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Abstract
Plant disease is the most common problem in agriculture. Usually, the symptoms appear on leaves of the 
plants which allow farmers to diagnose and prevent the disease from spreading to other areas. An accurate and  
consistent plant disease recognition system can help to prevent the spread of diseases and to save maintenance 
costs. In this research, we present a plant leaf disease recognition system using two deep convolutional neural 
networks (CNNs); MobileNetV2 and NasNetMobile. These CNN architectures are designed to be suitable for 
smartphones due to the models being small. We have experimented on training techniques; online, offline, 
and mixed training techniques on two plant leaf diseases. As for data augmentation techniques, we found that 
the combination of rotation, shift, and zoom techniques significantly increases the performance of the CNN 
architectures. The experimental results show that the most accurate algorithm for plant leaf disease recognition 
is NASNetMobile architecture using transfer learning. Additionally, the most accurate result is obtained when 
combining the offline training technique with data augmentation techniques.

Keywords: Plant leaf disease recognition, Deep learning, Convolutional neural networks, Transfer learning, 
Data augmentation
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1 Introduction

Deep learning is currently combined with computer 
vision and artificial intelligence to help detect and 
recognize images and videos, as well as to help solving 
problems in different areas. For example, in medicine, 
deep learning is used in medical image classification 
[1], magnetic resonance imaging (MRI) [2], retinal 
image quality [3], brain abnormality classification [4], 
and sperm morphology analysis [5]. In the industrial  
arena, the deep belief network (DBN) is used in the 
process monitoring process employing industrial  
process images [6] and concrete pore structure [7].
 In agriculture, deep learning is proposed for use in 
conjunction with the internet of things (IoT) technology  
and unmanned aerial vehicles (UAV) [8] to develop 
intelligent agriculture systems, such as agricultural  
environment prediction with long short-term memory 

(LSTM) and gated recurrent unit (GRU) to analyze data for 
temperature, soil moisture, pollution index, wind pressure,  
wind speed, and wind direction [9]. Deep learning and IoT  
used in agriculture results in higher quality agricultural  
products and also a reduction in the cost of farming.
 The main problem that directly affects agricultural  
products is abnormalities caused by plant diseases 
and insect pests. Farmers must have knowledge and 
expertise to diagnose or solve problems in order to 
prevent and resolve them quickly and to avoid the 
spread of disease to a wider area. In this study, plant 
diseases that show leaf symptoms were divided into 
two main characteristics as follows: 1) the stage of 
disease formation may be the initial stage or the stage 
where a disease is widely spread and 2) some plant 
diseases have similar symptoms. If farmers lack the 
knowledge and fail to diagnose plant diseases, yields 
may be damaged. Therefore, many researchers have 
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developed plant disease identification based on the 
leaves of plants such as rice, tomato, cucumber, apple, 
grape, and cassava [10]–[13]. Furthermore, most plant 
diseases can be symptoms on by leaves.
 This research studies deep learning that can be 
used in the plant leaf disease recognition system.  

The objective is to study the architecture of  
convolutional neural networks (CNNs) to create smaller  
models, including MobileNetV2 and NASNetMobile, 
and to perform scratch and transfer learning for training  
speed and recognition accuracy with the aim of having 
an efficient and small model for use in applications on 
a smartphone.

The performance of the deep learning method 
is improved when combining data augmentation 
techniques and training techniques. In this paper, the 
image manipulation techniques consisting of width and 
height shift, rotation, zoom, brightness, cutout [14], 
and mixup [15] are used. We also test on three training  
techniques, including offline, online, and mixed methods.

We examine the proposed deep learning  
method on two sets of plant leaf disease data: the leaf  
disease and iCassava 2019 datasets.We found that 
the NASNetMobile architecture outperforms the  
MobileNetV2 architecture on the two plant leaf disease 
datasets when applying the offline training technique 
and the data augmentation, including rotation, shift, 
and zoom.
 This paper is organized in the following way.  
Section II, we present a review of related work. Section III  
describes the background theory of two deep learning  
architectures, MobileNetV2 and NASNetMobile. 
The datasets, which are used in the experiments, are 
called plant leaf disease and iCassava 2019 datasets  
(explained in Section IV.). The experimental results and 
conclusion are presented in Section V and Section VI,  
respectively.

