

AIJSTPME (2012) 5(3): 41-48

41

Measuring Granularity of Web Services with Semantic Annotation

Muchalintamolee N.

Computer Science Program, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn

University, Bangkok, Thailand

Email address: nuttida.mu@student.chula.ac.th

Senivongse T.

Computer Science Program, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn

University, Bangkok, Thailand

Email address: twittie.s@chula.ac.th

Abstract

Web services technology has been one of the mainstream technologies for software development since Web

services can be reused and composed into new applications or used to integrate software systems. Granularity

or size of a service refers to the functional scope or the amount of detail associated with service design and it

has an impact on the ability to reuse or compose the service in different contexts. Designing a service with the

right granularity is a challenging issue for service designers and mostly relies on designers’ judgment. This

paper presents a granularity measurement model for a Web service with semantics-annotated WSDL. The

model supports different types of service design granularity, and semantic annotation helps with the analysis

of the functional scope and amount of detail associated with the service. Based on granularity measurement,

we then develop a measurement model for service reusability and composability. The measurements can assist

in service design and the development of service-based applications.

Keywords: Service granularity; measurement; reusability; composability; semantic Web services; ontology

1 Introduction

Web Services technology has been one of the

mainstream technologies for software development

since it enables rapid flexible development and

integration of software systems. The basic building

blocks are Web services which are software units

providing certain functionalities over the Web and

involving a set of interface and protocol standards,

e.g. Web Service Definition Language (WSDL) as a

service contract, SOAP as a messaging protocol, and

Business Process Execution Language (WS-BPEL)

as a flow-based language for service composition [1].

The technology promotes service reuse and service

composition as the functionalities provided by a

service should be reusable or composable in different

contexts of use. Granularity of a service impacts on

its reusability and composability.

Erl [1] defines granularity in the context of service

design as “the level of (or absence of) detail

associated with service design.” The service contract

or service interface is the primary concern in service

design since it represents what the service is designed

to do and gives detail about the scope or size of it. Erl

classifies four types of service design granularity: (1)

Service granularity refers to the functional scope or

the quantity of potential logic the service could

encapsulate based on its context. (2) Capability

granularity refers to the functional scope of a specific

capability (or operation). (3) Data granularity is the

amount of data to be exchanged in order to carry out

a capability. (4) Constraint granularity is the amount

of validation constraints associated with the

information exchanged by a capability.

Different types of granularity impacts on service

reusability and composability in different ways.

Erl differentiates between these two terms.

Reusability is the ability to express agnostic logic and

be positioned as a reusable enterprise resource,

whereas composability is the ability to participate in

Muchalintamolee N. and Senivongse T. / AIJSTPME (2012) 5(3): 41-48

42

multiple service composition [1]. A coarse-grained

service with a broad functional context should be

reusable in different situations while a fine-grained

service capability can be composable in many service

assemblies. Coarse-grained data exchanged by a

capability could be a sign that the capability has a

large scope of work and should be good for reuse

while a capability with very fine-grained (detailed)

data validation constraints should be more difficult to

reuse or compose in different contexts with different

data formats. Inappropriate granularity design affects

not only reusability and composability but also

performance of the service. Fine-grained capabilities,

for example, may incur invocation overheads since

many calls have to be made to perform a task [2].

Designing a service with the right granularity is a

challenging issue for service designers and mostly

relies on designers’ judgment.

To help determine service design granularity, we

present a granularity measurement model for a Web

service with semantics-annotated WSDL. The model

supports all four types of granularity and semantic

annotation is based on the domain ontology of the

service which is expressed in OWL [3]. The

motivation is semantic annotation should give more

information about functional scope of the service and

other detail which would help to determine

granularity more precisely. Semantic concepts from

the domain ontology can be annotated to different

parts of a WSDL document using Semantic

Annotation for WSDL and XML Schema (SAWSDL)

[4]. Based on granularity measurement, we then

develop a measurement model for service reusability

and composability.

Section II of the paper discusses related work.

Section III introduces a Web service example which

will be used throughout the paper. The granularity

measurement model and the reusability and

composability measurement models are presented in

Sections IV and V. Section VI gives an evaluation of

the models and the paper concludes in Section VII.

2 Related Work

Several research has addressed the importance of

granularity to service-oriented systems. Haesen et al.

