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Abstract
This paper describes the integration of reliability centered maintenance (RCM), Statistical Forecasting  
Techniques (SFT) and cost engineering to develop maintenance and cost management on Machine in Casting 
Plant of Automotive Parts. The main objective of RCM, SFT and cost engineering is the effective maintenance and 
cost management of the components of a machine inherent reliability value. Consequently, this research aims to 
manage the costs necessary to extend the service life of a machine through the use of probabilistic methods and 
simulation techniques in order to better identify the importance of every components in a machine with respect to 
maintenance costs. As a result of this research, our costing model allows to develop a methodology to determine 
maintenance costs which must be applied to some subsets of the elements of a machine, grouped according to 
their criticality and to identify the gap of costs between the true solution and the optimal maintenance interval. 

Keywords: RCM, SFT, Cost engineering

1 Introduction

Cost engineering is the engineering practice devoted 
to the management of project cost, involving such  
activities as cost- and control- estimating, which is cost 
control and cost forecasting, investment appraisal, and 
risk analysis. Cost Engineers budget, plan and monitor 
investment projects. We seek the optimum balance 
between cost, quality and time requirements. Cost 
minimization has been always the traditional objective 
in maintenance planning; over the years, maintenance 
has been very often undervalued because of the strong 
business-oriented vision of firms managers who payed 
attention on production rather than on maintenance.  
Afterwards, the real advantages offered by the  
application of maintenance techniques have been  
understood giving them the right collocation inside the 
firm management. The present paper shows a costing 

model to manage maintenance costs and improves 
it introducing simulation techniques to diversify the 
importance of the components of a plant by classifying  
their criticality with respect to maintenance costs.

Over the years, maintenance has been very often 
undervalued because of the strong business-oriented 
vision of firms managers who payed attention on 
production rather than on maintenance. Afterwards, 
the real advantages offered by the right application 
of maintenance techniques have been understood by  
reserving a branch of engineering to maintenance and by  
defining methodologies to manage it efficiently, among 
which RCM (Reliability Centered Maintenance). 

RCM provides in fact an efficient and complete 
tool to improve maintenance policies involving service 
efficiency, plant reliability and budget and resources 
management. It allows to define maintenance plans 
of those activities which guarantee performances and 
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reliability in a component considering its importance 
and its mission in the production context. In fact, the 
maintenance services and time intervals are optimized  
considering the real criticality of the parts, guaranteeing  
their availability. Clearly, the implementation of a 
maintenance plan is not a trivial or a zero-cost operation  
and in this sense a cost analysis must be developed.
 
2 Literature Reviews

Cost minimization has been the traditional objective 
in maintenance planning. Deterministic models [1] on 
preventive maintenance optimization have established 
minima in costs based on operating cost parameters 
(repair, maintenance and acquisition). The use of  
deterministic methods, however, does not provide 
information about potential risk that results in  
nonoptimal maintenance planning for process plants 
[2]. Probabilistic models, on the other hand, use  
probability distributions to describe and represent 
natural variability and uncertainty in parameter, model 
and scenario [3]. Probabilistic models of scheduling 
preventive maintenance also minimize objective  
functions that reflect repair, replacement and preventive  
maintenance costs [4]. The preventive maintenance 
interval is optimized when the increasing rate of  
corrective maintenance costs (with respect to time) 
equals the decreasing rate of preventive maintenance 
costs.

In conducting this type of analysis, some  
important maintenance parameters must be considered:  
in general terms, it is possible to state that the 
main goal of a maintenance plan is to improve the  
availability of a production line. By defining up-time 
as the functioning time of the line and down-time 
as the off-duty time of the line due to a failure, the  
availability can be defined as the ratio between the up 
time and the sum of up-time and down-time. To improve  
this performance, one of the possible chance is to  
reduce the Mean Time Waiting for Spares (MTWS), 
i.e. the time necessary to wait for a spare when a  
substitution operation occurs.

The classical model dealing with the maintenance 
costs defines the management procedure by which the 
i-th component is substituted when it reaches a critical 
age; this time is defined, in the case of electromechanical  
components, by the number of utilization hours 
with respect to the service life, or life expectancy of 

its design. The substitution period, defined as tc, is  
considered with respect to the last intervention of 
preventive or corrective maintenance independently. 
By defining ETTC (tc) the average expected life for a 
component in the period tc asthe equation (1).

 (1)

Where R(x) is the reliability function of the 
component

The total cost between two maintenance  
interventions can be so evaluated as the sum of the cost 
related to a planned and to an unplanned intervention 
because of a failure of the component; each of those 
is weighted with its probability represented by the 
reliability and unreliability functions respectively.  
So, the total provisioning cost per time unit is the 
equation (2).