2 Related Work

2.1  Deep learning architectures for plant leaf disease  
recognition

Deep learning architecture is proposed for plant recognition,  
which can categorize characters of the leaf and fruit. 
Pawara et al. [16] proposed to use deep convolutional  
neural networks (CNNs), including AlexNet and 
GoogLeNet architectures. The accuracy performance 

of these CNN architectures provided more than 97% 
when using the transfer learning method. However, 
it obtained an accuracy of approximately 89% when 
training from scratch. It was reported that the transfer 
learning technique is more efficient in recognition 
and also reduces training time. Additionally, CNN  
architectures are used to recognize plant disease, for  
example in rice [10], cassava [13], tomato, and cucumber  
leaf diseases. 
 Ramcharan et al. [13] experimented on the cassava  
disease dataset using Inception v3. This CNN architecture  
obtained an accuracy of 93%. Lu et al. [11] presented a 
new architecture of deep CNN architecture consisting  
of a convolutional layer and stochastic pooling layer. 
The softmax regression was proposed as the softmax 
layer. It was found that the deep CNN architecture 
achieved 95% accuracy, while Zhang et al. [10] designed  
three channels CNN for RGB color values, called  
TCCNN architecture. Each color channel was separated  
to calculate in the specific CNN of each channel: 
CNN1, 2, and 3. The final layers of CNN1, 2, and 3 
were concatenated and delivered to the fully-connected 
layer for training and recognition. The recognition  
performance with this method was 91.15% on the tomato  
leaf disease dataset and 91.16% on the cucumber leaf 
disease dataset.
 Sun et al. [17] presented the BJFU100 dataset, a 
plant dataset taken from a natural environment, with 
10,000 images from 100 plants (ornamental plant  
species) in the Beijing Forestry University campus. 
The ResNet26 architecture was selected to test the 
number of layers consisting of 18, 26, 34, and 50 
Layers. The experiment found that the ResNet26 
architecture using SGD optimizer was fast in training 
with an accuracy of 91.78% on the BJFU100 dataset 
and accuracy of 99.65% on the Flavia dataset.

2.2  Data augmentation techniques to improve deep 
learning performance

Deep learning needs much information to create effective  
models and to avoid overfitting problems. However, 
lack of data may become a big issue in the case of 
models [18], [19]. Hence, the idea of generating 
new data based on existing data, which is called data  
augmentation, was proposed. Taylor and Nitschke 
[18] divided data augmentation into two techniques  
consisting of 1) geometric techniques: flipping, rotating  
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and cropping, and 2) image metric techniques: color 
jittering, edge enhancement, and fancy principal  
component analysis. According to an experiment on 
the Caltech101 dataset, it was found that recognition 
of the CNN architecture was only 48.13% accurate, 
but when adding data using data augmentation with  
cropping, it has increased recognition accuracy to 
61.95%. Shorten and Khoshgoftaar [19] described that 
data augmentation is divided into two main categories  
consisting of 1) basic image manipulations: kernel 
filters, geometric transformations, random erasing, 
mixing images, and color space transformations and  
2) deep learning approaches: adversarial training, 
neural style transfer and generative adversarial  
networks (GAN).
	 Mikołajczyk	 and	Grochowski	 [20]	 compared	
two techniques of creating new datasets, consisting of  
1) traditional transformation: shear, zoom in, reflection,  
rotation, contrast, histogram equalization, white balance 
and sharpen, called data augmentation and 2) GAN,  
which is commonly called data synthesis. GAN has 
the distinctive feature of style transfer, which means 
creating a synthetic image by learning from the original 
content combined with the new style. Therefore, it 
can create unlimited data in new styles, and the newly  
created synthetic image will look more realistic than 
the traditional transformation.
 Using data augmentation in plant recognition, 
Pawara et al. [21] presented 7 data augmentation 
techniques including flip, rotation, blur, contrast, 
scaling, illumination, projective for experimented 
on the AgrilPlant, Folio, and Swedish datasets. The  
experiment found that data augmentation helped to 
make the CNN techniques more accurate. The new 
images are increasing 9–25 times and also directly 
increasing learning time. When using new images 
created by rotation and contrast techniques, the CNN 
techniques obtained 98.6% accuracy compared to 
98.33% without data augmentation. The image data 
increased 17 times when data augmentation techniques 
were applied. The data used in training increased from 
2,100 images to 35,700 images. For the Folio dataset, 
it reported that the accuracy result obtained 99.42% 
when applied illumination technique and compared 
to 97.63% without using data augmentation. The data 
increased from 445 images to 4,005 images. Therefore, 
it can be concluded that data augmentation can increase 
the efficiency of CNN techniques.

