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Abstract
The term “microbiome” refers to the association of plants with various microorganisms which play an  
important role in the niches they occupy. These microorganisms are found in the endosphere, phyllosphere, and  
rhizosphere, of host plants which are involved in plant ecology and physiology. The structure and dynamics 
of the plant microbiome have been significant seen in the last few years. In addition, the plant microbiome  
enhances the host plant with gene pools, which is referred to as the second plant genome or extended genome. 
Interestingly, the microbiome associated with plant roots has received unique attention in recent years due 
to its important role in host nutrition, immunity, and development. Prospective studies of the microbiome 
have been coupled with the need for more sustainable production for agriculture. On the other hand, various  
environmental factors are associated with plant-microbiome interactions that can affect composition and diversity.  
This review provides insights and views of plant microbiome for sustainable agriculture. Host factors that  
influence the microbial community, root-associated microbial consortium, commercial application, and limitation 
of plant microbiome were discussed. Also, this review provides current knowledge of the plant microbiome into 
potential biotechnology products that can be used in agricultural systems. Regardless, microbiome innovation 
represents the future of sustainable agriculture.
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1 Introduction

The various types of microorganisms associated 
with higher organisms (animals, humans, plants) are  
collectively defined as their microbiome [1]. To date, 
several studies have progressed rapidly involving  
humans, plants, monkeys, insects, and rats as carriers of 
the microbiome [2]. Recently, research has focused more 
on the interpretation of the function and composition  
of microbiomes between plants and soil. Plants are 
now demonstrated to live in association with a wide 
variety of microorganisms rather than being separate 
[3]. These microbes can live either in the endosphere 
or phyllosphere between plants and soil and are  
predominant in bacteria and fungi. So far, thousands 
of bacterial and fungal taxa from plant tissues have 
been reported [4]. These microbes play an important 
role in increasing the availability of nutrients to plants 
and increasing plant resistance to stress. In addition, 
plant growth and survival also lead to physiological  
functions that may be related to the microbiome known 
as the plant holobiont [5]. Arbuscular mycorrhizal  
fungi (AM) and legume rhizobia are considered the 
most prominent examples of interactions between 
plants and microbiota [6]. This symbiosis greatly 
affects the capability of the roots to absorb several 
nutrients from the soil [7]. It has been reported that 
disclosure of several types and results of plant- 

microbial interactions, generating considerable interest 
among researchers [8]. Predicting advances in plant 
microbiome research is difficult. However, the future 
both applied and fundamental research on the plant 
microbiome is based on 1) improving culture methods,  
2) the role of microbiomes in soil, and 3) gene transfer  
[9]. This review provides insights and views on  
recent research on plant mutualism with microbes 
for sustainable agriculture. Also, the overview of the 
microbiomes that are present above and below the 
soil near to the plant tissue, environmental factors, 
impact on plant mutualism, commercial application, 
and limitation studies of plant- microbiome were  
discussed. Various microbial communities are present 
in the outer surface and in the inner tissues of the plant 
known as ‘Plant Microbiome’. The three spheres of 
the plants have major parts for the plant microbiome 
interactions namely endosphere, rhizosphere and  
phyllosphere. Plant microbiome interactions and  
factors are shown in the Figure 1.

1.1  Endosphere microbiome

Microorganisms near the endosphere can invade the 
inner layer tissues of the plant’s roots and occupy 
them, forming an endophytic microbiome. AM and 
other endophytes are the predominant colony-forming 
bacteria of the inner sphere [10]. It has been reported 

Figure 1: Plant-microbiome interactions and their associations to environmental factors ((1) Phyllosphere,  
(2) Endosphere, and (3) Rhizosphere).



3

A. S. S. Thomas et al., “Plant-Microbe Interactions - Insights and Views for Applications in Sustainable Agriculture.”

Applied Science and Engineering Progress, Vol. 15, No. 1, 2022, 5286

that bacteria and to some extent archaea are significant 
members of the endosphere plant-microbiome, that 
can be beneficial to the plants [11]. On the other hand, 
like the rhizosphere, the endospheres are also very 
specific to the microbial consortium. In general, the 
mutualism of the plant microbiome is higher outside 
the host than in the community of endophytic microbes 
[12]. In addition, the physiological characteristics 
and diversity of the host's endophytic microbiome  
(aboveground and underground tissue) may also differ  
[13]. 