 (2)

where:
E(Ci) is the total expected cost of planned  

maintenance per time unit related to the i-th component;
E(Cpi) is the expected cost of a planned and  

preventive intervention for the   i-th component;
E(Cui) is the expected cost of an unplanned  

intervention due to a failure for the i-th component;
Ri(t) is the cumulative distribution function of the 

reliability of the i-th component.
By deriving the cost function with respect to tc 

time and setting to zero its first derivative, it is possible 
to evaluate the minimum of this equation (3) obtaining  
the optimal maintenance time which minimize the 
total costs:

 (3)

This work aims to generate a maintenance  
program that based on the RCM technique for the 
process-steam plant components. This technique 
should be able to minimize the downtime (DT) and  
improve the availability of the plant components. 
Also, it should benefits to decrease the spare parts 
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consumption system components. RCM is a systematic 
approach to determine the maintenance requirements 
of plant and equipment in its operating [5]. It is used 
to optimize preventive maintenance (PM) strategies. 

The developed PM programs minimize equipment  
failures and provide industrial plants with effective 
equipment [6]. RCM is one of the best known and most 
used devices to preserve the operational efficiency 
of the steam system. RCM operates by balancing the 
high corrective maintenance costs with the cost of 
programmed (preventive or predictive) polices, taking 
into account the potential shortening of “useful life” of 
the item considered. But it is difficult to select suitable 
maintenance strategy for each piece of equipment and 
each failure mode, for the great quantity of equipment  
and uncertain factors of maintenance strategy decision  
[7,8]. RCM philosophy employs preventive maintenance,  
predictive maintenance (PdM), real-time monitoring 
(RTM), run-to-failure (RTF) and proactive maintenance  
techniques is an integrated manner to increase the 
probability that a machine or component will function 
in the required manner over its design life cycle with 
a minimum of maintenance [9,10].

It is currently believed the application of  
probabilistic maintenance models to determine the  
optimal inspection rates considering the tradeoff  
between reliability and cost; accordingly, practical  
solutions can be obtained for the optimal inspection  
rates with the careful selection of appropriate 
probabilistic maintenance models [11]. In addition, 
the Weibull parameters are estimated using a new 
analytical method. Based on the model for optimizing 
maintenance policy for power equipment, the optimal 
number of overhauls and the optimal overhaul interval 
for minimizing the expected total maintenance cost 
are also analytically determined [12]. Several study 
cases were designed in order to test the proposed 
model, demonstrating its applicability and simplicity 
to determine an optimal maintenance policy [11,12].

On the recent basic of researches conducted in 
their better ways, Quantitative forecasting methods, 
including time series methods and causal econometric  
approaches, are used widely in industrial demand 
forecasting. Likewise, combining statistical and 
judgmental forecasts via a web-based tourism demand 
forecasting system resulted that this combination of 
quantitative and judgmental forecasts improves the 
overall forecasting accuracy [13]. Moreover, show that 

the proposed combination models can always provide 
desirable forecasting results compared to the existing 
traditional combination models [14]. In the same way, 
on many simulation results, a final combined approach 
that takes advantage of component forecasts should be 
better than the individuals,or at least equivalent to the 
best one,making it desirable to combine individuals  
to forecast wind-speed. Combined forecasting  
methodologies aggregate individual forecasting  
methods and take advantage of component models in 
order to improve the final forecasting performance 
[13,14].

3 Methodology

3.1  Our case study

This plant of foundry is capable of supplying top quality  
castings in a wide variety of alloyed cast irons, copper-
based alloys, including aluminium bronzes and related 
alloys, as well as specially formulated aluminium  
alloys, for all types of glass moulds and machinery 
parts, all having material specifications equivalent to 
those originating from industrialized countries. All 
cast irons for glass moulds are chilled and annealed 
to the strictest quality standards to ensure the best 
possible glass production quality, and to maximize  
the life span of the moulds. The plant used main  
machines on electrical motors in Figure 1 about 100 units  
in manufacturing process in this plant in Figure 2. 

Figure 1: Sample main machines in the plant.

Figure 2: Sample manufacturing process in the plant.
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3.2  RCM steps

The RCM steps are presented. The steps describe the 
systematic approach used to implement the preserves 
the system function, identifies failure mode, priorities 
failure used to implement the preserves the system 
function, identifies failure mode, priorities failure 
modes and performs PM tasks. The RCM steps are 
as follows [15]:

Step 1: system selection and data collection
Step 2: system boundary definition
Step 3: system description and functional block
Step 4: system function functional failures
Step 5: failure mode effect analysis
Step 6: logic tree diagram
Step 7: task selection.