3 Convolutional Neural Network Architectures

Convolutional neural network (CNN) architectures are 
part of deep learning. The distinctive feature of CNN  
architecture is the convolution operation and the number  
of layers in the architecture. For example, the layer 
of the VGGNet [22] was designed to have 16 and 19 
layer. The layer of the ResNet [23] is 18, 34, 50, 101, 
and 152 layers. Also, the layer of the DenseNet [24] is 
extended up to 264 layers. Importantly, the increase in 
the number of the layer is effected to increased network  
efficiency. However, the number of parameters is also 
increased. These architectures require devices that 
can be computed at high speed, such as the graphics  
processing unit (GPU), which is not suitable for  
smartphones and embedded devices [25].
 This research aims to study the CNN architectures 
that can create a small and efficient that is model suitable  
for smartphones comprising MobileNetV2 [26] and 
NASNetMobile [27].

3.1  MobileNetV2 architecture

Howard et al. [28] designed MobileNets architecture, also 
known as MobileNetV1, that is suitable for smartphones  
and embedded devices. Depthwise separable  
convolutions were proposed, which consisted of  
depthwise convolution and pointwise convolution 
to reduce the dimension of the number of layers and 
reduce the size of the parameter. Then, add the batch 
normalization (BN) layer and the rectified linear unit 
(ReLU) after depthwise separable convolutions in 
every step, as shown in Figure 1.
 When using MobileNets to test on the ImageNet  
dataset, MobileNetV1 had 4.2 M parameters, while 
popular architectures GoogLeNet and VGG16  
architectures had 6.8 M and 138 M, respectively. The 
experiments of the MobileNetV1 on the ImageNet 
dataset obtained the accuracy of 70.6% [28] while the 
GoogLeNet obtained the accuracy of 69.8%
 Sandler et al. [26] introduced MobileNetV2 by 
increasing invert residuals, a short connection. Inverted 
residuals were designed to manage memory problems 
by reducing the amount of tensor stored on memory 
while processing. Inverted residuals are shown in 
Figure 2. The linear bottlenecks, which is an increase 
in the number of the feature map, such as ResNet [23] 
increases a feature map from 64 to 128, 256, and 512, 
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respectively. Figure 2 shows the Linear Bottlenecks 
process, which begins with 24 maps and expands it to 
144 maps and 144 maps, respectively, then reducing 
the number of feature maps to only 24 maps before 
sending it to the next block. Also, the example shows 
that the feature map has changed up to 6 times.
 MobileNetV2 architecture can decrease the number  
of parameters and faster in computation time than 
MobileNetV1. The experiments with MobileNetV2 
obtained an accuracy of 72.0%, which was higher than 
with MobileNetV1, ShuffleNet, and NASNet [26].

3.2  NASNetMobile architecture

Zoph and Le [27] designed a neural architecture search 

network, called NASNet architecture, using a recurrent 
neural network (RNN) and reinforcement learning 
to train to obtain the most accurate parameters from 
generated architecture. Creating a CNN architecture 
requires a lot of computation time if the content is 
large, such as the ImageNet dataset. Zoph et al. [30] 
designed the CNN architecture that can search the best 
architecture from a small dataset and transferred the 
best architecture to use to train on the large data, this 
architecture called learning transferable architectures. 
NASNet architecture can be scaled according to the 
amount of data. Figure 3 shows the scalability by 
increasing the number of normal cells and reduction 
cells, which can increase normal cells as required (N 
time), and normal and reduction cells can be obtained 
through a search process using the RNN method.
 Figure 3 shows an examples of the normal and  
reduction cells obtained by searching with the controller  
RNN for the appropriate architecture from the operation  
as follows:

• Identity
• 1 × 7 then 7 × 1 convolution
• 3 × 3 average pooling
• 5 × 5 max pooling
• 1 × 1 convolution
• 3 × 3 depthwise-separable convolution
• 7 × 7 depthwise-separable convolution
• 1 × 3 then 3 × 1 convolution
• 3 × 3 dilated convolution
• 3 × 3 max pooling
• 7 × 7 max pooling
• 3 × 3 convolution
• 5 × 5 depthwise-separable convolution

 Controller RNN combines two hidden states to 
forward to the next hidden layer, as shown in Figure 4.

