
397Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting
Time of Multi-Processor Cores

Ahmed Noami*, Boya Pradeep Kumar and Chandra Sekhar Paidimarry
Department of Electronics and Communication Engineering, College of Engineering, Osmania University,
Hyderabad, India

Abdullah Alahdal
Department of Computer Science and Engineering, College of Engineering, Osmania University, Hyderabad,
India

Nada Safi
Department of Computer Science, College of Science, Osmania University, Hyderabad, India

* Corresponding author. E-mail: mrahmedyahya883@gmail.com DOI: 10.14416/j.asep.2021.06.001
Received: 7 November 2020; Revised: 4 March 2021; Accepted: 23 April 2021; Published online: 4 June 2021
© 2021 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
The multi-processor cores in SoC which have high burst data transactions can play a critical role while accessing
the shared resources such as the off-chip memory. These processor cores can starve other processor cores
that have less burst data transactions while accessing the same shared resources. The starving issue of other
processor cores leads to degrade the entire system performance of the SoC. However, the arbiter architecture
in the SoC design plays the best solution to manage different processor core requests and granting one of them
to access the shared resources according to different scheduling algorithms. In this paper, we have designed
AXI interconnect, which includes arbiter architecture to connect four processor cores represented by the AXI
masters and the off-chip memory represented by the salve. Each processor core (AXI Master) uses the AXI4
interface protocol to improve the system performance and the arbiter based on the static fixed-priority algorithm
to improve the average waiting time for all the processor cores. The SoC design architecture is modeled in
System Verilog HDL; simulation and synthesis are done by using the Vivado tool and FPGA ZYNQ-7 ZC702
Evaluation Board (xc7z020clg484-1).

Keywords: SoC, AMBA AXI Interface, AXI Interconnect, Arbiter

Research Article

1 Introduction

Nowadays the modern system on chip (SoC) includes
several processor cores on the same die. These processor
cores are widely used for different purposes such as
embedded, networks, and digital signal processing [1].
There are so many issues while these processor cores
communicate together or while accessing the shared

resources such as on-chip memory, off-chip memory,
and peripherals. The communication latency is the
main issue while these processor cores using improper
interface protocol to communicate together or using
unfair memory management to access the shared off-chip
memory [2]–[4]. The ARM Advanced Microcontroller
Bus Architecture (AMBA) introduced different types
of interfaces. The first AMBA interface version was

Please cite this article as: A. Noami, B. P. Kumar, C. S. Paidimarry, A. Alahdal, and N. Safi, “High priority
arbitration for less burst data transactions for improved average waiting time of multi-processor cores,”
Applied Science and Engineering Progress, vol. 14, no. 3, pp. 397–405, Jul.–Sep. 2021, doi: 10.14416/
j.asep.2021.06.001.

http://dx.doi.org/10.14416/j.asep.2021.06.001
http://dx.doi.org/10.14416/j.asep.2021.06.001
http://dx.doi.org/10.14416/j.asep.2021.06.001

A. Noami et al., “High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting Time of Multi-Processor Cores.”

398 Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

the advanced peripheral bus and the advanced system
bus. The second version of the AMBA2 interface was
AMBA high-performance bus (AHB) that has only two
independent channels for write and read transactions,
does not support burst mode capability (each data
transaction needs an independent address). The third
version of the AMBA3 interface was an Advanced
eXtensible Interface (AXI). AMBA AXI3 interface
protocol is the high-performance communication
interface and it supports the burst length of data
transactions up to 16 beats for a single address [5].
The fourth version of the AMBA4 interface includes
different kinds of interface: AXI4-Lite interface,
AXI4 full map interface, and AXI4-Stream interface.
The AXI4-Lite interface just supports the single burst
mode with 32-bits data size, while the AXI4 full map
interface supports different bursts mode up to 256
beats with different data sizes like 32-bits or 64-bits,
and it has five independent transaction channels: write
address channel, write data channel, write response
channel, read address channel, and read data channel
[6], [7]. The AXI4-Stream is designed only to transfer
the unidirectional streams of data such as pixel stream
for image/ video. Beside selecting the proper interface
communication to improve the SoC performance,
the memory management of multi-processor cores
is a very important part of the entire SoC when the
processor cores access the off-chip memory. When
the multi-processor cores need to access the shared
resource (off-chip memory) at the same time, each
processor core may have a different data size and
burst length. The processor core that has high burst
data transaction can starve the other processor cores
that have less burst data transaction if it gets the access
first. The best memory controller appears in this issue
and how it can prevent this starvation as possible. The
main component of the memory controller that can
manage all the requests from different processor cores
with different sizes and burst lengths is the arbiter.
It is an architecture that decides who the processor
core can access the off-chip memory first, and the
decision depends on the different memory scheduling
algorithms [8].