3.3  Criticality analysis

Criticality analysis is a tool used to evaluate how 
equipment failures impact organizational performance 
in order to systematically rank plant assets for the  
purpose of work prioritization, material classification,  
PM development and reliability improvement initiatives  
[16]. In general, failure modes, effects and criticality 
analysis (FMEA/FMECA) required the identification 
of the following basic information in Table 1. Criticality  
of each machine (MC) was calculated based on the 
following four criteria:

1. Effect of the machine downtime on the  
production process (EM).

2. Utilization rate of the machine (Bottleneck  
or not) (UR).

3. Safety and environmental incidence of  
machine failure (SEI).

4. Technical complexity of the machine and  
need of external maintenance resources (MTC).

Table 1: Sample of some values of machine criticality

Part 
No.

Weight 3 3 2 1
MC Criticality 

CodeMachine 
Code SEI EM UR MCT

1 Motor & 
Pump 1 3 3 2 3 26 A

2 Motor 2 2 3 3 2 23 A

3 Motor 3 3 3 2 3 26 A

Each of the criteria was given a weight showing 
its importance relative to the criticality indices. The 
weight of each criterion ranges from zero (no effect) to 
three (very important effect). Machine criticality was 
then calculated in the equation (4) and criticality codes  
such as A (most critical machine): 20 to 27, B: 12 to 
19, C: 0 to 11.

MC = 3*EM + 2*UR + 3*SEI + I*MTC (4)

3.4  Failure Mode Effects Analysis (FMEA)

Failure modes and effects analysis (FMEA) is a step-
by-step approach for identifying all possible failures 
in a design, a manufacturing or assembly process, or 
a product or service.

This is the severity rating, or S. Severity is usually  
rated on a scale from 1 to 10, where 1 is insignificant 
and 10 is catastrophic. If a failure mode has more than 
one effect, write on the FMEA table only the highest 
severity rating for that failure mode.

For each cause, determine the occurrence rating, 
or O. This rating estimates the probability of failure 
occurring for that reason during the lifetime of your 
scope. Occurrence is usually rated on a scale from 1 to 
10, where 1 is extremely unlikely and 10 is inevitable.  
On the FMEA table, list the occurrence rating for 
each cause.

For each control, determine the detection rating, 
or D. This rating estimates how well the controls can 
detect either the cause or its failure mode after they 
have happened but before the customer is affected. 
Detection is usually rated on a scale from 1 to 10, 
where 1 means the control is absolutely certain to 
detect the problem and 10 means the control is certain 
not to detect the problem (or no control exists). On the 
FMEA table, list the detection rating for each cause.

The risk priority number, or RPN was then  
calculated in the equation (5).

RPN = (S) × (O) × (D) (5)

Risk Evaluation such as Small Risk: RPN < 
60, Medium Risk: RPN < 80 and High Risk: RPN <  
100 and Crisis Risk: RPN > 100, then we should 
consider the RPN of components with the highest 
value first.Table 2 shows a sample of some valves of  
RPN.
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On our case study, we selected the way to rate 
scores and to classify RPN as small, medium, high or 
crisis by Meetings and brainstorming ofstaff members 
such as Managers, Engineers, Chiefs, Technicians and 
Workers in Figure 3.

3.5  Maintenance Assessment of  Reliability Engineering

We applied Maintenance Assessment of Reliability  
Engineering to calculate the probability on the parameters  
of reliability. To begin with, we don’t have the data 
of Time To Fail (TTF); therefore, we applied SFT 
on Non Linear Regression, to predict our machine’s  
life time and TTF by the machine data of vibration 
in Table 3. 

Table 2: Sample of some values of RPN

No. Machine Code Features of Damage
Severity (SEV) Occurrence (OOC) Detection (DET) RPN

Information Scores Information Scores Information Scores

1 Motor & Pump 1 Having more 
vibration & higher 
temperature and 
unusual noise

It can not 
produce 
efficiently

6 Failure of 
bearing and 
gear

6 Temperature 
measurement, 
vibration analysis 
and unusual noise

6 216

Motor stopped 
unexpectedly (burns)

To stop 
production

6 Using electical 
overload

3 Daily monitoring 3 54

2 Motor 2 Having more 
vibration & higher 
temperature and 
unusual noise

It can not 
produce 
efficiently

6 Failure of 
bearing and 
gear

6 Temperature 
measurement, 
vibration analysis 
and unusual noise

6 216

Motor stopped 
unexpectedly (burns)

