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Abstract
The multi-processor cores in SoC which have high burst data transactions can play a critical role while accessing  
the shared resources such as the off-chip memory. These processor cores can starve other processor cores 
that have less burst data transactions while accessing the same shared resources. The starving issue of other  
processor cores leads to degrade the entire system performance of the SoC. However, the arbiter architecture 
in the SoC design plays the best solution to manage different processor core requests and granting one of them 
to access the shared resources according to different scheduling algorithms. In this paper, we have designed 
AXI interconnect, which includes arbiter architecture to connect four processor cores represented by the AXI 
masters and the off-chip memory represented by the salve. Each processor core (AXI Master) uses the AXI4 
interface protocol to improve the system performance and the arbiter based on the static fixed-priority algorithm 
to improve the average waiting time for all the processor cores. The SoC design architecture is modeled in 
System Verilog HDL; simulation and synthesis are done by using the Vivado tool and FPGA ZYNQ-7 ZC702 
Evaluation Board (xc7z020clg484-1).
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1 Introduction

Nowadays the modern system on chip (SoC) includes 
several processor cores on the same die. These processor  
cores are widely used for different purposes such as 
embedded, networks, and digital signal processing [1]. 
There are so many issues while these processor cores 
communicate together or while accessing the shared  

resources such as on-chip memory, off-chip memory, 
and peripherals. The communication latency is the 
main issue while these processor cores using improper 
interface protocol to communicate together or using  
unfair memory management to access the shared off-chip  
memory [2]–[4]. The ARM Advanced Microcontroller 
Bus Architecture (AMBA) introduced different types 
of interfaces. The first AMBA interface version was 
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the advanced peripheral bus and the advanced system 
bus. The second version of the AMBA2 interface was 
AMBA high-performance bus (AHB) that has only two 
independent channels for write and read transactions, 
does not support burst mode capability (each data 
transaction needs an independent address). The third 
version of the AMBA3 interface was an Advanced  
eXtensible Interface (AXI). AMBA AXI3 interface 
protocol is the high-performance communication 
interface and it supports the burst length of data 
transactions up to 16 beats for a single address [5]. 
The fourth version of the AMBA4 interface includes 
different kinds of interface: AXI4-Lite interface, 
AXI4 full map interface, and AXI4-Stream interface. 
The AXI4-Lite interface just supports the single burst 
mode with 32-bits data size, while the AXI4 full map 
interface supports different bursts mode up to 256 
beats with different data sizes like 32-bits or 64-bits, 
and it has five independent transaction channels: write 
address channel, write data channel, write response 
channel, read address channel, and read data channel 
[6], [7]. The AXI4-Stream is designed only to transfer 
the unidirectional streams of data such as pixel stream 
for image/ video. Beside selecting the proper interface 
communication to improve the SoC performance, 
the memory management of multi-processor cores 
is a very important part of the entire SoC when the 
processor cores access the off-chip memory. When 
the multi-processor cores need to access the shared 
resource (off-chip memory) at the same time, each 
processor core may have a different data size and 
burst length. The processor core that has high burst 
data transaction can starve the other processor cores 
that have less burst data transaction if it gets the access 
first. The best memory controller appears in this issue 
and how it can prevent this starvation as possible. The 
main component of the memory controller that can 
manage all the requests from different processor cores 
with different sizes and burst lengths is the arbiter. 
It is an architecture that decides who the processor 
core can access the off-chip memory first, and the 
decision depends on the different memory scheduling 
algorithms [8].

