating units (AGU)). Interestingly, cellulose 
can be found in a variety of different forms such as  
microcrystalline cellulose, microfibrillated cellulose 
and nanocrystalline structures. Microcrystalline  
cellulose (MCC) is the most well-known form which 
has been widely investigated as a potential reinforcing 
filler for polymers. According to the literature, MCC 
is easily prepared by reacting cellulosic materials 
(cotton or wood pulp) with an aqueous solution of 
strong mineral acids preferably hydrochloric acid at 
boiling temperature for a period of time. A hydrolysis 
reaction removes the amorphous cellulose, leaving 
microcrystalline cellulose existing in a rod shaped 
particle with a micron-sized range particle [16,17]. 
Recently, microfibrillated cellulose, MFC, also called 
cellulose microfibrils, microfibrillar cellulose or 
nanocellulose, has attracted a great attention in the 
field of polymer nanocomposites. When compared to 
MCC, MFC has an interesting characteristic including 
a high aspect ratio, a rigid web-like structure, high 
strength and stiffness as well as a high surface area. 
Therefore, polymer nanocomposites containing MFC 
could offer superior performance when compared to 
conventional polymer composites such as higher Tc 
(crystallization temperature), higher modulus E, better 

barrier properties and lighter weight [18-20]. Apart 
from nanocomposite fields, MFC can be employed as 
thickening agent, emulsifier or additive in food, paints, 
coatings, cosmetics and medical products [21]. 
 Structurally, MFC is consist of elementary fibrils 
aggregation with a diameter from 20 to 60 nm and  
a length of several micrometers [22,23]. 
 The conventional methods of MFC extraction 
from cellulosic materials typically involve mechanical  
treatments such as homogenizing, microfluidizing, 
cryocrushing or grinding. However, the drawbacks 
of these techniques are high energy consumption 
and low output. To solve this problem, pretreatments 
such as enzymatic treatments, 2,2,6,6-tetramethyl-
1-piperidinyloxy (TEMPO) mediated oxidation and 
carboxymethylation have been developed to overcome 
the strong cohesive hydrogen bonding among adjacent 
microfibrils [22,23].
 In this work, the preparation of MFC was  
modified based on dissolution techniques. These  
techniques are commercially employed in the rayon 
process and tencel process. Solvent systems such as 
aqueous inorganic complexes (e.g. cuoxam, cuam, 
cuen), aqueous bases (e.g. 10% NaOH), mineral 
acids, melts of inorganic salt hydrate, N, N-dimethyl-
acetamide/LiCl, dimethylsulfoxide/triethylamine/
SO2, NH3/NH4SCN, CF3COOH, HCOOH and N, 
N-dimethylformamide/N2O4 have been selected  
for dissolving the cellulose fiber [24,25]. However, 
some solvents were tried a laboratory only due to 
the volatility, toxicity and high cost [26]. Common 
aqueous NaOH systems including NaOH/urea and 
NaOH/thiourea solution are widely used for cellulose 
dissolution. In practice, cellulose could be dissolved 
in a pre-cooled solution containing a 7 wt% NaOH / 
12 wt% urea system [27-29].
 In our work, MFC from cotton source was  
prepared by dissolution of cotton MCC in a NaOH/urea 
system. Then, alkali solubilized starch solution was 
added to obtain a cellulose/starch miscible mixture. 
After that, controlled precipitation in an HCl solution 
was conducted to convert solubilized cellulose into 
MFC which was evenly dispersed in the starch matrix. 
Upon standing for 6 h, the starch matrix acting as 

cycle times, resulting in cheaper processing cost in a view point of polymer processing.