2 Literature Survey

The proper SoC architecture and communication
interface on the same die can lead to high-performance

SoC and get fairness in terms of average waiting time
while accessing the shared resources among all the
processor cores. Many previous studies designed
multi-processor cores architecture using different
communication interfaces and arbiters with different
scheduling algorithms. Shrivastava et al. [9] designed
the arbiter architecture to manage the requests for
multi-processor cores to access the shared resources.
However, this study did not consider the data burst
length for each processor core and the data for each
processor core was represented by a single clock cycle.
Khanam et al. [10] the SoC arbiter is designed to manage
all requests from the different processor cores to
access the shared resources. However, this study used
less-performance communication interface protocol:
Advanced microcontroller bus architecture advanced
system bus (AMBA ASB). According to Ingle et al.
[11] and Bhat et al. [12], the SoC arbiter is designed
to manage the requests for many processor cores to
access the shared resources. These designs used a
high-performance communication interface protocol:
Advanced High-performance Bus (AMBA AHB).
However, there are many drawbacks in this type of
interface such as limited throughput compared to the
AMBA AXI interface protocol. Tiwari et al. [13] the
SoC arbiter for multi-processor cores is considered
using high-performance protocol (AMBA AXI4-Lite).
However, this communication interface supports only
a single burst mode of 32-bits data transaction, and
each processor core takes equal time to complete
the transaction which means the fairness among all
the processor cores is very high but the performance
is less. Furthermore, Noami et al. [14] proposed a
united multi-core memory controller for four-processor
cores to write/ read transactions using the AXI4-Lite
interface without considering the arbiter architecture.
This means that each processor core can initiate write/
read in 32-bits data size with single burst capability
and all processor cores takes the same number of clock
cycles to complete the transactions. Noami et al. [15]
also proposed the AXI4 interface protocol for multi-
core memory controller to write/ read transactions in
different burst lengths without considering the arbiter
architecture. The different burst lengths were 0f, 07,03,
and 01 for the first, second, third, and fourth processor
core respectively. Without considering the arbiter
architecture, the default arbitration is done, which
means that the first processor core should access first.

399

A. Noami et al., “High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting Time of Multi-Processor Cores.”

Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

In this scenario, the write/read transactions will take
more time to complete which led to an increase in the
average waiting time for all the processor cores.
 In this work, the AXI interconnect with considering
the arbiter based on the static fixed-priority arbitration
is proposed. The AXI interconnect architecture is
designed to connect four processor cores and off-chip
memory. All the four-processor cores use the AXI4
interface protocol with different burst lengths to write/
read to/ from the off-chip memory. Each processor core
can initiate the transaction in different burst lengths by
using the high-performance AXI4 interface protocol.
However, only the processor core that has less burst
data transaction such as 01 burst length gets a high
priority to access the off-chip memory to improve the
average waiting time for all the four processor cores
which leads to improve the entire SoC performance as
compared with the existing work.