2 Literature Survey

The proper SoC architecture and communication  
interface on the same die can lead to high-performance 

SoC and get fairness in terms of average waiting time 
while accessing the shared resources among all the 
processor cores. Many previous studies designed 
multi-processor cores architecture using different 
communication interfaces and arbiters with different 
scheduling algorithms. Shrivastava et al. [9] designed 
the arbiter architecture to manage the requests for 
multi-processor cores to access the shared resources. 
However, this study did not consider the data burst 
length for each processor core and the data for each 
processor core was represented by a single clock cycle.  
Khanam et al. [10] the SoC arbiter is designed to manage  
all requests from the different processor cores to  
access the shared resources. However, this study used 
less-performance communication interface protocol: 
Advanced microcontroller bus architecture advanced 
system bus (AMBA ASB). According to Ingle et al. 
[11] and Bhat et al. [12], the SoC arbiter is designed 
to manage the requests for many processor cores to 
access the shared resources. These designs used a 
high-performance communication interface protocol: 
Advanced High-performance Bus (AMBA AHB). 
However, there are many drawbacks in this type of 
interface such as limited throughput compared to the 
AMBA AXI interface protocol. Tiwari et al. [13] the 
SoC arbiter for multi-processor cores is considered 
using high-performance protocol (AMBA AXI4-Lite). 
However, this communication interface supports only 
a single burst mode of 32-bits data transaction, and 
each processor core takes equal time to complete 
the transaction which means the fairness among all 
the processor cores is very high but the performance 
is less. Furthermore, Noami et al. [14] proposed a 
united multi-core memory controller for four-processor 
cores to write/ read transactions using the AXI4-Lite  
interface without considering the arbiter architecture. 
This means that each processor core can initiate write/ 
read in 32-bits data size with single burst capability 
and all processor cores takes the same number of clock 
cycles to complete the transactions. Noami et al. [15] 
also proposed the AXI4 interface protocol for multi-
core memory controller to write/ read transactions in 
different burst lengths without considering the arbiter 
architecture. The different burst lengths were 0f, 07,03, 
and 01 for the first, second, third, and fourth processor  
core respectively. Without considering the arbiter 
architecture, the default arbitration is done, which 
means that the first processor core should access first. 
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In this scenario, the write/read transactions will take 
more time to complete which led to an increase in the 
average waiting time for all the processor cores.
 In this work, the AXI interconnect with considering  
the arbiter based on the static fixed-priority arbitration  
is proposed. The AXI interconnect architecture is 
designed to connect four processor cores and off-chip 
memory. All the four-processor cores use the AXI4 
interface protocol with different burst lengths to write/ 
read to/ from the off-chip memory. Each processor core 
can initiate the transaction in different burst lengths by 
using the high-performance AXI4 interface protocol. 
However, only the processor core that has less burst 
data transaction such as 01 burst length gets a high 
priority to access the off-chip memory to improve the 
average waiting time for all the four processor cores 
which leads to improve the entire SoC performance as 
compared with the existing work. 

3 Proposed Model

The AXI interconnect architecture which includes the 
arbiter based on the static fixed-priority algorithm is 
proposed as shown in Figure 1. The AXI interconnect 
connects four processor cores which are represented by 
AXI masters and off-chip memory which is represented  
by the slave. All the four-processor cores can initiate 
the write/ read transactions by using the AXI4 interface 
protocol in 32-bits data size with different burst lengths 
capability. All the four-processor cores can initiate the 
write/ transactions to/ from the off-chip memory at the 
same time. Each processor core can write and read in 
different burst lengths such as 0f, 07, 03, and 01 (i.e. 
16, 8, 4, and 2 beats of data transactions) for the first, 
second, third, and fourth processor cores respectively. 
The AXI interconnect will receive these four different 
burst length requests from the four-processor cores 
and the arbiter architecture will decide among all 
the requests which processor core can use the shared  
interface to access the off-chip memory first according  
to a static fixed-priority algorithm. At the program 
time, we used a static fixed-priority algorithm to assign  
the priority for all the processor cores (Masters). The 
processor core that has less burst data transactions 
such as 01 (i.e. 2 beats of data transactions) will get 
the high priority to accessing the off-chip memory and 
the processor core that has high burst data transactions 
such as 0f (i.e. 16 beats of data transactions) will get 

the low priority to accessing the off-chip memory. The 
main goal of these priorities is to improve the average 
waiting time for all the processor cores which leads to 
improving the entire SoC performance.