Keywords: Composites, Microfibrillated cellulose, Morphology, Crystallization
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anti-coagulating agent was slowly hydrolyzed by acid 
hydrolysis, leaving extremely fine MFC. However, the 
direct addition of hydrophilic MFC into a hydrophobic  
polymer led to extremely poor dispersibility due to MFC 
hard aggregation. Therefore, a surface modification  
of the MFC with an organosilane was carried out.  
The organosilane treated MFC was then incorporated 
into polypropylene. 
 The aim of our work was to study the morphology  
of a newly prepared MFC and its effect on the  
crystallization behavior of PP/MFC-composites which 
was compounded via a simple melt mixing technique.

2 Experimental

2.1  Materials

Microcrystalline cellulose (MCC) obtained from 
acid hydrolysis of cotton fabric waste, sodium  
hydroxide pellet (Ajax finechem, Pty., Ltd.), urea (Ajax 
finechem, Pty., Ltd.) hydrochloric acid 37% (QRëc),  
hexadecyltrimethoxysilane (Dynasylan 9116, Evonik), 
glacial acetic acid (VWR), isopropanol and food grade 
tapioca starch flour were used for the MFC preparation.
 As matrix material polypropylene PP (PP HD120 
MO, Borealis GmbH, Burghausen, Germany) was used 
as received by Borealis.

2.2  MFC preparation

2.2.1 Microcrystalline cellulose preparation

MCC was prepared by acid hydrolysis of cotton fabric 
according to the method of Rattanakamnuan et al [30]. 
The cotton fabric was cut into approximately 2 cm × 2 cm  
pieces and then heated and stirred in 2.5 N HCl for 2 h.  
At the end of the reaction, microcrystalline cellulose was 
filtered and washed until the pH value became neutral.  
The MCC was then dried in an oven at 60°C over night.

2.2.2 Microfibrillated cellulose preparation (ref. Thai 
patent no.1301002478 (pending))

A 5 %w/v MCC solution was prepared by adding 
MCC into cooled NaOH/urea/H2O (7:12:81 by weight) 
at -5.0°C and stirred continuously to obtain a slurry 
mixture. The slurry mixture was kept at -5.0°C until 
the MCC particles were completely dissolved and 

the solution became transparent. In parallel a 5% w/v 
starch solution was prepared by dissolving starch in 
water, followed by dropping a 5% w/v NaOH solution  
to gelatinize the starch until the solution became  
gel-like and transparent. Then, the starch solution was  
added to the MCC solution and stirred to obtain a  
homogeneous MCC/starch solution. MFC was obtained  
by precipitating the cellulose/starch solution in an HCl 
solution. In acidic media, the MFC colloid was formed 
and stabilized by starch gel as an anti-coagulating 
agent. Upon standing for 6 h, the starch part was  
hydrolyzed by a strong acid, leaving the MFC dispersion.  
Filtration and washing with distilled water were carried 
out to remove HCl until the pH-value became 5. Then 
solvent exchange with methanol was conducted. For 
comparison purposes regenerated MCC was prepared 
without the starch solution by dissolution of MCC in 
a NaOH/Urea solution by the same method as MFC 

2.2.3 Surface modification of MFC

M F C  w a s  m o d i f i e d  b y  D y n a s y l a n  9 11 6  
(hexadecyltrimethoxysilane). 150 ml of dynasylan 
9116: isopropanol: H2O mixture (1:1:1 by volume) 
was added to 100 g of MFC and stirred continuously. 
Acetic acid was dropped into the mixture until the pH 
was 3 to activate the silanization reaction. The mixture  
had been continuously stirred for 3 h at ambient  
temperature and then dried at 60°C for 24 h. The dried 
organosilane treated MFC was ground and sieved by 
sieve no. 400 mesh.

2.3  PP/MFC composite preparation

2.3.1 Melt Mixing 

PP Pellets were wrapped in a polyimide film, heated 
up to 200°C on a hot plate and kept there for 2 minutes  
until the PP was molten completely. The molten material  
was then manually flattened, removed quickly from the 
hot plate and quenched to a thin film of about 0.7 mm  
on a cold steel surface. Subsequently organosilane 
treated MFC powder was applied to the top of the solid 
PP-film and the stack was re-molten on the hot plate 
again. In the molten state the stack was fold up several  
times to prepare a composite with homogeneous  
dispersion and distribution of the filler. This thickness 
of the final film was roughly 0.7/±0.2 mm. With this 
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procedure, two different loading levels (1 vol.% and 
4 vol.%) of PP/ MFC-composites were prepared. The 
procedure was also applied to the neat PP in order to 
guarantee the same thermal history in every specimen.