To stop 
production

6 Using electical 
overload

3 Daily monitoring 3 54

3 Motor 3 Having more 
vibration & higher 
temperature and 
unusual noise

It can not 
produce 
efficiently

6 Failure of 
bearing and 
gear

6 Temperature 
measurement, 
vibration analysis 
and unusual noise

6 216

Motor stopped 
unexpectedly (burns)

To stop 
production

6 Using electical 
overload

3 Daily monitoring 3 54

Figure 3: Our meetings and brainstorming of staff 
members to rate scores and to classify RPN.

Table 3: Sample of machine data of vibration
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After that, we applied SFT on Decomposition 
Method in Non Linear Regression Analysis, to monitor  
vibration and to forecast  vibration causes damage 
and TTF, by the machine data of vibrationaccording 
to the standard of ISO 10816-3 in Figure 4.We used 
Statistical Software in Figure 5-7 to estimate the 
parameters and the equation in Table 4. So, we are 
able to forecast and to summarize the data of TTF 
in Table 5. 

Figure 5: Decomposition Method in Non Linear Regression Analysis of Motor & Pump 1.

Figure 6: Decomposition Method in Non Linear Regression Analysis of Motor 2.

Figure 7: Decomposition Method in Non Linear Regression Analysis of Motor 3.

Figure 4: ISO 10816-3.
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Table 5: Summary of the data of Time To Fail: TTF 
(unit: hours)

No. Machine 
Code

Time To Failure: TTF (hours)
Period 1 Period 2 Period 3 Period 4 Period 5

1 Motor & 
Pump 1

6800 13600 20400 27200 34000

2 Motor 2 6300 12600 18900 25200 31500

3 Motor 3 6100 12200 18300 24400 30500

Therefore, we applied Excel Simulation to  
calculate the equation on Decomposition Method  
in Non Linear Regression Analysis such as Motor & 
Pump 1, Motor 2 and Motor 3 in Figure 8 to 10.

After that, we adopted Reliability Engineering for 
the calculation by using graph probability (Probability 
Plotting) with Statistical Software in Figure 11-13 to 
estimate the parameters.

In addition, we tested conditions about Goodness 
of Fit Test to confirm that a hypothesized distribution 
fits a data set by Kolmogorov-Smirnov Test for the small 
population using the equation (6)-(9). Then we created 
Excel Simulation to calculate the equation (6)-(9)  
in Figure 14 and the results on Goodness of Fit are 
summarized in Table 6.

Table 6: Sample of the summarized results on Goodness  
of  Fit 

No. Machine 
Code

Paramenters K-S Test 
(α = 0.05, n) Hypothesis 

test:β η max d dα n
1 Motor & 

Pump 1
1.64093 23892.7 0.2239 0.563 5 accepted H0

2 Motor 2 1.64093 22135.9 0.2239 0.563 5 accepted H0

3 Motor 3 1.64093 21433.1 0.2239 0.563 5 accepted H0

Table 4: Summary on Decomposition Method in Non Linear Regression Analysis

No. Machine 
Code

Decomposition Method on Regression Analysis: 
(X: Time); (Y: Vibration)

Coefficient of 
Determination

Applications
Durations 

(hours)
X: Time 

(200 hours) Equations R-Sq R-Sq 
(adj)

1 Motor & 
Pump 1

2000 to 4800 1 to 15 Y = 2.48 + 0.07495 X - 0.001071 X2 97.1% 96.6% To monitor vibration
5000 to 6000 1 to 6 Y = 3.3 + 0.1815 X - 0.1004 X2 + 0.01667 X3 98.9% 97.2% To forecast vibration 

causes damage
2 Motor 2 1000 to 4600 1 to 19 Y = 1.112 + 0.2512 X - 0.00695 X2 98.1% 97.9% To monitor vibration

4800 to 5600 1 to 5 Y = 3.38 + 0.3143 X - 0.1582 X2 + 0.0275 X3 99.8% 99.3% To forecast vibration 
causes damage

3 Motor 3 1400 to 4000 1 to 14 Y = 1.616 + 0.2372 X - 0.0075 X2 96.7% 96.1% To monitor vibration
4200 to 5200 1 to 6 Y = 3.357 + 0.284 X - 0.1006 X2 + 0.01398 X3 99.6% 99.0% To forecast vibration 

causes damage

Figure 8: Excel Simulation to calculate the equations on Decomposition Method in Non Linear Regression 
Analysis of Motor & Pump 1.
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Figure 10: Excel Simulation to calculate the equations on Decomposition Method in Non Linear Regression 
Analysis of  Motor 3.