1.2  Rhizosphere microbiome

The rhizosphere soil zone (1–10 mm) surrounding 
the roots, which consists of deposition by the root 
exudates, mucus, and dead plant cells [14]. The 
rhizosphere is diverse, including bacteria, oomycetes, 
fungi, algae, nematodes, viruses, protozoa, and archaea 
[15]. It has been reported that beneficial rhizosphere 
microbiome such as bacteria, plant growth-promoting 
rhizobacteria (PGPR), mycorrhizae, and biocontrol 
microbes was frequently studied [16]. Gans, Wolinsky 
reported that one gram of soil contains more than one 
million of different micro-bacterial genomes [17]. On 
the other hand, İnceoğlu, Al-Soud reported that in a 
potato rhizosphere around 55 thousand operational  
taxonomic units (OTUs) are present [16]. It has been  
reported that the relationship of the microbial community  
between soil is not associated with the host root (bulk 
soil) and the soil of the rhizosphere is irrelevant [18].  
Xanthomonadaceae and Actinomycetes have been 
reported to be groups of bacteria present in the  
rhizosphere, and they are less abundant than those 
living in bulk soil [3]. On the other hand, Mycorrhizal 
fungi are rich in rhizosphere communities and have 
also been found in over 200,000 plant species. It is 
also associated with more than 80% of the entire plant 
microbiome community [18]. In addition, it is a plant 
nutrient and plays a vital role in plant carbon cycling 
in the soil ecosystems to which this Mycorrhizal root 
is associated [18]. Also, it has been reported that  
mycorrhiza maintains nitrogen and phosphorus at 
about 80% of plant requirements. In profit, they receive  
celluloses and phospholipids from the host plant 
[8]. Recently, it has been reported using sequencing  
techniques that AM exhibits a combination of species 
and intraspecific diversity [19]. 

1.3  Phyllosphere microbiome

The areas where flowers, leaves, stems, and fruits 
grow are known as the “phyllosphere” and they are 
also relatively poor in nutrients than the rhizosphere 
and endosphere. Due to environmental factors such as  
temperature, rain, wind, radiation, and humidity,  
this microbial community is subjected to seasonal  
fluctuations. These factors directly affect the  
physiological standards of the host plant, such as 
(water intake, photosynthesis, respiration, etc.), and 
indirectly affect the population structures of the  
microbiomes [19]. The species of microbial communities  
that are rich in the natural phyllosphere region were 
reported. The diversity of fungal communities in the 
phyllosphere in temperate regions is more diverse than 
in tropical ones [20]. In addition, it has been reported 
that 1026 cells of the bacterial phyllosphere population 
are present on earth and about 107 cells are present 
on the leaf surface of the host plant per cm2 [21]. On 
the other hand, the numbers of the fungal community  
population are smaller [22]. Microbes in the  
phyllosphere of different plants are comparatively 
similar to higher-level taxa, while lower taxa in the 
same region remain substantially different. This  
indicates that microorganisms may need to adapt their 
metabolism to survive in the phyllosphere [21]. 

2 Plant-Microbiome Interactions 

Agriculture productivity is affected by microorganisms,  
for example by helping and controlling the availability/
absorption of nutrients and increasing plant resistance 
to stress [23]. Recently, several studies have focused 
on niches in specific plant regions and regulation in 
their specific microbiome [24]. It has been reported 
that the factors that influence this assembly were varied 
in various parts of the plant-based on the studies of 
phylogenetic and functional analysis [25]. Even though 
the plant microbiome is recognized as a huge treasure 
of microbial diversity, some types of crops, their 
functions, and composition have not yet been studied 
for their bacterial communities [26]. The significance 
of plant-microbiome interaction can be studied to be 
applied in the prevention of plant-pathogen [27]. The 
mechanisms of interactions of the plant-microbiome 
are unknown due to the lack of proper methodologies 
[28]. On the other hand, the ability of soil microbes 
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can be understood by relieving stress in crops for plant-
microbiome interactions [29]. Archaea and nematodes 
have been reported to contribute significantly to the  
diversity of the microbiome and they interact with 
other microorganisms to control ecosystem functions  
and soil-plant processes [30] In addition, it has 
been reported that there is an important relationship  
between soil microbial-based plants-microbiome-insect  
interactions by the release of volatiles from terrestrial  
plants after modulation [31] These studies are more  
holistic in the interaction of nutrients to understand  
which dietary and biological factors determine the 
structure and, therefore, the function of the structures 
of soil and plant microbiome. The bacterial community  
is influenced by antagonistic, commensal interactions,  
and competitive. The general modes of plant-microbial 
interaction are competition, exchange, inter-dependence  
between nutrients, and the exchange of metabolites [32]. 
Therefore, direct cooperative or competitive interactions  
between community members may depend on interactions  
under certain conditions.  