4 Example of Dataset

In this research, the accuracy of deep learning was  
experimented on two datasets of leaf diseases, consisting  
of the leaf disease dataset and iCassava 2019 dataset.

4.1  Leaf disease dataset

The leaf disease dataset is a collection of images of plant 
diseases, taking into account only the leaves of plants. 
Some images were collected from websites, while others  
were collected using a smartphone to take images  

Figure 1: MobileNets with the depthwise separable 
convolutions process, which consists of depthwise 
convolution and pointwise convolution. The batch  
normalization layer and the rectified linear unit are added  
at the end of every convolutional layer [28], [29].

Figure 2: MobileNetV2 with inverted residuals. Process  
for making linear bottlenecks with the increase in feature  
map from 24 maps to 144 maps and the reduction of 
feature map from 144 maps to 24 maps [26].
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of diseased leaves. As some plant diseases have similar 
symptoms, e.g. Whitefly-Transmitted [Figure 5(k)]  
and woolly aphid [Figure 5(a)] infestation the disease  
may be wrongly identified, by inexperienced examiners.  
Then, all the leaf images in the dataset were screened 
by plant disease experts. From the screening process, 
a total of 608 plant leaf images were used, divided 
into 13 classes, as detailed in Table 1. The plant leaf 
images were cropped to show only affected areas and 
adjusted to be 224 × 224 pixels, as shown in Figure 5. 

4.2  iCassava 2019 dataset

The iCassava 2019 dataset was presented at the sixth 
workshop on fine-grained visual-categorization 
(FGVC6 workshop) at the conference on computer vision  
and pattern recognition (CVPR 2019). This dataset 
contained images of 5 different diseases of cassava 
leaves, comprising 4 types of diseased cassava leaves 

and one type of normal leaf collected from Uganda. 
Farmers took images and sent them to The National 
Crops Resources Research Institute (NaCRRI) and  
AI lab in Makerere University, Kampala [31] for 
experts to sort the cassava leaves. The iCassava 2019 
dataset includes 9,436 annotated images and 12,595 

Figure 5: Sample images from leaf disease dataset, 
which consists of 13 classes consisting of (a) mosaic 
disease, (b) yellow leaf spot disease, (c) rust diseases, 
(d) narrow brown spot disease, (e) brown spot disease, 
(f) ringspot disease, (g) plant nutrient deficiencies,  
(h) leaf scald disease, (i) powdery mildew disease, (j) leaf  
miner, (k) whitefly-transmitted, (l) woolly aphid, and 
(m) healthy.

Figure 3: Scalability of NASNet designed for use with (b) CIFAR10 dataset and (c) ImageNet dataset and 
examples of (a) normal cell and (d) reduction cell [27].

Figure 4: Block of convolution cell obtained from 
searching with RNN [27].
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unlabeled images. In this research, however, we  
selected 5,656 annotated images published on the 
Kaggle website that contained four disease types and 
one healthy type, as shown in Table 2, and five types 
of cassava leaf images are shown in Figure 6.

Table 1: Details of the leaf disease dataset (consists 
of 13 types; 12 types of plant diseases and one type of 
healthy) and the number of images of leaf diseases as 
each type of plant disease

Types of Plants  No. Types of Plants  No.
Mosaic Disease 44 Leaf Scald Disease 40
Yellow Leaf Spot 
Disease

40 Powdery Mildew 
Disease

47

Rust Disease 64 Leaf Miner 43
Narrow Brown Spot 
Disease

45 Whitefly-Transmitted 51

Brown Spot Disease 42 Woolly Aphid 49
Ringspot Disease 43 Healthy 42
Plant Nutrient 
Deficiencies

58

Table 2: Details of the iCassava 2019 dataset (consists 
of 5 types; 4 types of plant diseases and one healthy 
type) and the number of plant leaf images of each type

Types of Plants  No. of Images
Cassava Brown Streak Disease (CBSD) 1,443
Cassava Mosaic Disease (CMD) 2,658
Cassava Bacteria Blight (CBB) 466
Cassava Green Mite (CGM) 773
Healthy 316

