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Abstract
A variety of techniques have been used to improve the performance of an algorithm in finding frequent item sets, 
which is one of the important processes to obtain frequent pattern mining. It was found that today’s technology has 
resulted in an ever-increasing amount of information, which should be analyzed for various benefits. Therefore,  
efforts have been made to improve the aalgoruthm’s efficiency to accommodate the nature of data stored 
through the working process of the main internal memory. Efforts have been made to prepare algorithms for the  
ever-increasing information.  This research provided an appropriate data structure of BitTable to help improve the 
functionality of the algorithms. Moreover, the principle of parallel frequent itemset mining algorithm based on 
Map-Reduce design was used in this research to assess the performance of algorithms, named as Adaptive Hybrid 
Parallel Algorithm (AHP). Additionally, to investigate the performance of the AHP Algorithm Using Apache 
Spark Technology with the type of data that was accumulated during the process of the main internal memory.

Keywords: Frequent pattern mining, Frequent itemsets mining, Parallel algorithm, Distributed computing, 
Various
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1 Introduction

Finding frequent itemsets from the database list is a part of 
the processes of Frequent Pattern Mining. As the amount 
of data increases drastically, algorithms have to deal with 
big data accordingly. In the Big Data era, It is important 
to improve the performance of algorithms in finding 
frequent itemsets with particular types of information. 
 The classical frequent itemsets mining algorithm 
is mainly divided into two categories: the first is the 
discovered frequent itemsets to generate the candidate 
itemsets, count the candidate itemsets to find new 
frequent itemsets, Typical algorithms include Apriori, 
etc. The second is directly generates frequent itemsets 
through recursive traversal on data structure, and Typical  
algorithms include FP-Growth, etc. The classical  
frequent itemsets mining algorithm is executed on a single  
machine with data centralization. In A computation-
intensive task, the size of search space is 2n–1 when 
there are n items in the dataset that the computing load 
is extremely heavy. In the mining process, frequent 

itemsets mining needs to store specific data structures 
or candidate datasets in memory [1]–[3]. Thereby, 
parallel frequent itemsets mining [4], which seamlessly 
integrates parallel computing, has been widely used in 
various applications.  
 In recent years, the Map-Reduce method was 
found to be capable of parallel work. Accordingly, the 
PFIMD algorithm [4] designed an optimization parallel 
frequent itemset mining algorithm based on a Map-
Reducing programming model to find the association 
rule on the Apache Hadoop Technology. It is one of the 
frameworks that help to distribute big data processing 
on a larger scale of networking computers. There is  
another model called “Hadoop Distributed File System”  
(HDFS) [5], which helps store data in a way that can 
be quickly accessible. It reduces storage space, allows 
faster processing and automatic backup on disk drives. 
By this means, data is not stored on the memory drive 
at all. Under this setting, when any nodes on computers 
malfunction, other nodes can continue working on the 
information on the disk. This method has been utilized 
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to help improve the performance of algorithms in the 
calculation of frequent itemsets. At present, Apache 
Spark is a popular technology capable of both parallel  
and distributed computing processes. Accordingly, 
the SARSO algorithm [6] investigated the benefits of 
Spark’s parallel and distributed computing environment  
to futher improve efficiency by reducing the shuffle 
overhead caused by RDD operations at each iteration.  
HBPFP-DC algorithm [7] on Spark platform to define node 
computation workload estimation model and to realize  
the balanced grouping of the calculation tasks among 
computing nodes, based on the problems presented above.
 Because of of this, we present the design and 
implementation of the AHP Algorithm using the 
Map-Reduce Principle on Apache Spark technology. 
Moreover, data structure of BitTable was adjusted 
to boost mining efficiency, by helping to expand the 
working pattern and and to increase the efficiency of 
the Map-reduce technique by increasing the speed of 
the clusters on a computer’s memory, which resulted 
in a faster processing time.
 The contributions of this paper are mainly  
focused in three aspects. Firstly, discussion about the main  
ideas of AHP algorithm design, proposed paradigms 
of AHP algorithm, and the paradigms from the aspects  
of processing speed and characteristics of the dataset. 
Secondly, the implementation of paradigms using 
Map-Reduce Principle on Spark technology was 
explained and algorithm for direct implementation of 
paradigms named Adaptive Hybrid Parallel Algorithm  
(AHP) was proposed. Thirdly, the algorithm’s  
performance such as processing speed and characteristics  
of the dataset were analyzed through experiments.