3 Environmental Factors- Impact on Mutualism

Environmental factors such as heat, drought, cold, salt, 
and pathogen infections can have devastating effects 
on plant growth and yield in the field [33]. Recently, 
there have been reports that global crop production is 
under the influence of environmental factor, mainly 
due to abiotic and biotic stresses [34], which can lead 
to the loss of more than millions of dollars. According 
to Lesk, global warming and drought have reduced 
the production of grains such as wheat, corn, and rice 
by about 10% over a 50-year lifespan, raising serious 
concerns for various governments [35]. The impact of 
global warming on the bio-phenology of spring plants 
is demonstrated [36]. Longer growing seasons can 
increase carbon absorption and potentially reduce leaf 
emergence, climate change, germination, and fruiting 
[37]. Some  of the key findings and effects of factors 
affecting the plant-microbial interaction are shown in 
Table 1.

3.1  Abiotic factor

Abiotic factors include extreme drought, temperature, 

light, waterlogging, and salinity as the main parameters 
affecting plant growth [38]. Plant Growth Promoting 
Rhizobacteria (PGPR) were found to be essential for 
the growth of plants. It has been reported that PGPR 
helps plant growth by stimulating root and shoot 
by producing Amino-Cyclopropane-1-Carboxylate 
(ACC), solubilizing phosphate, and indole acetic acid. 
In addition, they also help in the resistance to adverse 
environmental factors. 

3.2  Biotic factor

Biotic factors, such as interactions between organisms,  
pathogen infestation, and plant growth-promoting  
bacteria have been used as biocontrol agents against 
plant pathogens [39].  Biological stress induced by 
PGPR has been reported to affect plant growth in 
two different ways; by producing phytohormones or  
promoting the absorption of certain nutrients. In addition,  
phyto-anticipants are used as protective compounds 
against plant pathogens that cause biotic stress.

3.3  Agriculture practice 

Cultivation practices and the use of land are the most 
important causes of biodiversity loss, leading to  
undesirable consequences for the environment [40]. 
The effects of soil management practices depend 
on soil type, microbiome, and plant species, and 
approximately 10% of the imbalance in microbial 
diversity can be attributed to agricultural practices 
used [41]. Vegetation affects changes in the structure 
of soil and the diversity of microbiomes. For example,  
excess land use affects the pattern of microbial  
communities [42]. On the other hand, no effect of 
land use on microbial diversity in the rhizosphere was 
found, indicating that plant species have an impact 
on the rhizosphere community than soil properties 
[43]. Meanwhile, plants may have resilient core  
microbiome compositions that are less susceptible 
to change due to differences in land use and soil 
type [44]. The microbiome of deciduous forests is 
relatively intact, and differences were seen in soil 
and vegetation properties. Incessant cultivation can 
causes changes in soil properties, which in turn affects 
microbiome communities [45]. 
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Table 1: Biotic and abiotic factors affecting the plant-microbial interactions
Type of Factor Effect of Factor Studies Associated and Key Findings Reference

Biotic factor Plant genotype Root structure in the border cells varied between cotton cultivators. Therefore, 
plants of different genotypes have different compositions and may promote 
growths of certain microorganisms.

[46]

In the Arabidopsis phyllosphere, four out of nine genotypes were tested with 
different microbial compositions. This is due to the genetic factors of the host 
plant associated with the microbiota.

[47]

Inoculation of rhizosphere soil from a tomato plant resistant to Ralstonia  
solanacearum suppressed disease symptoms in susceptible plants. This 
shows that the role of the local microbiota is to protect plants from microbial  
pathogens.