5 Experimental Result

This research studied two small convolutional 
neural network (CNN) architectures, consisting of  
MobileNetV2 and NASNetMobile, with the aim to 
identifying the best model to be applied in smartphone 
applications. Data augmentation, which includes 
brightness, shift, rotation, zoom, cutout, and mixup 
was experimented with two datasets: 1) leaf disease 
dataset with a total of 608 images of diseased plant 
leaves, divided into 13 classes and 2) iCassava 2019 
dataset with a total of 5,656 images, divided into five 
classes. In the experiment, the images were resized 
to 224 × 224 pixels before training with CNNs using 
TensorFlow’s platform. The experiment was running 
on the Linux operating system with an Intel (R) Core-i5  
computer, 2320 CPU @ 3.00GHz, 12GB RAM,  

GeForce GTX 1070Ti GPU.

5.1  Experiments on training technique and data 
augmentation

To test the hypothesis that training technique and data 
augmentation allowed CNN architecture to learn from 
limited data and increase the accuracy of recognition.  
First, we selected MobileNetV2 and trained the  
architecture using the fine-tuning technique [32].  
Second, to demonstrate the performance of the training  
technique, we experimented with three training  
techniques; online, offline, and mixed training. Finally, 
the data augmentation, called rotation technique, was 

Figure 6: Examples of five types of the iCassava 2019 
dataset used in the experiment, consisting of (a) cassava  
brown streak disease, (b) cassava mosaic disease,  
(c) cassava bacterial blight, (d) cassava green mite, 
and (e) Healthy.

(a)

(b)

(c)

(d)

(e)
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chosen with a random parameter between 0–170.  
Three training and data augmentation methods are as 
follows:

1) Offline training and data augmentation; This 
method generates new images in the pre-processing 
data scheme. The original image can create unlimited 
numbers of new images [19]. For example, from 100 
original images, each of them can generate three 
new images. In total, the number of new images will 
increase to 400 images ((100 × 3) + 100). Therefore, 
the disadvantage of the offline training technique is an 
increased training time.

2) Online training and data augmentation; In 
this method, we combine online training and data  
augmentation to generate a new image in every training 
epoch. Therefore, this method can reduce training time. 
For example, if there are 100 input images to be trained 
by CNN architecture with 200 epochs, it is equivalent 
to send 20,000 images (200 × 100) for training. 

3) Mixed training and data augmentation; This 
method is a mixture of offline and online training 
techniques. First, in the pre-processing, we use a data 
augmentation technique to generate new images. So, 
this method increases the number of training images. 
Second, to allow the CNN architecture to learn more 
diverse data, new images are regenerated in every 
epoch during training CNN architecture to create the 
best model. 
 In this experiment, we evaluate the MobileNetV2 
architecture on the leaf disease dataset. Data training 
was carried out using data augmentation, called the 
rotation technique, with a random parameter. The leaf 
disease dataset has 13 classes and contains 608 images, 
including 487 (80%) training images and 121 (20%) 
test images. 
 Table 3 shows the results of different training 
techniques and data augmentation on the leaf disease 
dataset. The results show that offline training and data 
augmentation method when randomly generating 15 
new images from one original image significantly  
outperform the other training techniques. The accuracy  
obtained from the offline training technique and data 
augmentation is 76.15%. However, it generated 7,792 
training images in the pre-processing data scheme and 
took 15 h 17 min in training. The worst performance 
was obtained while training the CNN architecture 
without data augmentation, and the accuracy decreased 
to 63.08%.

 As can be seen from the result in Table 3, it can 
be concluded that data augmentation has a direct effect 
on increasing recognition accuracy. Hence, we choose 
the offline training and data augmentation (15-image) 
technique in the following experiments.