1.1  Reduced-Apriori: R-Apriori

The R-Apriori algorithm utilizes an intersection principle  
[8] to reduce the redundancy features with a data 
frequency greater than or equal to the minimum  
support value. This reduction lowers the database 
needed for the creation of candidate datasets. The 
R-Apriori algorithm was developed from the YAFIM 
algorithm [9], further developed from the Parallel 
Apriori. It has two main operational processes. The 
first step involves creating a dataset with an item length 
at a value of one (1-frequent itemset), also known as 
Singleton Frequent Items. The Minimum Support 
value is used for the selection of frequent itemsets. The 

Map-Reduction method explains the working process 
of algorithms (a)–(c) as shown in Figure 1. In the 
second step,  the Singleton Frequent data obtained in 
the first step, including data sets; S, R, G, P as shown 
in Figure 1(a),  is intersected with the entries in the 
database. This process reduces the number of database 
entries needed to create the candidate dataset as shown 
in Figure 1(b) and (c). Based on the data transitions 
T1, items S, R, and M are included.  When these items 
are intersected with the items in  Singleton Frequent 
data (items, S, R, G, P), only items S, R, remain in T1 
transitions. When this intersection system is applied 
with the Apache Spark technology, in which data is 
stored during the computing process within the main 
memory units, the algorithm's performance can be 
raised with a faster operation time.

1.2  Distributed frequent itemset mining algorithm: 
DFIMA

Another algorithm used for the mining of frequent 
itemset is the matrix-based pruning method. It is 
found to reduce the time required for calculating 
candidate datasets and the re-reading of information 
within the database. The distributed frequent itemset  
mining algorithm (DFIMA) [10] is used in the  
mining of the frequently accumulated datasets. The 
method is used for the improvement of the fundamental 
apriori algorithm. The implementation of the DFIMA  
algorithm begins by creating a Singleton frequent 
item (1-frequent itemset) based on the  principle of 
the Map-Reduce process  as shown in Figure 1(a). The 
frequent singleton itemsets obtained in this process are 
S, R, G, P. Figure 2 shows Singleton Frequent Itemsets 
to create vector Boolean from the database in each 
transaction. Particularly in this process, the entries in  
each transaction with the Singleton frequent itemset 
are represented by 1, and those without the Singleton 
frequent itemset are represented with 0. This is to 
reduces the amount of data before calculating the 
candidate dataset, as shown in Figure 2. The next step 
is to transform the data in Boolean vectors to a matrix 
(2-itemset matrix) to generate a candidate dataset.

1.3  Map-reduce operation on apache spark technology

Apache Spark technology is an open-source technology  
capable of handling big data [11]. It has two operational  
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parts. The first one is called resilient distributed datasets  
(RDD), which store data in the main memory unit. The 
second is the Map-Reduce portion for data processing. 
The map-reduce in Apache Spark Technology has two 
functions: Flat Map Function and Map Function, as 
shown in Figure 3, which help to convert data into a 

form of <Key, Value>. The converted data is sent to 
the groupByKey function, which works similarly to 
the Reduce function, to combine data values with the 
same key together. The filter function is processed to 
obtain the desired results [5], [6]. These processes are 
operated on the main memory.

(c) Third map-reduce operation
Figure 1: Map-Reduce system of the R-Apriori algorithm, in which; (a) shows a process for the making of 
Singleton frequent items at a length of 1-frequent itemsets, (b) shows a process for the making of Singleton 
frequent items at a length of 2-frequent itemsets using intersection technique, and (c) shows a process for the 
making of Singleton Frequent Items at a length of k (k-1frequent itemsets) in the creation of dataset (k + 1) 
frequent itemsets (L3) [8].