[48]

Bio-inoculants 
(beneficial 

interactions)

Potato plants were inoculated with Methylobacterium spp., structural changes in 
the endogenous microbial community were observed. This bacterial inoculant 
increased the relative abundance of Massilia sp., Acinetobacter sp., Entyloma 
sp., and Phoma sp., 

[49]

After inoculating wheat seeds with Paraburkholderia phytofirmans (PsJN) in the 
spring, the effect of microbial inoculum on the seed microbial flora was observed. 
An important finding is that it reduced the population of Proteobacteria and 
stimulated Flavobacterium.

[50]

Metarhizium fungus inoculated in beans increased microbiome that promotes plant 
development growth such as Bradyrhizobium, Flavobacterium, Chaetomium, 
and Trichoderma. This inoculation can suppress the activity of the pathogen 
Fusarium solani. 

[51]

Herbaspirillum seropedicae and bacteria combined with humic acid were  
inoculated in the root maize seeds resulted in a variety of nitrogen compounds.  

[52]

Effect of 
pathogen 

Phytopathogenic fungi presence in Arabidopsis thaliana resulted in the alteration 
of epiphytic and endophytic bacterial colonization of the phyllosphere.

[53]

Rhizoctonia solani inoculation in the lettuce resulted in increased diversity  
of Gammaproteobacteria. 

[54]

Banana trees that were infected with Fusarium oxysporum were colonized with 
bacteria from the Enterobacteriaceae family, while in healthy plants, populations 
of  Pseudomonas and Stenotrophomonas were found to be increased.

[55]

In kiwifruit, Pseudomonas syringae causes a disease called canker disease, which 
affects the microbial community of Actinidia delicious in the phyllosphere, where 
it resulted in the reduction of the microbial community. 

[56]

Effect of 
agricultural 

practice

Green fertilizers are used to alter the composition of the yerba mate bacterial 
microbiome, and cultivation in monoculture leads to the development of an 
abundant fungal microbiome.

[57]

Long-term cultivated soil was compared in both traditional and organic systems. 
It was concluded that these soils contained different microbial flora. 

[58]

Single crops of black pepper alter the composition of soil microbial communities 
and their physicochemical properties over a long period (12-38 years). As a result, 
the reproduction of the Fusarium pathogen is significantly reduced.

[59]

Abiotic factors pH Significant structural difference of 57% in taxon abundance were observed due 
to pH of environments.

[60]

Drought In rice, Actinomycetes and Chloroflexi phylum increased and the root system was 
reconstructed under drought conditions. 

[61]

Drought conditions altered the composition of microbiomes present in the root, 
and also increased the richness of Actinobacteria.

[62]

Temperature Treating the soil at different temperatures (50–80°C) alters and reduces the bacterial  
community and reduces the ability to fight diseases. 

[63]

Salinity Evaluations of salinity on soil microbiome and the spinach rhizosphere were 
studied. The outcome was an increase in water absorption by plants (transpiration) 

[64]
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4 Root Associated Microbial Consortium 

The plant microbiome provides the host plant with 
additional gene pools, which is why it is often referred 
to as the secondary plant genome or extended genome 
[65]. Interestingly, the root-associated microbiome has 
received unique attention in recent years due to its  
important role in development, nutrition, and immunity 
[62]. The microbial community in the soil is closely 
related to the plant root system, so the root system 
functions according to microbial interactions. Plant 
Growth-Promoting Microorganisms (PGPMs) have 
been reported to be beneficial for root line growth [66]. 
 Plants inoculated with PGPM were reported to 
show higher root biomass and faster root growth [67]. 
Kaur et al. reported that Penicillium simplicissimum 
GP17-2 was inoculated into a cucumber plant under 
barley grain soil conditions resulting in the rapid 
growth of both (longer and larger root systems) after 
3 weeks of planting [66]. It can improve the plant's 
ability to absorb nutrients and water, and also helps in 
the interaction between the plant and the rhizosphere 
[68]. Root system architecture (RSA) is associated 
with two main physiological consequences, namely 
the growth of the main and lateral root (LR) and root 
hairs (RH) [69]. However, LR and RH develop a 
major characteristic root structure that promotes the 
absorption of water and minerals. Contreras-Cornejo 
et al. reported that high efficiency was shown in LR 
production after inducing Trichoderma in Arabidopsis 
thaliana [70]. Similarly, Lee et al. reported that rapid 
growth was observed in Arabidopsis thaliana and 
Chinese cabbage after induction of Brassica rapa L. in  
RH. List of Root associated microbiome studies and  