Table 3: Results from three training techniques and 
data augmentation using the rotation technique. The 
results are computed using MobilenetV2 architecture 
on leaf disease dataset

Training and Data 
Augmentation Techniques

Training 
Time

Training 
Samples Accuracies

Offline Training + without 
Data Augmentation

1 h 
3 min

487 63.08

Online Training + Data 
Augmentation

1 h 
31 min

487 74.62

Offline Training + Data 
Augmentation (3-image)

3 h 
54 min

1,948 70.00

Offline Training + Data 
Augmentation (5-image)

5 h 
48 min

2,922 72.31

Offline Training + Data 
Augmentation (7-image)

7 h 
46 min

3,896 72.31

Offline Training + Data 
Augmentation (9-image)

13h 
26 min

4,870 74.62

Offline Training + Data 
Augmentation (15-image)

15 h 
17 min

7,792 76.15

Mixed Training + Data 
Augmentation (15-image)

21 h 
33 min

7,792 74.62

5.2  Experiments on leaf disease dataset

In this section, to compare the performance of CNN 
architectures on leaf disease recognition, using  
MobileNetV2 and NASNetMobile architectures on the 
leaf disease dataset. The objective was to compare these 
two learning methods the results show that transfer 
learning showed a better result than training data from 
scratch on the leaf disease dataset. Moreover, for testing  
the performance of data augmentation, we selected 
the basic image manipulations, which consist of seven 
techniques: rotation, brightness, width shift, height 
shift, zoom, cutout, and mixup. The new images are 
then generated according to the random parameters, as 
shown in Table 4. The example of the images obtained 
from data augmentation is shown in Figure 7.
 Table 5 presents accuracy results and execution 
times for recognition using the leaf disease dataset. The 
results show that using the fine-tuning method always 
performs better than training from scratch (around 
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15–30%). Additionally, we examine the individual  
effect of each data augmentation Technique. The results 
of these comparisons show that the zoom technique  
is the best data augmentation, followed by the rotation 
technique. The highest recognition accuracy of 96.15% 
is obtained when combining the rotation and the shift 
techniques as the data augmentation and training with 
NASNetMobile architecture. On the other hand, it 
can be concluded that the brightness technique is an 
inappropriate data augmentation on the leaf disease 

dataset because this technique eliminates important 
information from an image. When comparing model 
size between two CNN architectures, the size of the 
model obtained by training with MobileNetV2 was 
18 MB, while NASNetMobile doubled the model size 
to 36 MB.

Table 4: Data augmentation techniques and parameters 
used in the experiment

Data Augmentation Techniques Parameters
Rotation [–170, 170]
Brightness [1, 5]
Width shift [–0.2, +0.2]
Height shift [–0.2, +0.2]
Zoom [0.5, 1.5]
Fill mode Reflect
Cutout 0.5
Mixup 0.4

Table 5 :  MobileNetV2 and NASNetMobile  
architectures on the leaf disease dataset using different 
data augmentation techniques

Data Augmentation 
Methods

MobileNetV2 NASNetMobile

Time Scratch Fine-
Tuning Time Scratch Fine-

Tuning

Original image 2 h 
12 m

63.08 93.08 4 h 
50 m

68.08 92.31

Brightness 

20 h 
15 m

65.39 90.77

1 d 
11 h 
30 m

66.92 89.23

Shift 74.62 90.77 75.39 93.08

Rotation 77.69 94.62 83.08 93.85

Zoom 77.69 95.39 64.62 93.01

Shift + Zoom 82.31 93.08 84.62 92.31

Rotation + Zoom 79.23 93.85 76.92 93.08

Rotation + Shift 79.23 95.39 77.69 96.15

Rotation + Shift + 
Zoom 77.69 90.77 81.54 95.39

Cutout 64.06 93.75 77.34 93.75

Mixup 61.71 89.84 67.18 92.18

5.3  Experiments on iCassava 2019 dataset

In this experiment, we used 10-fold cross-validation 
in the training scheme. The standard deviation 
and accuracy were reported. We selected the data  
augmentation techniques; zoom, rotation+shift, and 
rotation+shift+zoom based on high accuracy results 
according to the experimental results from Table 5. 
The examples of the images generated from data 
augmentation techniques are shown in Figure 8.  

Figure 7: Examples of the (a) leaf disease images and 
samples of data augmentation images using (b) rotation,  
(c) brightness, (d) shift, (e) zoom, (f) rotation+shift,  
(g) rotation+zoom, (h) shift+zoom, (i) rotation+shift+ 
zoom, (j) cutout, and (k) mixup techniques.