Figure 9: Excel Simulation to calculate the equations on Decomposition Method in Non Linear Regression 
Analysis of Motor 2.

Figure 11: Probability Plotting with Statistical Software  
of  Motor & Pump 1.

Figure 12: Probability Plotting with Statistical Software  
of  Motor 2.
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Statistical Hypothesis: 
Test Statistics by Kolmogorov-Smirnov Test :

 (6)

 (7)

 = Opportunity of Breakdown by Table 7 (8)

dα = Critical Values of Komogorov-Smirnov Tests  
by Table 8 (9)

Decision criteria on Significance level (α): Acceptd 
H0 if d < dα

Table 8: Critical Values of Komogorov-Smirnov Tests [17]
Sample Size Level of Significance (da)

n 0.2 0.1 0.05 0.02 0.01
1 0.900 0.950 0.975 0.990 0.995
2 0.684 0.776 0.842 0.900 0.929
3 0.565 0.636 0.708 0.785 0.829
4 0.493 0.565 0.624 0.689 0.734
5 0.447 0.509 0.563 0.627 0.669
6 0.410 0.468 0.519 0.577 0.617
7 0.381 0.436 0.483 0.538 0.576
8 0.358 0.410 0.454 0.507 0.542
9 0.339 0.387 0.430 0.480 0.513
10 0.323 0.369 0.409 0.457 0.489
11 0.308 0.352 0.391 0.437 0.468
12 0.296 0.338 0.375 0.419 0.449
13 0.285 0.325 0.361 0.404 0.432
14 0.275 0.314 0.349 0.390 0.418
15 0.266 0.304 0.338 0.377 0.404
16 0.258 0.295 0.327 0.366 0.392
17 0.250 0.286 0.318 0.355 0.381
18 0.244 0.279 0.309 0.346 0.371
19 0.237 0.271 0.301 0.337 0.361
20 0.232 0.265 0.294 0.329 0.352
25 0.208 0.238 0.264 0.295 0.317
30 0.190 0.218 0.242 0.270 0.290
35 0.177 0.202 0.224 0.251 0.269
40 0.165 0.189 0.210 0.235 0.252

Over 40

Figure 13: Probability Plotting with Statistical Software  
of  Motor 3.

Table 7: Median Rank [17]
i \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 50.000 29.289 20.630 15.910 12.945 10.910 9.428 8.300 7.412 6.697 6.107 5.613 5.192 4.830 4.516 4.240 3.995 3.778 3.582 3.406
2 70.711 50.000 38.573 31.381 26.445 22.849 20.113 17.962 16.226 14.796 13.598 12.579 11.702 10.940 10.270 9.678 9.151 8.677 8.251
3 79.370 61.427 50.000 42.141 36.412 32.052 28.624 25.857 23.578 21.669 20.045 18.647 17.432 16.365 15.422 14.581 13.827 13.147
4 84.090 68.619 57.859 50.000 44.015 39.308 35.510 32.380 29.758 27.528 25.608 23.939 22.474 21.178 20.024 18.988 18.055
5 87.055 73.555 63.588 55.984 50.000 45.169 41.189 37.853 35.016 32.575 30.452 28.589 26.940 25.471 24.154 22.967
6 89.090 77.151 67.948 60.691 54.831 50.000 45.951 42.508 39.544 36.967 34.705 32.704 30.921 29.322 27.880
7 90.572 79.887 71.376 64.490 58.811 54.049 50.000 46.515 43.483 40.823 38.469 36.371 34.491 32.795
8 91.700 82.038 74.142 67.620 62.147 57.492 53.485 50.000 46.941 44.234 41.823 39.660 37.710
9 92.587 83.774 76.421 70.242 64.984 60.456 56.517 53.059 50.000 47.274 44.830 42.626
10 93.303 85.204 78.331 72.472 67.425 63.033 59.177 55.766 52.726 50.000 47.542
11 93.893 86.402 79.955 74.392 69.548 65.295 61.531 85.177 55.170 52.458
12 94.387 87.421 81.353 76.061 71.411 67.296 63.629 60.340 57.374
13 94.808 88.298 82.568 77.525 73.060 69.079 65.509 62.289
14 95.169 89.060 83.635 78.821 74.529 70.678 67.205
15 95.484 89.730 84.578 79.976 75.846 72.119
16 95.760 90.322 85.419 81.001 77.033
17 96.005 90.849 86.173 81.945
18 96.222 91.322 86.853
19 96.418 91.749
20 96.590
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3.6  Maintenance period analysis 

On β ~ 1: Constant Failure Mode regarded as Exponential  
Distribution, we applied the technique of Failure 
Finding by calculating the inspection interval in the 
equation (10) [17]. Also, we created Excel Simulation 
to calculate the equation (10) in Figure 15, and the 
results on Assessment Guidelines for the maintenance 
of Reliability Engineering are summarized in Table 9. 