(a) First map-reduce operation

(b) Second map-reduce operation
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1.4  BitTable representation of data

Data structures related to frequent itemsets are stored 
in sparse matrices, and vector multiplications are used 
to calculate the support of the potential k+1 itemsets. 
BitTable structure is used compresses the datasets 
horizontally and vertically for quick candidate itemsets  
generation and support count, which bitwise operations 
are used in place of the item position during the information  
gathering process. The key idea is to store the data  
related to a given itemset in a binary vector. The bitmaps  
of frequent itemsets are generated based on the binary 
vector’s elementwise products corresponding to the 
building k-1 frequent itemsets [12]. The processing 
time was minimized when the mining of the frequent 
itemsets was implemented via the matrix method. 

 An illustrative example for D transactional 
database is shown in Figure 4(a). The transactional 
database can be transformed into a bitmaps matrix as 
shown in Figure 4(b) representation, where if an item 
i = 1,…, m appears in transaction Tj , j = 1,…,N , the 
bit i of the j-th row of the binary incidence matrix 
will be marked as one. As the support of an itemset 
is a percentage of the total number of transactions,  
the Summary of the columns of the B0

Nxn matrix  
represents the support of the j = 1,…,n items is shown 
in Figure 4(c). Therefore, if b0

j represent j-th column 
of B0

Nxn, which is related to the occurrence of the ij-th 
item, then the support of the ij item can be calculated 
as Equation (1)

Sup(X = ij) = (b0
j)T b0

j / N (1)

Figure 2: The functionality of the DFIMA algorithm and the use of the Singleton frequent itemset to create 
Boolean vectors for candidate datasets creation [10].

Figure 3: Main functioning of Map-reduce algorithm [11].

Figure 4: Illustrative example for a transactional dataset and the binary matrix representation.
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 Similarly, the support of an Xi,j = {ii, ij} itemset 
can be easily calculated by a simple vector product of 
the two related bit vectors, since when both ii and ij 
items appear in a given transaction, the product of the 
two related bits can represent the AND connection of 
the two items [Equation (2)]:

Sup(Xi,j = {ii, ij}) = (b0
j)T b0

j / N  (2)

 The matrix representation allows the effective 
calculation of all of the itemsets [Equation (3)]:

S2 = (B0)T B0  (3)

Where the i,j-th element of S2 matrix represents 
the support of the Xi,j = {ii, ij} 2-itemset. The upper  
triangular element of this symmetrical matrix has to 
be checked, whether the Xi,j = {ii, ij} 2-itemsets are 
frequent or not.

1.5  Proposed method: Adaptive hybrid parallel 
algorithm

This research study proposed an approach for improving  
the efficiency of algorithms based on frequency pattern  
mining. The techniques used for enhancing the  
algorithm performance included reducing the creation 
of the candidate datasets and the number of re-reading 
cycles.  The data structure is presented in  BitTable 
based on the processes in Figure 5.

1.6  Design of adaptive hybrid parallel algorithm 
based on Map-Reduce method

The adaptive hybrid parallel algorithm based on applying  

the Map-Reduce method on Apache Spark technology 
has two main functions. Part 1 (Phase 1): This phase, 
as exemplified in Algorithm 1 in Figure 6, involves  
finding Singleton frequent 1- Itemset. In this step, 
Map-Reduce processes one cycle of work and uses 
the minimum support value to select a Singleton  
frequent itemset. The results are stored in the RDD 
with the construction of  MinHashingFI data to be used 
for the creation of a candidate dataset and the support 
information of the candidate dataset. 
 Part 2 (Phase 2): In this step, candidate dataset is 
created from a Frequent k–1 itemset, which is similar to 
algorithm Apriori that creates a candidate dataset with 
the item lengths of k and Ck from the frequent itemsets 
with the item lengths of k–1, and Lk–1. However,  
the method for creating and counting support values for 
the candidate datasets is different (Modified approach).