key findings are shown in Table 2.
 On the other hand, phenolic and amino acids 
in watermelon root exudates significantly increase 
sporulation and germination of Fusarium oxysporum f. 
sp. niveum [71]. In the tomato plant, root exudates are 
stimulated and germinated microconidia of pathogens 
F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. 
radicis-lycopersici which is affected by plant age [72]. 
Moreover, root exudates can be detected by fungal 
pathogens, which allow the fungal hyphae to orient 
themselves in the direction of their growths towards 
the root.
 Dong et al. reported that colonization of  
Piriformospora indica in the root system was increased 
in the diameter of the extension zone by 2 times, biomass  
by 1.4 times, and the thickness of the epidermis and 
cortical layer LR by 1.5 times compared with the group 
of untreated plants [73]. This LR stimulation appears to 
be an early interaction phase in phytopathogenic root 
colonizing fungi [74]. Martínez-Medina et al. reported 
that a reduction in cytokinin content was seen after the 
induction of Trichoderma, and it promoted the root 
growth of melon plants [75]. Also, similar results were 
obtained by Sofo et al., when Trichoderma harzianum 
T-22 was inoculated into plants, showed a significant 
decrease in cytokinins (dihydrozeatin and trans-zeatin) 
in the root system [76]. However, the root tips are 
considered the main site synthesis of cytokinins, the 
above results indicate that cytokinins play a negative 
role in root growth [77]. Overexpression of cytokinin 
oxidase/dehydrogenase (CKX) genes in transgenic 
plants results in elongation of the root meristem,  
improved root branching, LR origin closer to the apical 
root meristem, and root formation [78]. 

Table 2: Models of the root-associated microbiome and host plants 
Plant Host Microbiome Key Findings Reference

Rice Actinobacteria 
and Chloroflexi

Drought stress is responsible for taxa that is specific to the compartment. This shows 
that drought affects plant physiology and re-builds root microbial communities.  
In addition, this contributes to the survival of plants in extreme environmental 
conditions.

[61]

Wheat Triticum 
aestivum L.

Soil organic and activated carbon increased with long-term nitrogen fertilization but 
changed during the growth phase. This provides a link between increased nitrogen 
fertilizer inputs, carbon changes, and migrations of root microbial communities.

[79]

Barely Phyllobacterium, 
Paenibacillus, and 

Trabusiella

In all seed and root samples, resulted in an association with OTUs indicates a significant  
relationship between seed and root-related microbiome. Phytohormones from 
seeds and roots play an important role in seedling germination and colonization.

[80]

Potato Flavobacterium, 
Pseudomonas, and 

Acinetobacter

In potatoes, the rhizosphere was significantly rich in the genera of fungi. Analysis of 
the bacterial and fungal community microbiota showed that the structure formation  
of bacterial microbiota in the rhizosphere was dependent on the host plant.

[81]
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5 Commercial Applications of a Microbial  
Consortium

The consortium of microbes can be used as a biological  
tool to stimulate plant growth [29]. The consortium 
of soil microorganisms has been reported to have 
beneficial effects on plant growth, and various 
other microorganisms have been commercialized for  
agricultural use [82]. On the other hand, a consortium that 
promotes plant growth may be feasible to enhance the 
activity of fungi and rhizobacteria [83]. The commercial  
application used for sustainable agricultural and  
beneficial effects are shown in Figure 2. Global  
demand for microbial inoculants has increased by 12% 
due to rising costs of fertilizers and the efficiency for 
environmentally friendly technologies in society [84]. 
A commercial product for growing wheat and canola is 
(JumpStart®) which contains Penicillium bilaii. Using 
this commercial product in one study reported a high 
yield (66%) of wheat. However, several studies have 
reported less beneficial properties [85]. Modifiers  
and bio-fertilizers, which are supplied to farmers  
under various schemes with subsidies from 25 to 
75%. Moreover, the acceptability of biofertilizers for  
farmers remains inconsistent due to 1) pest inoculants,  
2) temperature sensitivity, and 3) environmental  
factors [86].