3.1  Finite state machine of AXI arbiter

The finite state machine (FSM) of the AXI Arbiter 
based on the static fixed-priority algorithm (SFP) is 
discussed in this section and shown in Figure 2. In 
the beginning, the idle state is there when the AXI 
arbiter not receiving any request from the AXI Masters 
(processor core) to decide which AXI master can use 
the shared interface. Thus, accesses first and starts the 
transaction. At the time of clock start and reset signal 
raising high, any AXI master can send a request to use 
the shared interface and start the transaction. If any 
two processor cores or more send the requests at the 
same time to use the shared interface and start their 
transactions, the arbiter based on static fixed-priority 
algorithm grants the processor core that has the high  
priority scheduling (at the program time, the high priority  
is given to the processor core that has less burst data 
transaction).  After granting the shared interface to the 
selected processor core, the processor core can start the 
transaction. Then, at the time transaction is completed 
of the first granted processor core, the arbiter grants 
the shared interface to the second processor core 
that has less burst data transactions. The arbiter will  
continue granting the shared interface based on the 
static fixed-priority algorithm for the remaining  
processor cores till they are completed. When the last 
processor core finished the transactions, the state will 
return to the idle state as shown in Figure 2 below.

        AXI INTERCONNECT

 
Figure 1: Proposed model.
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 In this work, we proposed this model and considered  
the arbiter architecture to improve the average waiting 
time of the existing work. The less burst data burst 
length transactions need a less number of cycles to 
complete the transactions comparing with high burst 
data burst length transactions, that is why the processor 
core that has less burst data transactions will get high 
priority to accessing the off-chip memory first than the 
other processor cores in this work.

4 Simulation Results

The simulation results of the proposed model are 
discussed in this section. The AXI interconnect 
with considering the static fixed-priority scheduling  
algorithm is implemented to connect four-processor 
cores which are represented by four AXI Masters and 
off-chip memory which is represented by the Slave 
as shown in Figure 1 of the proposed model. In this 
work, we focus on the main component of the AXI 
interconnect which is called the arbiter based on the 
static fixed-priority scheduling algorithm. The arbiter 
is a digital logic architecture that receives all the  
requests from multi-processor cores and gives the final 
decision based on the static fixed-priority scheduling 

algorithm, the processor core that has less burst data 
length (high priority) will access the off-chip memory 
first. The four processor cores initiate the transactions 
using the AXI4 interface protocol in 32-bits data size 
with different burst lengths capability. 
 The proposed design of this work is considers the 
arbiter architecture based on the static fixed-priority 
scheduling algorithm to improve the average waiting 
time for all the processor cores and also using the 
AXI4 interface protocol to improve the entire SoC 
performance. The existing work [14], designed a 
united multi-core memory controller for four-processor 
cores using the  AXI4-Lite interface protocol without 
considering the arbiter architecture. That is why the 
first processor core always accesses first (i.e. default 
arbiter which has the same priority for all the processor  
cores). Also, while using the AXI4-Lite interface  
protocol each processor core has a single burst length 
and the same clock cycles to complete the transaction. 
The more waiting times for all the processor cores 
happen when the SoC does not consider the arbiter 
architecture while the multi-processor cores SoC  
design using the AXI4 interface protocol with different 
burst lengths such as 0f, 07, 03, and 01 (i.e. 16, 8, 4, 
and 2 beats of data transactions) for the first, second, 
third, and fourth processor cores respectively [15] as 
shown in the simulation results of Figure 3 and 4.
 The AXI4 full memory map interface protocol 
has five standard channels: three channels for write 
transactions and two channels for read transactions. In 
this simulation results section, we implemented only 
the write transaction channels for all the processor 
cores while accessing the off-chip memory. 
 From the simulation results, we observed that 
the Figure 3 shows the write transaction channel  
signals of the first and second processor cores in 32-bits  
data size with different burst lengths of 0f and 07 
respectively. Figure 4 shows the write transaction 
channel signals of the third and fourth processor 
cores in 32-bits data size with different burst lengths 
of 03 and 01 respectively [15]. In Figure 3, the first 
processor core started the write transaction signals at 
the time 30 ns when the clock and reset signals are 
high. At the time 410 ns, the m0_BVALID (i.e. Slave 
generates this signal when the write response on the 
bus is valid) and m0_BREADY (Master generates this 
signal when it can accept a write response) signals 
are high which indicates that the first processor core 