2 Materials and Methods

2.1  Singleton frequent items algorithm (Frequent 
1-itemsets) on spark

The adaptive hybrid parallel algorithm searches for 
a frequent singleton dataset from the entries in the 
transaction lists from an extensive database using a 
Map-Reduce method. It was found in many search 
studies that the Map-Reduce method had been used 
effectively to search for singleton frequent items in 
large databases.
 Transactions stored at HDFS are loaded into the 
Spark RDD as input for the singleton frequent item 
search, as shown in Algorithm 1 in Figure 6. The 
input data is broken down and distributed to every 
working node. The flatMap function is used for every 

Figure 5: Adaptive hybrid parallel algorithm with the application of Map-Reduce method on the RDD architecture. 
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transaction (Algorithm 1, Line 2). Each transaction is 
executed and put in a <key, value> dyad format where 
the value equals integer 1 (Algorithm 1, Lines 4–6). 
Data is stored at RDD in the working memory section. 
Then, the reduceByKey function combines values with 
the same keys and discards the impediment that does 
not pass the specified minimum support (Algorithm 1,  
Line 8–9). The results from this operation are more 
minor size data that is later stored in the RDD. Figure 6  
shows the functioning of the program in finding the 
Singleton frequent itemset (Frequent 1- itemsets).

2.2  The processes for searching of Singleton  
frequent items (Frequent 1-itemsets) on spark

Figure 7 portrays a process of Singleton Frequent 
Itemset searching using the minimum support rate 
of 33% (with at least two cases of minimum support 

found in transactions in the database). Transactions 
stored in HDFS are loaded as inputs to SparkRDD 
before the flatMap divides and subsections them to all 
mappers nodes. As exemplified in Figure 7, MAP-1 
receives transaction data T1 and T2 within each node.  
The flatMap function is used for every transaction, 
and each transaction is paired (RDD.split) in the <key, 
value> format, where the value is equal to integer 1. 
As shown in Figure 7, the T1 transaction consists of 
(S, R, M). These data are matched as <S, 1>, <R, 1> 
and <M, 1>, and stored in RDD in the main memory. 
All working processes are performed on the RDD.
 The next working process involves the reduce 
byKey function in combining the values with the same 
key (RDD.reduceByKey) and discarding  the results 
that fail to meet the required minimum support, resulting  
in smaller sizes of data to be stored it in the RDD.
 
2.3  The algorithm for generated MinHashingFI 
table by Singleton frequent items

The processes for creating the MinHashingFI table 
in Algorithm 2 (Figure 8) are implemented to help 
improve the operation of the algorithm (Modified 
approach). The process starts from assigning each of 
the singleton frequent items in each of the transactions 
in the database with a bit value of 1. Any transaction 
without the singleton frequent items is represented 
with a value of 0. For this instance,  the MinHashingFI  
value is the numerical figure obtained from the  
representation of the item's number in bit value. Each 
MinHashingFI is then stored in SparkRDD in the main 
memory unit. 
 The working process of an adaptive hybrid  
parallel algorithm starts with importing the input that 
will be used to create a candidate dataset. The imported 

Figure 6: Singleton frequent itemset generating algorithm.

Figure 7: Processes for the searching of Singleton frequent itemsets.

Algorithm 1: Phase I – Singleton Frequent items 
Input: Load the transactional Dataset D from Input file into  
a cached RDD 
OutPut: Singleton Frequent item L1 

1. Procedure SINGLETON -GEN 
2.   For each Transaction T ∈ D   do 
3.    flatMap (line offset, T) 
4.    For each item I ∈ T  do 
5.           Yield (I, 1) 
6.    End flatMap 
7.    storeAtRDD1 
8.    RDD2 = RDD1.reduceByKey 
9.    For each tuple t ∈ RDD2  do 
10.        flatMap (I, count)                                                   
11.        If (count < minSup) then 
12.             Yield (I, 1) 
13.        End flatMap 
14.        StoreAtRDD3 
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input is represented by bit values derived from the 
representation of the item position with the number 
in the MinHashingFI table. For example, L1 consists 
of 4 items {S, R, G, P}. Therefore 4 positions of bits 
are used to replace each of these four items. Item S 
is represented in the first-bit position with values of 
1 and 3. Other remaining positions are equal 0 items. 
Next is R, the first bit's position is placed with 0, the 
second bit with 1, and the other 2 remaining positions 
with 0. This pattern of practice is applied with all of 
the remaining candidate datasets. The MinHashingFI 
table, used for collecting candidate data, will collect 
the following information: items information, support 
value (Count) and bitset position. Support value of the 
data set is counted to show which dataset is frequent 
itemsets.  Item support counting can be done at the bit 
operation level using the data in the MinHashingFI 
table. More specifically, there is an intersection of the 
positions with a bit value of 1. The working process 
for counting support values in the MinHashingFI table 
is shown in Figure 9.