3 Proposed Model

The AXI interconnect architecture which includes the
arbiter based on the static fixed-priority algorithm is
proposed as shown in Figure 1. The AXI interconnect
connects four processor cores which are represented by
AXI masters and off-chip memory which is represented
by the slave. All the four-processor cores can initiate
the write/ read transactions by using the AXI4 interface
protocol in 32-bits data size with different burst lengths
capability. All the four-processor cores can initiate the
write/ transactions to/ from the off-chip memory at the
same time. Each processor core can write and read in
different burst lengths such as 0f, 07, 03, and 01 (i.e.
16, 8, 4, and 2 beats of data transactions) for the first,
second, third, and fourth processor cores respectively.
The AXI interconnect will receive these four different
burst length requests from the four-processor cores
and the arbiter architecture will decide among all
the requests which processor core can use the shared
interface to access the off-chip memory first according
to a static fixed-priority algorithm. At the program
time, we used a static fixed-priority algorithm to assign
the priority for all the processor cores (Masters). The
processor core that has less burst data transactions
such as 01 (i.e. 2 beats of data transactions) will get
the high priority to accessing the off-chip memory and
the processor core that has high burst data transactions
such as 0f (i.e. 16 beats of data transactions) will get

the low priority to accessing the off-chip memory. The
main goal of these priorities is to improve the average
waiting time for all the processor cores which leads to
improving the entire SoC performance.

3.1 Finite state machine of AXI arbiter

The finite state machine (FSM) of the AXI Arbiter
based on the static fixed-priority algorithm (SFP) is
discussed in this section and shown in Figure 2. In
the beginning, the idle state is there when the AXI
arbiter not receiving any request from the AXI Masters
(processor core) to decide which AXI master can use
the shared interface. Thus, accesses first and starts the
transaction. At the time of clock start and reset signal
raising high, any AXI master can send a request to use
the shared interface and start the transaction. If any
two processor cores or more send the requests at the
same time to use the shared interface and start their
transactions, the arbiter based on static fixed-priority
algorithm grants the processor core that has the high
priority scheduling (at the program time, the high priority
is given to the processor core that has less burst data
transaction). After granting the shared interface to the
selected processor core, the processor core can start the
transaction. Then, at the time transaction is completed
of the first granted processor core, the arbiter grants
the shared interface to the second processor core
that has less burst data transactions. The arbiter will
continue granting the shared interface based on the
static fixed-priority algorithm for the remaining
processor cores till they are completed. When the last
processor core finished the transactions, the state will
return to the idle state as shown in Figure 2 below.

 AXI INTERCONNECT

Figure 1: Proposed model.

A. Noami et al., “High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting Time of Multi-Processor Cores.”

400 Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

 In this work, we proposed this model and considered
the arbiter architecture to improve the average waiting
time of the existing work. The less burst data burst
length transactions need a less number of cycles to
complete the transactions comparing with high burst
data burst length transactions, that is why the processor
core that has less burst data transactions will get high
priority to accessing the off-chip memory first than the
other processor cores in this work.

4 Simulation Results

The simulation results of the proposed model are
discussed in this section. The AXI interconnect
with considering the static fixed-priority scheduling
algorithm is implemented to connect four-processor
cores which are represented by four AXI Masters and
off-chip memory which is represented by the Slave
as shown in Figure 1 of the proposed model. In this
work, we focus on the main component of the AXI
interconnect which is called the arbiter based on the
static fixed-priority scheduling algorithm. The arbiter
is a digital logic architecture that receives all the
requests from multi-processor cores and gives the final
decision based on the static fixed-priority scheduling

algorithm, the processor core that has less burst data
length (high priority) will access the off-chip memory
first. The four processor cores initiate the transactions
using the AXI4 interface protocol in 32-bits data size
with different burst lengths capability.
 The proposed design of this work is considers the
arbiter architecture based on the static fixed-priority
scheduling algorithm to improve the average waiting
time for all the processor cores and also using the
AXI4 interface protocol to improve the entire SoC
performance. The existing work [14], designed a
united multi-core memory controller for four-processor
cores using the AXI4-Lite interface protocol without
considering the arbiter architecture. That is why the
first processor core always accesses first (i.e. default
arbiter which has the same priority for all the processor
cores). Also, while using the AXI4-Lite interface
protocol each processor core has a single burst length
and the same clock cycles to complete the transaction.
The more waiting times for all the processor cores
happen when the SoC does not consider the arbiter
architecture while the multi-processor cores SoC
design using the AXI4 interface protocol with different
burst lengths such as 0f, 07, 03, and 01 (i.e. 16, 8, 4,
and 2 beats of data transactions) for the first, second,
third, and fourth processor cores respectively [15] as
shown in the simulation results of Figure 3 and 4.
 The AXI4 full memory map interface protocol
has five standard channels: three channels for write
transactions and two channels for read transactions. In
this simulation results section, we implemented only
the write transaction channels for all the processor
cores while accessing the off-chip memory.
 From the simulation results, we observed that
the Figure 3 shows the write transaction channel
signals of the first and second processor cores in 32-bits
data size with different burst lengths of 0f and 07
respectively. Figure 4 shows the write transaction
channel signals of the third and fourth processor
cores in 32-bits data size with different burst lengths
of 03 and 01 respectively [15]. In Figure 3, the first
processor core started the write transaction signals at
the time 30 ns when the clock and reset signals are
high. At the time 410 ns, the m0_BVALID (i.e. Slave
generates this signal when the write response on the
bus is valid) and m0_BREADY (Master generates this
signal when it can accept a write response) signals
are high which indicates that the first processor core