 (10)

A = Availability of the protective device (Ex. A≥0.90) 
FFI = The inspection interval (ti)
M = MTTF 

Table 9: Sample of Assessment Guidelines in  
Maintenance and Reliability Engineering

No. Machine 
Code

Paramenters
Type of 

maintenance

Period of 
Maintenance 

(hours)
A ≥ 0.90

β η

1 Motor & 
Pump 1

1.64093 23892.7 PM 4,600 0.9037

2 Motor 2 1.64093 22135.9 PM 4,400 0.9006

3 Motor 3 1.64093 21433.1 PM 4,600 0.9037

In addition, we are able to develop the maintenance  
planning for the plant of Hard Chrome Plating in  
Figure 16 by applying reliability centered maintenance 
of the plant components inherent reliability value.

Figure 15: Excel Simulation to calculate the equation (10).

Figure 14: Excel Simulation to calculate the equation (6)-(9).
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Figure 16: Sample of maintenance planning for the 
plant of Hard Chrome Plating.

3.7  Our model for cost engineering

The aim of the work is to develop a new equation  
representing the model to determine and optimize the 
maintenance costs which could be applied not only 
to the single component but to a set of components 
grouped in a particular way, i.e. to their criticality. At 
the same time, this new model allows to overcome 
some limits in the application of the classical one, when 
dealing with big dimensions plants. One of the problem 
is in fact due to the application of the classical model 
to a complex plant; the model forces to divided the 
plant by a very detailed tree-structure which is a very  
difficult task dealing with machines rich in components  
[18]. Another problem is represented by the meaning of  
the integral in the denominator of the equation; it  
represents an estimate of the service life of a component 
over a fixed time interval which must be the same for 
every component. Its meaning is in fact the substitution  
period provided by the analysis of the data sheets 
of the component i.e. without considering the real 
use in the plant or for example without considering 
repairs whereas possible [19]. So, the classical model 
does not take into account an historical study of all  
of the past conditions of the component to be analyzed,  
determining a loss of precision in the determination of 
the total maintenance costs and so providing a result 
in term of optimal maintenance interval which may be 
quite far from the true one [20]. 

As said, the proposed method tries to overcome 
these limits by a re-elaboration of the classical model; 
it introduces two important features represented by the 
possibility to apply the model to the whole machine and  
by the combination of the maintenance statistics of the  
firm and the probabilistic analysis about the components.

It is possible to manipulate the classical equation 
of maintenance costs to define a new model. As said, 
the classical equation (11) is as follows [21]:

 (11)

The first step is to split this equation since it will 
be applied to a group of components rather than to a 
single one. Then, we need to define the equation (12) 
to (14).

EA (CA) = The equation of maintenance costs
on Motor & Pump 1 (12)

EB (CB) = The equation of maintenance costs
on Motor 2 (13)

EC (CC) = The equation of maintenance costs
on Motor 3 (14)

At the same way, Total E(C) must be redefined as the 
equation (15).

Total E(C) = EA (CA) + EB (CB) + EC (CC) (15)

So it is necessary to find some reliability function 
R(t) which represents the average of the R(t) functions 
of machinary on the equation (16) to (18).

 (16)

 (17)

 (18)

Moreover, by substituting and putting in  
evidence, we are able to state EA (CA), EB (CB), and  
EC (CC) on the equation (19) to (21).
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  (19)

 

  (20)

 

  (21)

3.8  Solving techniques on our mathematical problems

We tried to solve mathematical problems [22] of style 
in the eqution (22).

 (22)

After that, we applied Numerical Methods for 
solving 

 .

Let   and 

 

 

 

Accordingly, we used Gauss Integration (Gaussian  
quadratures) for solving  in the following 
steps [23].

1. Converting coordinates from x to ξ before 
the integration by using Gauss Legendre formulas in 
Figure 17.

2. The Gaussian quadratures provide the flexibility  
of choosing not only the weighting coefficients (weight 
factors) but also the locations (abscissas) where the 
functions are evaluated. When the function is known 
and smooth, the Gaussian quadratures usually have 
decisive advantages in efficiency [24]. 