2.3.2 Thin film preparation

A  small piece of material was cut from the solid PP-film,  
which has been prepared according to 2.3.1 and treated 
equally as described in section 2.3.1. However, to prepare  
a thin film the molten specimen was compressed 
and quenched to finally get a film thickness of about 
25/±5 µm. 

2.3.3 Chemical etching

A piece of specimen as prepared in accordance  
to section 2.3.1 was chemically etched [31,32] 
with a solution consisting of 0.7% weight/volume  
potassium permanganate crystals and a mixture of  2:1 
by volume 98% sulphuric acid and 85% phosphoric 
acid as described by Schlarb et al [5] in detail.

3 Characterizations

3.1  Characterizations of MFC and organosilane 
treated MFC

3.1.1 Water Retention Value, WRV

The water retention value of MFC was measured to 
identify the water content held by MFC. A certain 
amount of MFC was dispersed in deionized water 
in a centrifuge tube for 24 h at ambient temperature 
and then the sample was centrifuged at 30 Hz for 20 
min. The wet samples were weighed, Ww and dried in 
an oven for 24 h at 105°C, then the dry weight was 
recorded, Wd [33]. The WRV was calculated by the 
following formula:

 (1)

3.1.2 Morphology 

The morphology of MFC was investigated by a field 
(cold cathode) emission scanning electron microscope 

(FE-SEM. Hitachi S-4800, Japan). Carbon (thickness: 
ca. 5 nm) was used as a conducting layer. A transition 
electron microscope (TEM, TECNAI T20 G2, FEI and 
Netherlands) was employed to investigate morphology 
of MFC. A drop of 10 µl of re-dispersed MFC in water 
was added onto a carbon-coated electron microscopy 
grid and the excess liquid was absorbed by filter paper. 
The samples were negatively stained with 2% uranyl 
acetate. The morphology of organosilane treated MFC 
was observed by a scanning electron microscope (JSM 
6460 LV, Jeol, Japan) with accelerating voltage 15 kV. 
The sample was dropped on a carbon tape and coated 
with gold by a sputter coater.

3.1.3 Dispersion of MFC

The dispersion of organosilane treated MFC in 
toluene was investigated by an optical microscope 
(ECLIPSE LV100, Nikon GmbH, Düsseldorf). The 
sample was dispersed in toluene and then dropped on 
a glass slide and covered by cover slip. Two modes of  
optical microscopy including reflection light mode and 
transmission light mode without polarized light were 
used for investigation. 

3.1.4 Particles Size Distribution

Particle size distribution of organosilane treated MFC 
powder was investigated by a static light scattering 
technique using a laser particle size analyzer (LA-950,  
HORIBA, Japan). The powder was dispersed in toluene  
and then dropped into a sample flow cell before 
measurement. Toluene was used as a medium standard 
solution in a flow cell.

3.1.5 X-Ray Diffraction

The crystallinity of MCC, regenerated MCC, MFC 
and organosilane treated MFC was characterized by an  
X-ray diffractometer (D8 advance, Bruker, Germany) 
by reflection method using a Cu Kα target at 40 kV 
with the diffraction angle range from 5 to 40°. 

3.1.6 Fourier transform infrared spectroscopy 

The functional groups of MFC and organosilane 
treated MFC were investigated by a Fourier transform 
infrared spectrometer (Nicolet 6700, Thermo Electron 
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Corporation) using transmission mode. A sample for 
characterization was prepared by KBr pellet technique.