Figure 2: FSM of the AXI arbiter based on SFP.

401

A. Noami et al., “High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting Time of Multi-Processor Cores.”

Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

of 0f burst lengths completed the transactions and it
is the chance for the second processor core to use the
shared interface to access the off-chip memory. This
also means that the second processor core will wait till
410 ns to start the transaction. In the same scenario,
the third and fourth processor cores will wait till 630
ns and 770 ns respectively to start the transactions as
shown in Figure 4. The average waiting time for all
the processor cores is 460 ns as implemented in [15].
The proposed model of this work improves the average
waiting time while all the processor cores using the
AXI4 interface protocol with different burst lengths by
considering the arbiter architecture based on the static

fixed-priority scheduling algorithm. At the program
time, we assigned the high priority to the processor core
that has less burst data transaction (less burst length)
and low priority to the processor core that has high
burst data transaction (more burst length) to improve
the average waiting time for all the processor cores
as shown the Figure 5–7. The write transactions
for all the four-processor cores are simulated in the
following simulation results. We used the burst length
for each processor core in the same way as in the
previous work [15]. The burst lengths are 0f, 07, 03,
and 01 for the first, second, third, and fourth processor
cores respectively.

Figure 3: Write channel signals of the first and second processor cores without considering the arbiter.

Figure 4: Write channel signals of the third and fourth processor cores without considering the arbiter.

A. Noami et al., “High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting Time of Multi-Processor Cores.”

402 Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

 In the Figure 5, we observed that the arbiter
granted the fourth processor core to use the shared
interface to access the off-chip memory first. The
fourth processor core started the write transaction
signals at the time 30 ns when the clock and reset
signals are high. At the time 150 ns, the m3_BVALID
and m3_BREADY signals are high which indicates
that the fourth processor core with 01 burst lengths is
completed and it is the chance for the third processor
core to use the shared interface to access the off-chip
memory because it has burst length less than the
first and second processor cores. This also means

that the third processor core will wait till 150 ns to
start the transaction. In this scenario, the second and
first processor cores will wait till 410 ns and 710 ns
respectively to start the transactions as shown in
Figure 6 and 7. The average waiting time for all the
processor cores is 325 ns.
 We observed from the simulation results that our
proposed model improved the average waiting time for
all the processor cores by 34.4%. The other remaining
simulation results of the four-processor cores with
the other different burst lengths are directly written in
Table 1 and 2.

Figure 6: Write channel signals of the second and third processor cores with considering the arbiter.

Figure 5: Write channel signals of the first and second processor cores with considering the arbiter.

403

A. Noami et al., “High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting Time of Multi-Processor Cores.”

Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

Table 1: Waiting time for different burst lengths
Burst Length Waiting Time

Master 0 1f 30 ns 30 ns
Master 1 0f 730 ns 150 ns
Master 2 07 1110 ns 410 ns
Master 3 01 1250 ns 870 ns
Average Waiting Time 780 ns 365 ns
Percentage (%) 72.5%