3. All Gaussian quadratures share the following 
the eqution (23).

 (23)

Where:
xk, associated with zeros of orthogonal polynomials,  

are the integration points.
w(x) is the weighting function related to the  

orthogonal polynomials.
4. Gauss-Legendre Formula: The Gauss-Legendre  

integration formula is the most commonly used form 
of Gaussian quadratures in the eqution (24).

Figure 17: Converting coordinates from x to ξ .
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 (24)

Where: 

ξk is the kth zero of Pn (ξ), 

5. Thus, we applied MATLAB and Excel about 
Gauss Integration for solving this model E(C) in 
Figure 18 and The total expected cost of planned  
maintenanceper time:Total E(C) in Figure 19 [25].

4 Case Study Result 

The model has been applied to the previous case study 
by the use of MATLAB and Excel software to generate 
simulation results. The analysis has been focused on 
the determination of the maintenance costs over a time  
period of 36 months after the data history analysis 
of the treated components of the plant, it is possible 
to show that Total E(C) consisted of 43% of E(C) on  
Motor & Pump 1, 32% of E(C) on Motor 2, and 25% of 
E(C)on Motor 3 in the trend of the reliability function 
for each criticality class. It can be said that, in spite of  
their main criticality, the element belonging to Motor &  
Pump 1 has higher mantenance costs; therefore, the 
element belonging to Motor 3 has low mantenance 
costs on analyzing costs which together contribute to 
generate the total maintenance costs from planned and 
unplanned maintenance costs.

5 Conclusions 

We can make a comprehensive analysis of maintenance 
strategy and reliability requirements throughout the 
lifecycle of maintenance. The model has been applied 
to the previous case study by the use of integrated 
Reliability Theory on Hazard Rate for optimal cost 
of maintenance with the number of components in 
a semi automatic machine of coating to generate  
suitable results. The analysis has been focused on the 
determination of the coststhroughout the lifecycle of 
maintenance. 

The present work focused on the definition of 
a model to manage the costs necessary to extend the 
service life of a plant through the use of probabilistic  

Figure 18: Sample MATLAB for E(C) Calculation.
Figure 19: Excel simulation to calculate Total E(C).
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methods and Reliability Theory on Hazard Rate in order 
to better identify the importance of every components  
in a plant with respect to maintenance costs. 

The new model is able to develop a methodology 
to determine maintenance costs which must be applied 
to some subsets of the elements of a plant, grouped 
according to their criticality. 

The model allows also to overcome some limits  
of the classical model, providing a more precise  
determination of the costs. In fact, the previous 
data history of the components and the previous  
maintenance plans together with a probabilistic study 
are considered in the model to enhance the model to 
be more accurate [26].

Acknowledgements 

We wish to express our thanks to the staff members 
of King Mongkut’s University of Technology North 
Bangkok and Italthai Group (Thailand), for their  
support during carrying out this research.

References 

[1] K. B. Öner, G. P. Kiesmüller, and G. J. Houtum, 
“Optimization of component reliability in the  
design phase of capital goods,” European Journal  
of Operational Research, vol. 205(3), pp. 615-624,  
2010.

[2] L. Y. Waghmode and A. D. Sahasrabudhe, 
“Modelling maintenance and repair cost using 
stochastic point processes for life cycle costing 
of repairable systems,” International Journal of 
Computer Integrated Manufacturing, vol. 25(4-5),  
pp. 353-367, 2012.

[3] L. Z. Wand, Y. G. Xu, and J. D. Zhang, “Preventive  
maintenance economic optimization model 
based on equipment availability and reliability,” 
Chinese Journal of Mechanical Engineering,  
vol. 46(4), pp. 163-168, 2010.

[4] H. Z. Huang, Z. J. Liu, and D. N. P. Murthy, 
“Optimal reliability, warranty and price for new  
products,” IIE Transactions, vol. 39(8), pp. 819-827,  
2007.

[5] M. Dixey, “Putting Reliability at the Center of  
Maintenance,” Professional Engineering, vol. 6(6),  
pp. 23-25, June, 1993.

[6] S. A. Abdulrohim, O. D. Salih, and A. Raouf, 

“RCM Concepts and Application: A Case Study,” 
International Journal of Industrial Engineering, 
vol. 7(2), pp. 123-132, 2000.

[7] J. Wang and J. Chu, “Selection of Optimum 
Maintenance Strategies Based on a Fuzzy  
Analytic Hierarchy Process,” International 
Journal of Production Economics, vol. 107(1), 
pp. 151-163. 2007.