3.2  Characterizations of PP/MFC composites

3.2.1 Optical microscopy

In order to reveal the dispersion and distribution of 
the materials, thin films (see 2.3.2) were applied onto 
a glass substrate and covered by a cover slip. Then 
the materials were analyzed under transmitted light 
using an optical microscope (ECLIPSE LV100, Nikon 
GmbH, Düsseldorf).
 The solidification process of the materials as 
obtained from non-isothermal crystallization and the 
spherulite growth rate as obtained from isothermal 
crystallization were observed by the same polarized  
light microscope equipped with a heating stage  
(LTS 420, Linkam Scientific Instruments, Surrey). The 
development of the spherulitic structure was recorded 
by a CCD camera. 
 For the crystallization studies, the specimens 
were heated to 200°C at a rate of 20K/min and held 
for 2 min at this temperature. Then, for non-isothermal  
crystallization the material was cooled to 30°C at 
20K/min. 
 For isothermal crystallization, the specimens 
were cooled at the rate of 20K/min to various given 
crystallization temperatures (130°C, 132°C and 134°C) 
and held constant until completion of crystallization 
was observed. The radial growth rate of the spherulites 
was calculated using the recorded movies to measure 
the size of PP spherulites as a function of time. Five 
spherulites of each specimen were characterized. 
 Each crystallization experiment was repeated at 
least 2 times in order to verify the reproducibility of 
the experiment. 
 The etched surfaces of the specimens were also 
characterized by the same optical microscope using 
reflection light with differential interference contrast, 
DIC. For qualitative analysis, the spherulite size was 
measured according to the ASTM E112-10 standard 
for grain size determination [34].

3.2.2 Differential scanning calorimetry, DSC

The thermal properties were determined using DSC 
(TA Q20, TA instruments, Eschborn). An indium 

was used as a reference material to calibrate both the  
temperature scale and the melting enthalpy. The  
nitrogen gas was purged throughout the measurement. 
The weight of each specimen was always 5 to 10 mg. 
The specimen was placed in an aluminium pan and 
then was completely sealed with aluminium lid. The 
material was heated up from 0°C to 200°C at 10°C/min 
of heating rate and then held at this temperature for  
3 minutes to remove the thermal history. The specimen  
was then cooled from 200°C to 0°C at 10°C/min of 
cooing rate. To minimize thermal degradation each 
specimen was used only one time. The crystallization 
temperature, Tc was determined from the maximum of 
the exothermic peak. The degree of crystallinity was 
calculated using the following equation: 

%Xc = (ΔHf / ΔH°f w) × 100  (2) 

 where ΔHf is the heat of fusion of the specimen 
(J/g), ΔH°f   is the heat of fusion of a theoretically 100% 
crystalline PP (209 J/g) [35] and w is the mass fraction 
of PP in the composite.

4 Results and Discussion

4.1  MFC and organosilane treated MFC

4.1.1 Water retention value

Percent WRVs of MCC, regenerated MCC and MFC  
as shown in Figure 1 are 222 %, 1740 % and 2022 %, 
respectively. In this case, WRV is related to the web-like  
structure of tiny microfibrils with high surface area. 
As seen in Figure 2, MFC exhibits web-like structure 
with the smallest in size, followed by regenerated  

Figure 1: Water retention value of MCC, regenerated 
MCC and MFC.
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MCC and then MCC. The achievable web-like structure  
of MFC was due to the anti-coagulation effect of starch 
on retarding the agglomeration of cellulose microfibrills  
occurring in the precipitation step. As a result, The 
WRV of MFC is significantly higher than MCC as 
well as regenerated MCC. The plentiful availability of 
free hydroxyl groups on MFC surface facilitate MFC 
to present in the form of cellulose gel which is not 
observed in the case of regenerated MCC [36].