[5] proposes a classification of service granularity

types which consists of data granularity, functionality

granularity, and business value granularity. Their

impact on architectural issues, e.g., reusability,

performance, and flexibility, is discussed. In their

approach, the term “service” refers more to an

operation rather than a service with a collection of

capabilities as defined by Erl. Feuerlicht [6]0

discusses that service reuse is difficult to achieve and

uses composability as a measure of service reuse. He

argues that granularity of services and compatibility

of service interfaces are important to composability,

and presents a process of decomposing coarse-

grained services into fine-grained services

(operations) with normalized interfaces to facilitate

service composition.

On granularity measurement, Shim et al. [7] propose

a design quality model for SOA systems. The work is

based on a layered model of design quality

assessment. Mappings are defined between design

metrics, which measure service artifacts, and design

properties (e.g., coupling, cohesion, complexity), and

between design properties and high-level quality

attributes (e.g., effectiveness, understandability,

reusability). Service granularity and parameter

granularity are among the design properties. Service

granularity considers the number of operations in the

service system and the similarity between them

(based on similarity of their messages). Parameter

granularity considers the ratio of the number of

coarse-grained parameter operations to the number of

operations in the system. Our approach is inspired by

this work but we focus only on granularity

measurement for a single Web service, not on

system-wide design quality, and will link granularity

to reusability and composability attributes. We notice

that their granularity measurement relies on the

designer’s judgment, e.g., to determine if an

operation has fine-grained or coarse-grained

parameters. We thus use semantic annotation to better

understand the service. Another approach to

granularity measurement is by Alahmari et al. [8].

They propose metrics for data granularity,

functionality granularity, and service granularity.

The approach considers not only the number of

data and operations but also their types which

indicate whether the data and operations involve

complicated logic. The impact on service operation

complexity, cohesion, and coupling is discussed.

Khoshkbarforoushha et al. [9] measure reusability of

BPEL composite services. The metric is based on

analyzing description mismatch and logic mismatch

between a BPEL service and requirements from

different contexts of use.

Muchalintamolee N. and Senivongse T. / AIJSTPME (2012) 5(3): 41-48

43

3 Example

An online booking Web service will be used to

demonstrate our idea. It provides service for any

product booking and includes several functions such

as viewing product information and creating and

managing booking. Figure 1 shows the WSDL 2.0

document of the service. Suppose the WSDL is

enhanced with semantic descriptions. The figure

shows the use of SAWSDL tags [4] to reference to

the semantic concepts in a service domain ontology

to which different parts of the WSDL correspond.

Here the meaning of the data type named ProductInfo

is the term ProductInfo in the domain ontology

OnlineBooking in Figure 2, and the meaning of

the operation named viewProduct is the term

SearchProductDetail.

4 Granularity Measurement Model

Granularity measurement considers the schema and

semantics of the WSDL description. Semantic

granularity is determined first and then applied to

different granularity types.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:description

 targetNamespace="http://localhost:8101/GranularityMeasurement/ wsdl/OnlineBooking#"

 xmlns="http://localhost:8101/GranularityMeasurement/wsdl/ OnlineBooking#"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://www.w3.org/ns/wsdl"

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

 <wsdl:types>

 <xs:schema targetNamespace="http://localhost:8101/ GranularityMeasurement/wsdl/OnlineBooking#"

elementFormDefault="qualified">

 <xs:element name="viewProductReq" type="productId"/>

 <xs:element name="viewProductRes" type="productInfo"/>
 …

 <xs:simpleType name="productId">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]{4}"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="productInfo" sawsdl:modelReference="http://localhost:8101/Granularity

Measurement/ontology/OnlineBooking#ProductInfo">

 <xs:sequence>

 <xs:element name="productName" type="xs:string"/>

 <xs:element name="productType" type="productType"/>

 <xs:element name="description" type="xs:string"/>

 <xs:element name="unitPrice" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="productType">

 <xs:restriction base="xs:string">

 <xs:pattern value="[A-Z]"/>

 </xs:restriction>

 </xs:simpleType>
 …

 </xs:schema>

 </wsdl:types>

 <wsdl:interface name="OnlineBookingWSService"

sawsdl:modelReference="http://localhost:8101/Granularity

Measurement/ontology/OnlineBooking#OrderManagement">

 <wsdl:operation name="viewProduct" pattern="http://www.w3.org/ns/wsdl/in-out"

sawsdl:modelReference="http://localhost:8101/Granularity

Measurement/ontology/OnlineBooking#SearchProductDetail">

 <wsdl:input element="viewProductReq"/>

 <wsdl:output element="viewProductRes"/>

 </wsdl:operation>
 …

 </wsdl:interface>

</wsdl:description>

Figure 1: WSDL of online booking Web service with SAWSDL annotation.