2.4  The processes for MinHashingFI generation by 
Singleton frequent items

In order to gain comprehension about the flow in the 

making of MinHashingFI, data, and singleton frequent  
itemset in Figure 10 are used to exemplify the making  
process of MinHashngFI. The sample set of data 
consists of <a, 3>, <c, 3>, <d, 4> and <e, 3>, the 
minimum support value is set at 75% (this rate must 
be found in at least 3 transactions in the database). 
 Step 1 begins with assigning each of the singleton 
frequent items containing <a, 3>, <c, 3>, <d, 4> and 
<e, 3> that appear in each transaction in the database 

Figure 8: BitTable algorithm and the creation of  
BitTable and a candidate dataset. Figure 9: Procedures for the counting of support 

information of candidate data in MinHashingFI table.

Algorithm 2 : MinHashing FI 
Input: k : MinHashing parameter minSup : min support  e: tolerance 
error   
Output: all the frequent L  

1. Freq_set = build_invert_list(dataset)  

2.   
3. Matrix = build_signature_matrix(fre_set,k)  
4. L = L U fre_set  
5. L = L U HashingAdapTive Hybrid(L, matrix)  
6. HashingAdapTive Hybrid(L)  
7.       Lk = ∅  
8.    For X𝑖𝑖 𝜖𝜖  L do 
9.    For Xj 𝜖𝜖  L do        
10.    |TIDset(R)|= Calculate(TIDset(Xi), TIDset(Xj))  
11.       If |TIDset(R)| >=minSup do  
12.         L = L U R, Lk = Lk U R  
13.       End if  
14.    End for  
15.    End for  
16.    If (Lk ≠ ∅) then  
17.       L = L U HashingAdapTive Hybrid(Lk);  
18.    Else return L  
19.    End if  
20. End HashingAdapTive Hybrid  

 

 

Adds Intersect Operation on BitTableFI 
of each item in element 

Count the bit 1 of the result as the 
support of element 

 

Adds Element to BitTble Lk if the 
support is greater than MinSup  

 

Output: Frequent Itemsets 
BitTable Lk 

Input: Candidate Itemsets BitTable Ck 

Any element in 
Ck 

No 

Yes 

 
Figure 10: Creating MinHashingFI with singleton 
frequent itemset.
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with a bit value of 1. On the other hand, any of the  
transactions in the database without a singleton  
frequent item will be represented as 0. For this instance,  
the MinHashingFI value is the numerical value  
obtained from the set of bits representing each item 
in the database. The MinHashingFI is later stored in 
Spark RDD for processing in the core memory. 
 Step 2 involves importing the singleton frequent  
items from RDD to be used as data to create of a 
candidate dataset, using a Map-Reduce method.  
Figure 10 shows the creation of a candidate dataset by 
means of frequent itemsets combination.  
 Step 3 is the counting of support of the candidate  
dataset to verify which candidate dataset is a  
frequent itemset information. A bitwise operation or 
the intersection of the bits with the value of 1 in the  
MinHashingFI table are performed. The counting 
processes of support value in the MinHashingFI table 
is represented in Figure 11, while Figure 12 shows 
an example of the counting the support value of the 
candidate dataset in the MinHashingFI table that the 
support counting in demo information.