4.1.2  Morphology of  MFC and organosilane treated MFC

The morphology of MFC was investigated by FE-SEM 
and TEM shown in Figure 2a and 2b, respectively. The 
images indicate the web-like morphology of MFC. 
The diameter is found in the range of 10-20 nm and 
the length is more than 100 nm. It is noticed that some 
fibrils agglomeration can be observed.
 The morphology of organosilane treated MFC is 
found totally different from the virgin MFC as seen in 
Figure 3. 

 The organosilane treated MFC is present in the 
dense agglomerate form. In order to find out what 
type of agglomeration, organosilane treated MFC was  
dispersed into toluene to observe the degree of swelling  
prior to optical microscopy observation as shown in 
Figure 4. Obviously, Figure 4a shows the swollen 
organosilane treated MFC in toluene, indicating the 
soft agglomeration behavior. When transmission mode 
without polarized light (Figure 4b) was employed, 
those swollen particles became transparent due to the 
good swelling ability of treated MFC in hydrophobic 
medium. Then, it was anticipated that organosilane 
treated microfibrills were preferably well-dispersed 
when incorporated into PP matrix. 

4.1.3 Particle size distribution

The particle size distribution curve of organosilane 
treated MFC is shown in Figure 5. The diameter of 

(a)

(b)
Figure 2: (a) FE-SEM micrograph and (b) TEM  
micrograph of MFC. 

Figure 3: SEM micrograph of organosilane treated MFC.

Figure 4: Optical micrographs of organosilane treated 
MFC a) reflection mode and b) transmission mode 
without polarize light.
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organosilane treated MFC is found in the range of 8 
to 17 μm and the average diameter is around 11 μm. 
Micron-sized ranges of MFC are indicative of swell 
ability as well as soft agglomeration behavior of  
organosilane treated MFC.

4.1.4 Functional groups

The FTIR spectra of MFC and organosilane treated 
MFC are shown in Figure 6. The spectrum of MFC 
indicates the characteristic bands of cellulose. The 
broad band at 3,400 attributed to the stretching of the  
O-H group and the C-H stretching is at 2871 cm-1. 
The peak at 1640 cm-1 corresponds to the bending of 
bound water and the peak at 1363 cm-1 corresponds to 
O-H bending. The peak at 1153, 1041 and 899 cm-1 
is attributed to the C-O stretching of cellulose, the 
vibration of C-O-C pyranose ring skeleton and the 
characteristic of β-glucosidic linkages between the 
sugar units, respectively [37].
 The FTIR spectra of organosilane treated MFC shows 
the characteristics peak of hexadecyltrimethoxysilane  
moiety. As a result of organosilane treatment, the cellulose  
O-H stretching disappears, indicating the successful 
hydrophobicity modification. The two peaks at 2911 and  
2846 cm-1 show the characteristic of symmetric and 
asymmetric vibration of the CH2 groups, respectively. 
The peaks at 860 cm-1 and 1080 cm-1 correspond to the s 
ymmetric and asymmetric stretching of SiO2 inter- 
tetrahedral, respectively. However, the vibration peak of 
Si-O-cellulose at 1000 to 1150 cm-1 shows up weakly [38].

4.1.5 Crystallinity 

Figure 7 shows the XRD pattern of MCC, regenerated  

MCC, MFC and organosilane treated MFC, respectively.  
MCC shows the characteristic peaks of cellulose I 
crystal at 2θ = 15.0°, 16.3°, 22.9° and 34.1° [39]. 
When compared to MCC, the diffraction peaks of  
regenerated MCC is shifted from 2θ = 15-16° to 19.8°, 
corresponding to the transformation of cellulose I 
crystal to cellulose II crystal [40]. Accordingly, the  
cellulose I crystal peaks decreases. XRD pattern 
of MFC reveals that the prepared MFC is partially 
amorphous arising from the anti-coagulating effect 
of starch molecules which obstructed the packing of  
cellulose chains occurring in the precipitation step.  
After being modified, organosilane treated MFC  
exhibits an increase in the crystallinity structure,  
evidenced by the strong crystalline peak at 2θ = 21.3°.  
This phenomenon can be explained that the  
un-oriented MFC cellulose chain preferably underwent 
self-orientation (when condition was allowed) due 
to its crystalline characteristic by nature. As a result, 
the semi-crystalline MFC (before treatment) was  
transformed to crystalline MFC (after treatment). 