Muchalintamolee N. and Senivongse T. / AIJSTPME (2012) 5(3): 41-48

44

Figure 2: A part of domain ontology for online booking (in OWL).

A. Semantic Granularity

When a part of WSDL is annotated with a semantic

term, we determine the functional scope and amount

of detail associated with that WSDL part through the

semantic information that can be derived from the

annotation. Class-subclass and whole-part property

are semantic relations that are considered. Class-

subclass is a built-in relation in OWL but whole-part

is not. We define an ObjectProperty part (see

Figure 2) to represent the whole-part relation, and

any whole-part relation between classes will be

defined as a subPropertyOf part. Then, semantic

granularity of a term t which is in a class-

subclass/whole-part relation is computed by (1):

Figure 3: Semantic granularity of ProductInfo and

related terms.

SemanticGranularity() no.of terms under in either class-subclass relation

or whole-part relation,including itself

t t (1)

Using (1), Figure 3 shows semantic granularity of the

semantic term ProductInfo and its related terms with

respect to class-subclass and whole-part property

relations. When an ontology term is annotated to a

WSDL part, it transfers its semantic granularity to the

WSDL part.

B. Constraint Granularity

A service capability (or operation) needs to operate

on correct input and output data, so constraints are

put on the exchanged data for a validation purpose.

Constraint granularity considers the number of

control attributes and restrictions (not default) that

are assigned to the schema of WSDL data, e.g.,

 Attribute of <xs:element/> such as “fixed”,
“nullable”, “maxOccur” and “minOccur”

 <xs:restriction/> which contains a restriction on
the element content.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 …

 <owl:Ontology />

 <owl:ObjectProperty rdf:ID="part"/>
 …

 <owl:Class rdf:ID="OrderManagement" />
 …

 <owl:Class rdf:ID="ProductInfo" />

 <owl:Class rdf:ID="HotelInfo" >

 <rdfs:subClassOf rdf:resource="#ProductInfo" />

 </owl:Class>
 …

 <owl:Class rdf:ID="ProductName" >

 <rdfs:subClassOf rdf:resource="#Name" />

 </owl:Class>

 <owl:FunctionalProperty rdf:ID="hasProductID">

 <rdfs:subPropertyOf rdf:resource="#part"/>

 <rdfs:domain rdf:resource="#ProductInfo" />

 <rdfs:range rdf:resource="#ID" />

 <rdf:type rdf:resource="&owl;ObjectProperty" />

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="hasProductName">

 <rdfs:subPropertyOf rdf:resource="#part"/>

 <rdfs:domain rdf:resource="#ProductInfo" />

 <rdfs:range rdf:resource="#ProductName" />

 <rdf:type rdf:resource="&owl;ObjectProperty" />

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="hasProductPrice">

 <rdfs:subPropertyOf rdf:resource="#part"/>

 <rdfs:domain rdf:resource="#ProductInfo" />

 <rdfs:range rdf:resource="#Price" />

 <rdf:type rdf:resource="&owl;ObjectProperty" />

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="hasProductType">

 <rdfs:subPropertyOf rdf:resource="#part"/>

 <rdfs:domain rdf:resource="#ProductInfo" />

 <rdfs:range rdf:resource="#Type" />

 <rdf:type rdf:resource="&owl;ObjectProperty" />

 </owl:FunctionalProperty>
 …

 <owl:Class rdf:ID="SearchProductDetail" />

 <owl:Class rdf:ID="SearchProductInfo" >

 <rdfs:subClassOf rdf:resource="#SearchProductDetail" />

 </owl:Class>

 <owl:Class rdf:ID="SearchRelatedProductInfo" >

 <rdfs:subClassOf rdf:resource="#SearchProductDetail" />

 </owl:Class>

 <owl:Class rdf:ID="GetProductUpdate" />

 <owl:Class rdf:ID="GetProductPriceUpdate" />

 <owl:FunctionalProperty rdf:ID="hasGetProductUpdate">

 <rdfs:subPropertyOf rdf:resource="#part"/>

 <rdfs:domain rdf:resource="#SearchProductDetail" />

 <rdfs:range rdf:resource="#GetProductUpdate" />

 <rdf:type rdf:resource="&owl;ObjectProperty" />

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="hasGetProductPriceUpdate">

 <rdfs:subPropertyOf rdf:resource="#part"/>

 <rdfs:domain rdf:resource="#SearchProductDetail" />

 <rdfs:range rdf:resource="#GetProductPriceUpdate" />

 <rdf:type rdf:resource="&owl;ObjectProperty" />

 </owl:FunctionalProperty>
 …

</rdf:RDF>

Muchalintamolee N. and Senivongse T. / AIJSTPME (2012) 5(3): 41-48

45

Constraint granularity R of a capability o is computed

by (2):

in m

o ij

i=1 j=1

R = Constraint (2)

where n = the number of parameters of the operation o

mi = the number of elements/attributes of i
th

parameter

Constraintij = the number of constraints of an element/
 attribute of a parameter .