 Table 1 shows the other simulation results of the
four-processor cores to access the off-chip memory
(without/ with considering the arbiter architecture). As
the data mentioned in Table 1, the four-processor cores
initiate the transactions to access the off-chip memory
in different burst lengths 1f, 0f, 07, and 01 (i.e. 32, 16,
8, and 2 beats of data transactions) for the first, second,
third, and fourth processor cores respectively.
 The column of the waiting time in Table 1 is
divided into two sub-columns. The first sub-column
represents the waiting time of the four-processor
cores while accessing the off-chip memory without
considering the arbiter architecture in the design,
which means the first processor core must access first,
then the second processor core, and so on regardless
of the data burst length. The average waiting time for
all the four-processor cores in this scenario is 780 ns.
The second sub-column represents the waiting time
of the four-processor cores while accessing the off-
chip memory with considering the arbiter architecture
based on the static fixed-priority scheduling algorithm

in the design. In this scenario, only the processor core
that has less burst length can access first. The average
waiting time for all the four-processor cores in this
scenario is 365 ns. The final percentage improvement
of our proposed model of this work according to the
data available in Table 1 is 72.5%.

Table 2: Waiting time for other different burst lengths
Burst Length Waiting Time

Master 0 2f 30 ns 30 ns
Master 1 1f 1370 ns 190 ns
Master 2 0f 1750 ns 490 ns
Master 3 03 1970 ns 890 ns
Average Waiting Time 1280 ns 400 ns
Percentage (%) 104.8%

 Also, Table 2 shows the other simulation results of
the four-processor cores initiate the transactions to access
the off-chip memory in different burst lengths 2f, 1f, 0f,
and 03 (i.e. 64, 32, 16, and 4 beats of data transactions)
for the first, second, third, and fourth processor cores
respectively.
 The column of the waiting time in Table 2 is
divided into two sub-columns. The first sub-column
represents the waiting time of the four-processor
cores while accessing the off-chip memory without
considering the arbiter architecture in the design,
which means the first processor core must access first,
then the second processor core, and so on regardless
of the data burst length. The average waiting time for

Figure 7: Write channel signals of the third and fourth processor cores with considering the arbiter.

A. Noami et al., “High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting Time of Multi-Processor Cores.”

404 Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

all the four-processor cores in this scenario is 1280 ns.
The second sub-column is represents the waiting time
of the four-processor cores while accessing the off-
chip memory with considering the arbiter architecture
based on the static fixed-priority scheduling algorithm
in the design. In this scenario, only the processor core
that has less burst length can access first. The average
waiting time for all the four-processor cores in this
scenario is 400 ns. The final percentage improvement
of our proposed model of this work according to the
data available in Table 2 is 104.8%.
 The proposed design of this work is modeled in
System Verilog HDL, all the simulations and synthesis
are done by using the Vivado tool and FPGA ZYNQ-7
ZC702 Evaluation Board (xc7z020clg484-1).
 The AXI arbiter architecture based on the static
fixed-priority scheduling algorithm is easy to implement
and less hardware utilization is needed as shown in the
FPGA utilization of Table 3. Also, in [16], the static fixed-
priority and round-robin algorithms are implemented
and verified. The static fixed-priority algorithm is
provides precise results and less chip area compared
with the round-robin algorithm.

Table 3: FPGA Utilization summary

Logic Utilization Available Used Utilization
Percentage

Slice LUTs 53200 41 0.1%
Slice Registers 106400 2 0%

Slice 13300 14 0.11%
Bounded IOB 200 151 75.5%

5 Conclusions

In this paper, we have designed the AXI interconnect
which includes the arbiter architecture based on the
static fixed-priority scheduling algorithm. The AXI
interconnect is designed to connect four-processor
cores represented by the AXI masters by using the
AXI4 interface protocol with different burst lengths
and the off-chip memory represented by the AXI
slave. The arbiter architecture based on the static
fixed-priority scheduling algorithm is proposed in this
work to improve the average waiting time for all the
processor cores. At the program time, we have assigned
the priorities for all the processor cores that depend
on the data burst length for each processor core. Only
the processor core that has less burst length can access

the off-chip memory first as shown in the simulation
figures, Tables 1 and 2 respectively. The proposed
model of this work improved the existing work by
34.4% as shown in the simulation results of figures and
72.5%, and 104.8% as shown in the simulation results of
Table1 and 2 respectively. The SoC design architecture
is modeled in System Verilog HDL; simulation and
synthesis are done by using the Vivado tool and FPGA
ZYNQ-7 ZC702 Evaluation Board (xc7z020clg484-1).