Figure 2: FSM of the AXI arbiter based on SFP.
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of 0f burst lengths completed the transactions and it 
is the chance for the second processor core to use the 
shared interface to access the off-chip memory. This 
also means that the second processor core will wait till 
410 ns to start the transaction. In the same scenario, 
the third and fourth processor cores will wait till 630 
ns and 770 ns respectively to start the transactions as 
shown in Figure 4. The average waiting time for all 
the processor cores is 460 ns as implemented in [15]. 
The proposed model of this work improves the average 
waiting time while all the processor cores using the 
AXI4 interface protocol with different burst lengths by 
considering the arbiter architecture based on the static 

fixed-priority scheduling algorithm. At the program 
time, we assigned the high priority to the processor core 
that has less burst data transaction (less burst length) 
and low priority to the processor core that has high 
burst data transaction (more burst length) to improve 
the average waiting time for all the processor cores  
as shown the Figure 5–7. The write transactions  
for all the four-processor cores are simulated in the 
following simulation results. We used the burst length 
for each processor core in the same way as in the  
previous work [15]. The burst lengths are 0f, 07, 03, 
and 01 for the first, second, third, and fourth processor 
cores respectively.

Figure 3: Write  channel signals of the first and second processor cores without considering the arbiter.

Figure 4: Write channel signals of the third and fourth processor cores without considering the arbiter.
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 In the Figure 5, we observed that the arbiter 
granted the fourth processor core to use the shared 
interface to access the off-chip memory first. The 
fourth processor core started the write transaction 
signals at the time 30 ns when the clock and reset 
signals are high. At the time 150 ns, the m3_BVALID 
and m3_BREADY signals are high which indicates  
that the fourth processor core with 01 burst lengths is 
completed and it is the chance for the third processor  
core to use the shared interface to access the off-chip 
memory because it has burst length less than the 
first and second processor cores. This also means 

that the third processor core will wait till 150 ns to 
start the transaction. In this scenario, the second and 
first processor cores will wait till 410 ns and 710 ns  
respectively to start the transactions as shown in  
Figure 6 and 7. The average waiting time for all the 
processor cores is 325 ns.
 We observed from the simulation results that our 
proposed model improved the average waiting time for 
all the processor cores by 34.4%. The other remaining 
simulation results of the four-processor cores with 
the other different burst lengths are directly written in 
Table 1 and 2. 

Figure 6: Write channel signals of the second and third processor cores with considering the arbiter.

Figure 5: Write channel signals of the first and second processor cores with considering the arbiter.
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Table 1: Waiting time for different burst lengths
Burst Length Waiting Time

Master 0 1f 30 ns 30 ns
Master 1 0f 730 ns 150 ns
Master 2 07 1110 ns 410 ns
Master 3 01 1250 ns 870 ns
Average Waiting Time 780 ns 365 ns
Percentage (%) 72.5%

 Table 1 shows the other simulation results of the 
four-processor cores to access the off-chip memory 
(without/ with considering the arbiter architecture). As 
the data mentioned in Table 1, the four-processor cores 
initiate the transactions to access the off-chip memory 
in different burst lengths 1f, 0f, 07, and 01 (i.e. 32, 16, 
8, and 2 beats of data transactions) for the first, second, 
third, and fourth processor cores respectively. 
 The column of the waiting time in Table 1 is 
divided into two sub-columns. The first sub-column 
represents the waiting time of the four-processor 
cores while accessing the off-chip memory without  
considering the arbiter architecture in the design, 
which means the first processor core must access first, 
then the second processor core, and so on regardless 
of the data burst length. The average waiting time for 
all the four-processor cores in this scenario is 780 ns. 
The second sub-column represents the waiting time 
of the four-processor cores while accessing the off-
chip memory with considering the arbiter architecture 
based on the static fixed-priority scheduling algorithm 

in the design. In this scenario, only the processor core 
that has less burst length can access first. The average 
waiting time for all the four-processor cores in this 
scenario is 365 ns. The final percentage improvement 
of our proposed model of this work according to the 
data available in Table 1 is 72.5%.