[8] R. K. Sharma, D. Kumar, and P. Kumar, “FLM 
to Select Suitable Maintenance Strategy in  
Process Industries Using MISO Model,” Journal 
of Quality in Maintenance Engineering, vol. 11(4),  
pp. 359-374. 2005.

[9] The National Aeronautics and Space Administration,  
“Reliability-Centered Maintenance Guide for 
Facilities and Collateral Equipment,” NASA, 
Washington D.C., Feb. 2000.

[10] A. M. Smith, Reliability-Centered Maintenance, 
New York: McGraw-Hill, 1993.

[11] S. K. Abeygunawardane and P. Jirutitijaroen, 
“Application of Probabilistic Maintenance 
Models for Selecting Optimal Inspection Rates 
Considering Reliability and Cost Tradeoff,” IEEE 
Transactions on Power Delivery, vol. 29(1), Feb. 
2014.

[12] C. L. Melchor, F. R. Dávalos, S. Maximov, V.H. Coria,  
and J. L. Guardado, “A model for optimizing 
maintenance policy for power equipment,”  
International Journal of Electrical Power and 
Energy Systems, vol. 68, pp. 304-312, 2015.

[13] H. Song, B. Z. Gao, and V. S. Lin, “Combining 
statistical and judgmental forecasts via a web-
based tourism demand forecasting system,” 
International Journal of Forecasting, vol. 29, 
pp. 295-310, 2013.

[14] L. Xiao, J. Wang, Y. Dong, and J. Wu, “Combined 
forecasting models for wind energy forecasting: 
A casestudy in China,” International Journal 
of Renewable and Sustainable Energy Reviews,  
vol. 44, pp. 271-288, 2015.

[15] M. Rausand, “Reliability-Centered Maintenance,”  
Reliability Engineering and System Safety,  
vol. 60(2), pp. 121-132, 1998.

[16] A. H. Gomaa, “Maintenance Planning and 
Management,” A Literature Study, American 
University in Cairo, Cairo, 2003.

[17] Albert H. C. Tsang and Andrew K. S. Jardaine, 
Maintenance Replacement and Reliability Theory 



125

S. Butdee and T. Kullawong / KMUTNB Int J Appl Sci Technol, Vol. 8, No. 2, pp. 111-125, (2015)

and Application, Taylor & Francis Group, 2013.
[18] J. Shayeri, “Development of Computer-Aided 

Maintenance Resources Planning (CAMRP):  
A Case of Multiple CNC Machining Centers,”  
Robotics and Computer-Integrated Manufacturing,  
vol. 23(6), pp. 614-623, 2007.

[19] M.M. Savino, A. Brun, and C. Riccio, “Integrated 
system for maintenance and safety management 
through FMECA principles and fuzzy inference  
engine,” European Journal of Industrial  
Engineering, vol. 5(2), pp. 132-169, 2011.

[20] K. B. Öner, G. P. Kiesmüller, and G. J. Houtum, 
“Optimization of component reliability in the  
design phase of capital goods,” European Journal  
of Operational Research, vol. 205(3), pp. 615-624,  
2010.

[21] L. Z. Wand, Y. G. Xu, and J. D. Zhang, “Preventive  
maintenance economic optimization model 
based on equipment availability and reliability,” 
Chinese Journal of Mechanical Engineering,  
vol. 46(4), pp. 163-168, 2010.

[22] D. Dubois and H. Prade, “Gradualness, uncertainty  
and bipolarity: Making sense of fuzzy sets,”  
Science direct,  vol. 192, pp. 3-24, Apr. 2012.

[23] M.M. Savino, A. Brun, and C. Riccio, “Integrated 
system for maintenance and safety management  
through FMECA principles and fuzzy inference  
engine,” European Journal of Industrial  
Engineering, vol. 5(2), pp. 132-169, 2011.

[24] T. D. Jin and P. Wang, “Planning performance based 
contracts considering reliability and uncertain  
system usage,” Journal of the Operational  
Research Society, vol. 63(10), pp. 1467-1478, 
2012.

[25] K. Lu, Y. Zhang, and M. G. Suo, “Study on the 
maintenance strategy of power equipment based 
on optimal LCC,” in Proceedings of Asia-Pacific 
Power and Energy Engineering Conference, 
2011, pp. 1-5.

[26] C. E. Ebeling, An Introduction to Reliability and 
Maintainability Engineering, Long Grove, IL: 
Waveland Press, 2005.