Acknowledgments

This work has been supported by the Indian Council
for Cultural Relations (ICCR), New-Delhi, India, and
TEQIP-III official, University College of Engineering,
Osmania University, Hyderabad, India.

References

[1] T. Hussain, “Memory resources aware run-time
automated scheduling policy for multi-core systems,”
International Journal of Microprocessors and
Microsystems, vol. 57, pp. 32–41, 2018.

[2] R. Khanam, H. Sharma, and S. Gaur “Design a
less latency Arbiter for on chip communication
architecture,” in International Conference on
Computing, Communication and Automation,
2015.

[3] M. N. Akhtar and O. Sidek, “An intelligent arbiter
for maximum CPU utilization, fair bandwidth
allocation and less latency: Survey,” in IEEE 8th
International Colloquium on Signal Processing
and its Applications, 2012.

[4] M. N. Akhtar and J. M. Saleh, “Parallel adaptive
arbiter for improved CPU utilization and fair
bandwidth allocation,” in International Conference
on Circuits, Systems, Signal Processing,
Communications and Computers, 2015.

[5] Arm Limited, “AXI Reference Guide, UG1037
(v4.0),” 2017. [Online]. Available: http://www.
amba.com

[6] S. S. Math and R. B. Manjula “Design of
AMBA AXI4 protocol for system-on-chip
communication,” International Journal of
Communication Network and Security, vol. 1,
pp. 38–42, 2012.

[7] A. Noami, A. Alahdal, B. P. Kumar, P. Chandrasekhar,
and N. Safi, “High speed data transactions for

405

A. Noami et al., “High Priority Arbitration for Less Burst Data Transactions for Improved Average Waiting Time of Multi-Processor Cores.”

Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 397–405, 2021

memory controller based on AXI4 interface
protocol SoC,” in The IEEE 1st International
Conference on Advances in Electrical,
Computing, Communications and Sustainable
Technologies, 2021.

[8] J. Gupta and N. Goel, “Efficient bus arbitration
protocol for SoC design,” in International
Conference on Smart Technologies and
Management for Computing, Communication,
Controls, Energy and Materials, 2015, pp. 396–
400.

[9] A. Shrivastava and S. K. Sharma, “Various arbitration
algorithm for on-chip (AMBA) shared bus multi-
processor SoC,” in IEEE Students' Conference
on Electrical, Electronics and Computer Science,
2016.

[10] R. Khanam and Z. Ahmad, “Finite state machine
based arbiter for on chip communication
architecture,” in International Conference on
Computing, Communication and Automation,
2016.

[11] A. Ingle and P. Srividya, “Design and simulation
of multi master AHB lite bus interconnect,” in
Proceedings of the IEEE International Conference
on Computing Methodologies and Communication,

2017.
[12] B. M. Shankaranarayana and V. V. Malode,

“Design and implementation of power efficient
arbiter module for AMBA AHB protocol,”
International Journal of Advanced Research in
Computer Engineering & Technology, vol. 3,
pp. 2141–2145, 2014.

[13] B. Tiwari and N. Goel, “Multi-master bus interface
design using efficient lottery bus arbiter,” in IEEE
Annual India Conference, 2016.

[14] A. Noami, B. P. Kumar, and P. Chandrasekhar
“Design and implementation of a united multi-
core memory controller using AXI4-lite interface
protocol,” International Journal on Emerging
Technologies, vol. 11, no. 3, pp. 468–475, 2020.

[15] A. Noami, B. P. Kumar, and P. Chandrasekhar,
“High performance AXI4 interface protocol for
multi-core memory controller on SoC,” in the
Springer 4th International Conference on Data
Engineering and Communication Technology,
2020.

[16] S. V. Vijayalakshmi, A. Apsara, K. Preetha, and
S. Cammillus “Memory arbitration in DDR3,”
International Journal of Recent Technology and
Engineering, vol. 8, pp. 3344–3347, 2020.