5.1  Biostimulation

Biostimulants are factors that can be separated from  
phytonutrients for the insemination of plant development  
and growth. [87]. By using these biostimulants it can 
increase around 10% of the yield of crops and it could 
reach 3.68 billion dollars by 2022 with an annual 
growth of 45% in the world market [83]. Biostimulants  
are of five different types namely, humic acids, microbial  
inoculants, fluvic acids, amino acids, protein hydrolysates,  
and seaweed extracts [88]. It has been reported that AMF  
is a local microbial consortium of three species [89]. 
Recently, studies have reported that seeds consisting 
of 108 microbial cells were inoculated and coated with 
an adhesive, which showed that they were affected by 
temperature and humidity, and their effectiveness [90]. 
In addition to the traditional delivery approach, new 
methods have been developed. For example, flower 
spray inoculation has been reported to continue to  
produce next-generation endophytic colonized seeds and 
regulated seed microbiomes. It resulted in colonization  
of germinated plants was effectively carried out with the 
inoculated strain. This indicates that using a different  
approach may lead to increased efficiency of microbial 
inoculation in the field [91]. Further research is needed 
on the development of biostimulants to compare with 
conventional chemical inputs in field trials with a variety  

Figure 2: Applications of microbial inoculants and beneficial effects in sustainable agricultural activities.
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of fruit crops and over varying climates and conditions 
before farmers will be willing to accept them. 

5.2  Biocontrol agents

The biocontrol agents (BCA) have major functions of 
such as, B. popilliae, B. thuringiensis, and P. fluorescens  
is to suppress or control plant diseases by acting as 
antimicrobial and antifungal agents [92]. Biocontrol 
agents that are used to control disease after harvesting  
mainly focus on isolating microorganisms with pathogen  
resistance. It has previously been found to be an  
indispensable biocontrol agent when used against soil 
and foliar diseases and is a potent antagonist [93]. 
Wilson and Wisniewski discovered many antagonist 
models, and this became the basis for several other  
biocontrol research programs in the early and recent 
years [94]. PGPRs of species such as Azotobacter, 
Azospirillum, Bacillus Burkholderia, Pseudomonas,  
Serratia, Rhizobium, are currently produced commercially  
on a large scale, but for the use of these biofertilizers 
and microbial bio-pesticides for agricultural purposes. 
The main obstacles are the stability, reliability, and shelf  
life of microbial inoculum in the field [95]. In addition,  
antagonists that produce secondary metabolites suppress  
target pathogens, which means that antibiotic production  
is difficult during the process [94]. 2-hexyl-5-propyl 
resorcinol (HPR) has been reported as a key role in 
biofilm formation [96] On the other hand, the essential  
feature that was well-defined is that the level of 
growth and plant’s survival rate after application of a 
biocontrol agent on injured fruit’s surface to prevent 
pathogen intact. 

5.3  Bioremediation

Bioremediation is a collective phenomenon that 
involves the process of using a biological system to 
restore or clean up contaminated sites [95], [96]. Due 
to anthropogenic activities and population growth, 
the ecosystem has been affected by contaminations 
[97], [98]. Bioremediation characterization is the most  
important step [99], [100]. This helps establish the most 
accurate and viable bioremediation techniques [101]. 
High concentrations of contaminated heavy metal in the 
environment cause deteriorating water quality [102]. 
Increasing the effectiveness of bioremediation through 
the use of genetically engineered microorganisms  

(GEMs) is a promising approach to resolve this 
problem [103]. This mechanism can be achieved by 
degrading target pollutants, including cumbersome  
compounds, incorporating new and efficient  
metabolic pathways, expanding the substrate range 
of existing pathways, and increasing the stability of  
catabolism [104]. Biological techniques that use specific  
microorganisms to break down various pollutants 
into non or low-toxic compounds are demonstrated 
to achieve environmentally sustainable growth and  
development [101]. On the other hand, the efficiency of 
bioremediation and biodegradation of environmental  
pollutants using microbial strains (single) is still low 
and limited [105]. The efficiency of bioremediation  
with the biological method in contaminated areas  
is varied depending on soil type, location, and  
characteristics of bioremediation methods, and it needs 
the method to incorporate these microbes into those 
targeted areas to allow the microbe’s survival [106]. 
Therefore, more attention has been transferred to the 
microbial consortium due to their unique multiple 
functions, robust and adaptive properties.