2.5  The frequent itemsets generation (Frequent 
k-itemsets)

In Part 2 (Phase II) in Algorithm 3 (Figure 14), a candidate  

dataset is created from the Frequent k–1 itemsets. 
The result of this creation is a candidate dataset with 
the lengths of Item k and Item Ck, which are the item 
lengths in Item k–1 (Lk–1).  However, the counting 
of the supporting value to verify which dataset is a 
frequent itemset is not obtained from repeated reading 
from the database but the MinHashingFI table. This can 
be done by using bitwise operations. More specifically,  
the items with a bit-value of 1 are intersected. Figure 13  
shows an example of the counting of support values 
of candidate datasets in the MinHashingFI table. An 
approach was proposed to improve the algorithm's 
functionality.
 Algorithms are designed to choose to use an 
Apriori algorithm for an assessment, using either the 
data from the imported input or the size of the frequent  
item Lk–1. The Apriori algorithm is capable of  
processing small size data and fewer item sets. This 
type of algorithm stores information with a HashTree's 
system, which can increase work flexibility.

3 Results and Discussion

3.1  Experimental setup

The algorithm runs on the Apache Spark technology 
version 2.1.0 consists of 3 node clusters. It is installed 
in the Centos 7.0, with a memory size of 8 GB and a 
1TB hard disk. Three groups of datasets from UCI 

Figure 11: Assigning bitsets position to items.

Figure 13: Creating of candidate data for each round 
by combining the free itemsets. 

Figure 12: Example of the counting the support value 
of the candidate dataset in MinHashingFI table.
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and IBM were used. An appropriate minimum support  
value counting for each dataset [13] is as show in 
Table 1.

3.2  Processing speed results

The processing time of Three algorithms on six  
datasets with various minimum support is presented 
in Figures 15–17. The experimental results show in 
Figures 15(a), 16(a), and 17(a) that AHP Algorithm 

was found to have had the best processing time per 
each round of performance in the sparse dataset. This 
is because AHP Algorithm exploits the bit table for its 
data structure, at which Bit values are used in place 
of the item position during the information gathering 
process. Using intersect two-bit vector for counting the 
support and Bittable is used to store data in memory. 
On the other hand, DFIMA Algorithm [10] has to build 
large matrices using FP-tree for generating frequent 
itemsets. It then joins pairs of bit-vectors using AND 
operation and computes the support. At the same time, 
its processing unit is located separately in the main 
memory unit. This results in a significant difference 
in the data processing time. Even though the AHP 
algorithm has a relatively similar working process 
to that of the DFIMA Algorithm, the AHP algorithm 
uses a bittable where a bit value is used in place of 
the item location during the data collecting process, 
it was found that the application of bit value was able 
to reduce the number of data readings from several 
times of reading to only one time reading. It also 
helped reduce the amount of memory required for data 
entry during processing. Moreover, the intersection 
process helped reduce the amount of duplicated data 
in frequentitemsets findings. The processing time was 
minimized when the mining of the frequent itemsets 
was implemented via the matrix method.

3.3  Characteristics of the dataset results

The characteristics of the dataset are diversified  
because of various factors such as the characteristics 
ranging from very sparse to very dense, the size and 
number of items, the average number of items, the  
number of transitions, the data density, and the similarity  
of information. For the sparse datasets, low-density, and 

Figure 14: Algorithm for the creation of the singleton 
frequent items.

Algorithm 3: Phase II – Frequent k –itemset generation 
Input: Load the transactional Dataset D from Input file into a cached 
RDD, Frequent k-1 itemset Lk-1 
OutPut: Frequent k-itemsets Lk 

1. Procedure FREQUENT –GEN 
2.     If (Lk-1.size is large) then 
3.          Lk-1.storeInBitTable 
4.          for each Frequent k-1 itemset Lk-1 ∈ T   do 
5.               flatMap (line offset, T) 
6.               BT = Intersaction (Ck, Lk-1) 
7.               Countk = Pair (BT) 
8.               end flatMap 
9.               storeAtRDD1 
10. Else if (Lk-1.size is less) then 
11.        Ck = CANDIDATE –GEN (Lk-1) 
12.        for each Transaction T ∈ D   do 
13.               flatMap (line offset, T) 
14.               CT = subset (Ck, T) 
15.         for each item c ∈ CT  do 
16.               Yield (c, 1) 
17.                end flatMap 
18.                storeAtRDD1 
19.    RDD2 = RDD1.reduceByKey 
20.    For each tuple t ∈ RDD2  do 
21.        flatMap (c, count)                                                   
22.        If (count < minSup) then 
23.             Yield (c, count) 
24.        End flatMap 
25.        StoreAtRDD3 