Table 2: Waiting time for other different burst lengths
Burst Length Waiting Time

Master 0 2f 30 ns 30 ns
Master 1 1f 1370 ns 190 ns
Master 2 0f 1750 ns 490 ns
Master 3 03 1970 ns 890 ns
Average Waiting Time 1280 ns 400 ns
Percentage (%) 104.8%

 Also, Table 2 shows the other simulation results of 
the four-processor cores initiate the transactions to access 
the off-chip memory in different burst lengths 2f, 1f, 0f, 
and 03 (i.e. 64, 32, 16, and 4 beats of data transactions)  
for the first, second, third, and fourth processor cores 
respectively. 
 The column of the waiting time in Table 2 is 
divided into two sub-columns. The first sub-column  
represents the waiting time of the four-processor 
cores while accessing the off-chip memory without  
considering the arbiter architecture in the design, 
which means the first processor core must access first, 
then the second processor core, and so on regardless 
of the data burst length. The average waiting time for 

Figure 7: Write channel signals of the third and fourth processor cores with considering the arbiter.
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all the four-processor cores in this scenario is 1280 ns. 
The second sub-column is represents the waiting time 
of the four-processor cores while accessing the off-
chip memory with considering the arbiter architecture 
based on the static fixed-priority scheduling algorithm 
in the design. In this scenario, only the processor core 
that has less burst length can access first. The average 
waiting time for all the four-processor cores in this 
scenario is 400 ns. The final percentage improvement 
of our proposed model of this work according to the 
data available in Table 2 is 104.8%.
 The proposed design of this work is modeled in 
System Verilog HDL, all the simulations and synthesis 
are done by using the Vivado tool and FPGA ZYNQ-7 
ZC702 Evaluation Board (xc7z020clg484-1). 
 The AXI arbiter architecture based on the static 
fixed-priority scheduling algorithm is easy to implement  
and less hardware utilization is needed as shown in the 
FPGA utilization of Table 3. Also, in [16], the static fixed-
priority and round-robin algorithms are implemented  
and verified. The static fixed-priority algorithm is 
provides precise results and less chip area compared 
with the round-robin algorithm.

Table 3: FPGA Utilization summary

Logic Utilization Available Used Utilization 
Percentage

Slice LUTs 53200 41 0.1%
Slice Registers 106400 2 0%

Slice 13300 14 0.11%
Bounded IOB 200 151 75.5%

5 Conclusions

In this paper, we have designed the AXI interconnect 
which includes the arbiter architecture based on the 
static fixed-priority scheduling algorithm. The AXI 
interconnect is designed to connect four-processor 
cores represented by the AXI masters by using the 
AXI4 interface protocol with different burst lengths 
and the off-chip memory represented by the AXI 
slave. The arbiter architecture based on the static 
fixed-priority scheduling algorithm is proposed in this 
work to improve the average waiting time for all the 
processor cores. At the program time, we have assigned 
the priorities for all the processor cores that depend 
on the data burst length for each processor core. Only 
the processor core that has less burst length can access 

the off-chip memory first as shown in the simulation  
figures, Tables 1 and 2 respectively. The proposed  
model of this work improved the existing work by 
34.4% as shown in the simulation results of figures and 
72.5%, and 104.8% as shown in the simulation results of 
Table1 and 2 respectively. The SoC design architecture  
is modeled in System Verilog HDL; simulation and 
synthesis are done by using the Vivado tool and FPGA 
ZYNQ-7 ZC702 Evaluation Board (xc7z020clg484-1).
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