6 Limitation of the Study in Plant-Microbiome 
Interactions 

Despite the many advantages over monocultures,  
several problems remain when using co-culture  
methods for production purposes. Therefore, it is  
necessary to gain understanding and recognition of 
these limitations to motivate the development of the 
R&D activities to overcome these bottlenecks.

6.1  Co-cultivation compatibility

One of the key factors for the success of the co-cultivation  
system is strain compatibility. The spots that make up 
co-cultivation should be able to grow efficiently under 
the same growth parameters, such as environment, 
temperature, pH, and oxygen demand, and should not 
produce toxic compounds that cause significant harm 
to other members of the microbial community [107]. 
These microbial strains belong to the same species 
because the goal is to achieve similar growth. On the 
other hand, the different growth rate is an issue when 
different species with slightly different environmental 
requirements are used to create a synthetic microbial 
consortium. One possibility to solve this problem is 
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to introduce positive interactions between microbial 
partners during co-culture fermentation.

6.2  Reproducibility

The reproducibility and balance ratio throughout the 
co-cultivation of the microbial consortium for the 
symbiotic cultivation process is innovative. It has 
been reported that due to various factors, such as 
substrate competition, consortium toxicity, doubling 
times can fluctuate in the co-culture population [108]. 
This greatly affects the reproducibility of co-culture 
engineering studies. Reactor volume can also affect 
the viability of co-culture [109]. Changing the ratio of 
inoculation between co-cultivation partners has been 
reported to strongly affect overall production during  
crop cultivation [110]. Another study reported  
mutualistic growth of the desired population to maintain  
the co-culture formulation [111]. However, manipulation  
of growth rates and biomass of consortium are greatly 
affected by population’s communications based on 
quorum sensing [112]. Therefore, these growth and 
metabolic pathways are thought to be regulated among 
co-culture members.

6.3  Exchange of metabolites

The exchange of metabolites between the different 
strains in microbial consortium results in the different 
biochemical intermediates, such as phosphorylated  
derivative molecules or Coenzyme A derivative species.  
Taking this into account, the modules of the metabolic 
pathway must be separated between the constituents so 
that the binding metabolites can be easily transported 
between members of the co-cultures. In addition, the 
membrane transporter can be genetically modified to 
promote the transportation of the intermediates to the 
desired direction [108].

6.4  Data acquisition

Comprehensive data collection for symbiotic  
culture is a major challenge as medical, industrial, and  
environmental applications require detailed data  
collection and description [113]. It was reported that 
the distribution of metabolic fluxes in the co-culture 
system was possible to achieve than within the cells, 
which gives an advantage over monoculture systems 

for obtaining information about metabolism [114]. 
However, in an artificial consortium, metabolic  
interactions are difficult to decipher as microbial  
members can exchange interacting metabolites [115]. 
However, there are reports of co-culture characterization  
(theoretical and experimental strategies) that determine 
metabolic flux without any physical separation of cells.

7 Conclusions

In our world, we are facing these negative effects of food 
supply depletion, soil pollution, climatic conditions,  
and water scarcity, while global food demand will  
increase by 70% in 2050 [116]. Because of these  
impacts, natural resources, such as the plant microbiome  
are an alternative option to sustainable agriculture. 
However, the knowledge on plant microbiomes 
through the scientific literature is not sufficient.  
Advancement in research, such as sampling, extraction,  
and molecular techniques (amplification of DNA, 
bioinformatics, and sequencing) is required. On the 
other hand, the composition and function of the plant 
microbiome are essential to modulate or optimize for 
the growth of sustainable agriculture. Although the 
structure of microbiomes can be influenced by several  
factors discussed in this review, the underlying  
knowledge of the mechanisms involved in plant  
microbiomes is still lacking. The composition and 
diversity of the microbiome and their functions are 
the major concerns for future research on sustainable 
agriculture and environmental protection.
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