 

Table 1: Details of datasets used in the experiment
Dataset Items Items per Transection Transection Density (%) Similarity

Small Dataset
Chess 75 37 3196 49.33 0.3148
Food mart 1559 4.4 4141 0.28 0.292
Average Dataset
Connect 129 43 67555 33.33 0.1626
Retail 16470 9.8 88163 0.06 0.0094
Large Dataset
T10I4D100K 870 10 100000 1.15 0.0137
Accidents 468 33.8 340183 7.22 0.0248
* Density (%) = (Average Transaction Length / Number of Items) × 100
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a large amount of data, the AHP algorithm is a better  
choice because the AHP algorithm approach does 
not require generating a large number of infrequent 
candidate itemset, as shown in Figures 15(a), 16(a) 
and 17(a). Similarly, under this context, for the 
dense datasets, the AHP algorithm is approximately  
processing time with DFIMA Algorithm [10], as shown 

results in Figures 15(b), 16(b), and 17(b). Even though 
that the AHP algorithm has a relatively similar working 
process to the DFIMA Algorithm, the AHP algorithm 
uses a bittable where a bit value is used in place of 
the item location during the data collecting process. It 
was found that the application of bit value was able to  
reduce the number of data readings from several times 

 The results of Comparing the performances of algorithms (Experiment summary)

Figure 15: Performance of algorithm in LARGE DATASET group, in which; (a) shows T10I4D100k in sparse 
dataset. (b) shows ACCIDENTS in dense dataset.

Figure 16: Performance of algorithm in Average Dataset group in which; (a) shows RETAIL in sparse dataset. 
(b) shows CONNECT in dense dataset.

Figure 17: Performance of algorithm in dataset Chess, Small Dataset group in which; (a) shows FOODMART 
in sparse dataset. (b) shows CHESS in dense dataset.
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of reading to only one time reading. It also helped 
reduce the amount of memory required for data entry 
during processing. Moreover, the intersection process 
helped reduce the amount of duplicated data in frequent  
itemsets findings. The algorithms take a different time 
to process for each cycle of the dataset with low density.  
This is because when the number of items is large, 
but the average of items per transaction is small, the 
possibility of having singleton frequent items is rare.  
Under this circumstance, however, it takes a longer 
time to intersect each dataset, resulting in a longer 
processing time for R-Apriori Algorithm [8].

4 Conclusions

This article investigates the performances of the 
three types of the R-Apriori Algorithm [8], DFIMA 
Algorithm [10], and AHP Algorithm on low-density 
databases with data similarity. The development of 
an algorithm was implemented using Map-reduce  
Principle on Apache Spark technology. It was observed 
that the AHP algorithm could work more efficiently 
than its counterparts on all types of information settings.  
This is because the AHP Algorithm does not re-read 
the data in the database, resulting from the singleton 
frequent items in each of the 1-Frequent itemsets  
being converted into bittable where the item position 
is replaced with a bit value during the data procession. 
The application of bitTable system has been found to 
be able to; reduce the number of data readings to just 
one time, reduce the memory space required during 
data processing to generate candidate data prior to  
using this candidate data to search for the next level 
of the dataset (k + 1 frequent itemsets). 
 DFIMA Algorithm was found to have had a 
similar speed to AHP Algorithm when working on 
a low-density database. R-Apriori Algorithm was 
found to have a low level of performance  because it 
required multiple database readings for the creation of  
a candidate dataset, which is another step in finding 
the frequent items in each round.  This research study 
was based on Apache Spark technology, which is 
now a prevailing technique for the development of an  
algorithm’s performance. It is important for this kind 
of study to be conducted with a larger database context 
to validate the efficiency of the RDD architecture and 
find an add-up on the performance development of 
the DFIMA Algorithm. It is important to stay open 

to a new data structure for the enhancement of an 
algorithm capacity.
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