(a)

(f)

(k)

(b)

(g)

(c)

(h)

(d)

(i)

(e)

(j)
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We performed two CNN architectures; MobileNetV2 
and NASNetMobile, using the fine-tuning model with 
specific parameters; Epoch = 2000, Batch Size = 64, 
Learning Rate = 0.001, and Optimizer = Stochastic 
Gradient Descent (SGD) algorithm. 
 In Table 6 we show the experimented results 
with the MobileNetV2 and NASNetMobile on the 
iCassava 2019 dataset. It can be seen from Table 6 that 
NASNetMobile architecture with combining rotation, 

shift, and zoom techniques is the best CNN architecture 
on the test set. The NASNetMobile outperforms the 
MobileNetV2 with around 1%. On the other hand, 
the MobileNetV2 obtained a slightly better result of 
around 0.9% than the NASNetMobile when tested on 
10-fold cross-validation.
 As for the computation time, it was found 
that the MobileNetV2 architecture was 2.25 times 
faster than the NASNetMobile architecture. Also, the 
model size of the MobileNetV2 is smaller than the  
NASNetMobile.
 The average values of confusion matrices on  
10-fold cross-validation are shown in Figure 10. The 
data augmentation technique is decreased misclassified.  
For recognition performance, the incorrect classification  
from CGM to CMD class is decreased from 19 to 
11 images. Furthermore, the CMD class is classified 
as the CGM class decreased from 13 images to only 
4 images. The results of the incorrect classification  
images are shown in Figure 9.

Figure 8: Examples of the iCassava 2019 dataset and 
samples of data augmentation images. (a) Original,  
(b) zoom, (c) rotation+shift, and (d) rotation+shift+zoom 
images.

Figure 9: Examples of incorrect classification on the 
iCassava 2019 dataset. (a) The images of the CMD 
class that are classified as CGM class. (b) The images 
of the CGM class that are classified as CMD class.

(a)

(b)

(c)

(d)

Table 6: A comparison of the performance of the MobileNetV2 and NASNetMobile architectures on the iCassava  
2019 dataset

Data Augmentation 
Methods

MobileNetV2 NASNetMobile
Model 
Size

Model 
Parameters Time 10-cv Test Model 

Size
Model 

Parameters Time 10-cv Test

Original

18 MB 2.26 min

12 h 
28 min 84.98 ± 1.75 81.33

36 MB 4.27 min

23 h 
26 min 78.09 ± 2.75 74.65

Zoom
4 d 
20 h

87.35 ± 0.14 80.11
9 d 
22 h

86.95 ± 0.14 79.75
Rotation+Shift 88.55 ± 1.83 83.27 87.65 ± 0.56 83.98
Rotation+Shift+Zoom 88.94 ± 2.39 83.62 88.05 ± 1.12 84.51

(a)

(b)
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6 Conclusions

This research studied and proposed two deep  
convolutional neural networks (CNNs) to create an  
efficient architecture and a small model that are suitable  
for smartphones and embedded devices and can be  
applied in a plant disease recognition system. In the 
experiment, we performed the CNN architectures on 
two plant disease datasets, consisting of the leaf disease  
and iCassava 2019 datasets. First, to find the best 
framework, we experimented with training techniques 
that allow CNN architectures to learn new data from 
various augmentation techniques. We evaluated the 
performance of the CNN architectures using several 
parameters. The best framework was the combination 
of the offline training technique and data augmentation 
techniques: rotation, shift, and zoom. On the contrary, 
the brightness technique that generated a plant leaf 
image by adding high-intensity values affected the 
plant leaf disease images by changing the white spots 
and the disease spots on the plant leaves. Hence, it 
is inappropriate for plant leaf disease recognition. 
Second, we propose to use two CNN architectures, 
called MobileNetV2 and NasNetMobile architectures, 
for plant leaf disease recognition. We are interested 
in training schemes: fine-tuning and training from 
scratch, which obtain high recognition and require less 
computation time. As a result, we found that the fine-
tuning scheme obtained better accuracy than training 

from scratch scheme and decreased its computation 
time. Consequently, MobileNetV2 architecture obtains 
a better result when the data augmentation technique 
is not applied. On the other hand, the NasNetMobile  
outperforms the MobileNetV2 when data augmentation  
is applied.
 In future work, we will concentrate on improving  
the performance of plant leaf disease recognition.  
We will study and apply other data augmentation 
techniques, such as AutoAugment [33] and neural 
style transfer [34].
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