Figure 5: Particle size distribution curve of organosilane  
treated MFC. Figure 6: FT-IR spectra of MFC and organosilane 

treated MFC.

Figure 7: X-ray diffraction patterns of MCC, regenerated  
MCC, MFC and organosilane treated MFC.
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4.2  PP/MFC composites

4.2.1 Dispersion of MFC fibrills

Figure 8 shows optical micrographs of the materials under  
transmitted light. It reveals that an inhomogeneous  
distribution of MFC-agglomerates in the PP matrix 
filled with 1 vol.% is clearly seen. However, a better  
distribution of MFC-agglomerates can be seen in the case 
of the 4 vol.% MFC addition. The visible agglomerates  
are found in the average size of about 25 µm.

4.2.2 Solidification process

Figure 9 shows the development of the spherulitic 
structure of the different materials under polarized light 
in a hot stage. The pictures are taken during cooling 
at certain temperatures (125.3°C; 119.5°C; 115.3°C). 
 It can be seen that first spherulites are visible at 
about 125°C just with the composites, whereas the neat 
PP is still fully molten. In addition, it can be recognized 
that higher MFC loading leads to a higher number of 
spherulites at the same temperature. At about 119°C, 
the growth of spherulites occurs in all cases. However,  
the crystallization of the PP/MFC with 4 vol.% of  
MFC composite is nearly finished; the higher the filler  
content the more the area covered by spherulites taken 
at the same temperature. Therefore, it seems to be a 
matter of fact that the MFC fibrills facilitate faster 
solidification.

4.2.3 Isothermal spherulite growth rate

Figure 10 shows the spherulite growth rate of the  
different materials. As expected, the spherulite growth 
rate depends directly on the crystallization temperature  
level. In all cases, an increase in crystallization  
temperature leads to a decrease in the spherulite growth 
rate. PP and the nanocomposite with 1 vol.% MFC 
behave almost similar whereas the growth rate of the 
composite with 4 vol.% MFC is higher. Basically, the 
spherulite growth rate depends on the crystallization 
temperature and the mobility of the polymer chain 
[41]. As described in the case of iPP grafted SiO2 
nanoparticles, the shorter grafted iPP chain helped 
enhance the chain mobility, resulting in an increase in 
the spherulite growth rate at higher iPP grafted SiO2 

loading [42]. Therefore, we assume also in this study 
that the chain mobility may be promoted by interaction 
between MFC particles and the PP chains. 

Figure 8: Optical micrographs of neat and MFC-filled  
PP composites (transmitted light mode); scale bar is  
50 µm.

(a)

(b)

(c)

Figure 9: Solidification process of (a) neat PP, (b) PP-
MFC-1 vol.% and (c) PP-MFC-4 vol.%.

Figure 10: Spherulite growth rate of neat PP and MFC-
filled PP composites.
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4.2.4 Crystallization properties

Figure 11 shows the crystallization behavior  
measured by DSC. From these curves, it can clearly 
be stated that the crystallization temperature, Tc,  
shifts to a higher temperature with an increase in  
MFC loading. The neat PP exhibits a crystallization  
peak at 116.9°C. An incorporation of MFC  
particles shifts the peak to 118.5°C at 1 vol.% 
MFC and 119.0°C at 4 vol.% MFC, respectively.  
The results confirm clearly that MFC acts as  
nucleating agent for PP, which is found in a 
similar manner to the previous finding (PP/SiO2  
nanocomposite) [5].
 Figure 12 plots the degree of crystallinity, Xc of 
the materials versus the MFC-loading.
 Actually, Xc seems to be almost independent on 
the filler loading.

4.2.5 Spherulitic structure

The optical micrographs in Figure 13 show the  
spherulitic structure of the different materials. 
The supermolecular structure of PP can be clearly  
recognized. The etching solution preferentially  
attacks the amorphous regions, leaving the crystalline 
branches essentially intact [43,44]. It is obvious that 
the spherulite size of PP filled with 4 vol.% MFC is 
smaller compared to neat PP. However, the spherulite 
shape is almost the same in all cases.
 The relative frequency of the spherulite diameter 
divided into 4 categories with 3 µm increments from 
15 µm up to 28 µm is plotted in Figure 14. The value 
X50,2 represents a characteristic value for the spherulite 
size. The index 50 is indicative of the median. The 2 
indices represent that these values were determined 
based on two-dimensional images.

Figure 11: DSC exothermic curves of neat and MFC-
filled PP composites.

Figure 12: Degree of crystallinity of neat and MFC-
filled PP composites.

Figure 13: Spherulite structure of neat and MFC-filled 
PP composites.

Figure 14: Cumulated relative  frequency as a  function of  the  
spherulite diameter of neat PP and PP/MFC-composites.
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 Obviously, the median of the diameter distribution  
X50/2 shifts to a lower diameter range with an increase 
in MFC loading. When taking into consideration that 
the difference in the distribution of MFC is quite  
different (as seen in Figure 8) the nucleation density is 
reasonably responsible for a decrease in the spherulites  
size; the higher the filler loading the better the  
dispersibility of agglomerates as well as the higher 
number of nuclei [45]. These results shown in Table 1 
are also found in-line to our previous work of PP/SiO2 
nanocomposites [6]. 
 Table 1 summarizes the spherulite growth rate 
dr/dt @ 132°C, the temperature of the first visible 
solidification Ts1, the crystallization temperature Tc, 
the degree of crystallinity xc and the resulting mean 
spherulite size X50,2 of PP and the PP/MFC-composites.

Table 1: Characteristic data of the morphology
dr/dt,
µm/s

Ts1,
°C

Tc,
°C

xc,
%

dS(X50,2),
µm

PP 0.17 128.5 116.9 52.5 19
PP/MFC-1 0.16 129.8 118.5 51.6 18
PP/MFC-4 0.20 131.5 119.0 51.9 16

5 Conclusions

MFC could be prepared from a dissolution/ precipitation  
technique by dissolution of MCC in cooled NaOH/
Urea solution and then precipitation in an HCl 
bath using starch as an anti-coagulating agent. The  
morphology of MFC exhibited a web-like structure 
and a diameter in the range of 10-20 nm. The water  
retention value of MFC was higher than MCC and 
regenerated MCC due to the smaller diameter and 
higher surface area. The XRD pattern of MFC  
indicated the partially amorphous structure because 
of the imperfect orientation of cellulose chains 
obstructed by starch molecule occurring in the  
precipitation step. The organosilane treated MFC showed  
hydrophobic characteristics with the disappearance of 
the original cellulose hydroxyl group and bound water.  
Its crystallinity increased when compared to virgin 
MFC. However, the modified MFC exhibited the 
agglomeration with layer structure arising from the 
packing of microfibrils. 
 The effect of the addition of MFC particles on the 
morphology and crystallization of PP was examined by 
optical microscopy and thermal analysis. The results 

showed clearly that MFC particles facilitate faster 
solidification of the material, especially at higher filler 
loading. Moreover, the addition MFC accelerated the 
spherulite growth rate of PP. Based on the significant 
nucleation ability of MFC surfaces, the crystallization  
temperature (Tc) increased with an increase MFC 
loading, leading to faster crystallization. However, the 
degree of crystallinity was independent on the filler 
loading despite the decrease in spherulite size with 
an increase in MFC loading. In summary it could be 
stated that the addition of MFC definitely led to faster 
solidification which might enable shorter cycle times,  
resulting in lower processing cost in polymer processing.
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