In Figure 1, the operation viewProduct has two

constraints on two out of five input/output data

elements, i.e., constraints on productId and

productType. So its constraint granularity is 2.

C. Data Granularity

A WSDL document normally describes the detail of

the data elements, exchanged by a service capability,

using the XML schema in its <types> tag. With

semantic annotation to a data element, semantic detail

is additionally described. If the semantic term is

defined in a class-subclass relation (i.e., it has

subclasses), then the term will transfer its

generalization, encapsulating several specialized

concepts, to the data element that it annotates. If the

semantic term is defined in a whole-part relation (i.e.,

it has parts), it will transfer its whole concept,

encapsulating different parts, to the data element that

it annotates.

For a data element with no sub-elements (i.e., lowest-

level element), we determine its granularity DGLE by

its class-subclass and whole-part relations. For

whole-part, if the element has an associated whole-

part semantics, we determine the parts from the

semantic term; otherwise the part is 1, denoting the

lowest-level element itself (see (3)). For a data

element with sub-elements, we compute its

granularity DGE by a summation of the data

granularity of all its immediate sub-elements DGSE

together with the semantic granularity of the element

itself (see (4)). Note that (4) is recursive. Finally, for

data granularity Do of a capability o, we compute a

summation of data granularity of all parameter

elements (see (5)).

 max(1,)LE p pDG ac ap  (3)

1

j

m

E SE p p

j

DG DG ac ap


   (4)

1

i

n

o E

i

D DG


 (5)

where n = the number of parameters of the operation o

 DGE = data granularity of an element with
 sub-elements/attributes

 m = the number of sub-elements/attributes of
an element

DGSE = data granularity of an immediate
 sub-element/attribute of an element

DGLE = data granularity of a lowest-level element/
attribute

 acp = semantic granularity in the class-subclass
relation of an element/attribute, computed
by (1)

 app = semantic granularity in the whole-part

property relation of an element/ attribute,

computed by (1).

In Figure 1, the input viewProductReq of the
operation viewProduct has no sub-elements or
semantic annotation, so its granularity as a DGLE is 1
(0+max(1, 0)). In contrast, the output viewProductRes
is of type productInfo which is also annotated with the
ontology term ProductInfo. From the schema in
Figure 1, this output has four sub-elements
(productName, productType, description, unitPrice).
Each sub-element has no further sub-elements or
semantic annotation, so its granularity as a DGLE is 1
as well. In Figure 3, the semantic term ProductInfo
has three direct subclasses and three indirect
subclasses as well as four parts. The granularity of the
output data viewProductRes as a DGE would be 16
(i.e., ((1+1+1+1)+7+5). Therefore data granularity Do
of the operation viewProduct is 17 (1+16).

D. Capability Granularity

The functional scope of a service capability can be

derived from data granularity and semantic

annotation. If large data are exchanged by the

capability, it can be inferred that the capability

involves a big task in the processing of such data. We

can additionally infer that the capability is broad in

scope if its semantics involves other specialized

functions (i.e., having a class-subclass relation) or

other sub-tasks (i.e., having a whole-part relation).

Muchalintamolee N. and Senivongse T. / AIJSTPME (2012) 5(3): 41-48

46

Capability granularity Co of a capability o is then

computed by (6):

 o o o oC = D +ac +ap (6)

where Do = data granularity of the operation o

 aco = semantic granularity in the class-subclass
relation of the operation o, computed
by (1)

 apo = semantic granularity in the whole-part
property relation of the operation o,
computed by (1).

From the previous calculation, data granularity of the

operation viewProduct in Figure 1 is 17. This

operation is annotated with the semantic term

SearchProductDetail. In Figure 2, this semantic term

is a generalization of two concepts

SearchProductInfo and SearchRelatedProductInfo, so

the capability viewProduct encapsulates these two

specialized tasks. The semantic term

SearchProductDetail also comprises two sub-tasks

GetProductUpdate and GetProductPriceUpdate in a

whole-part relation. Therefore capability granularity

of viewProduct is 23 (17+3+3).

E. Service Granularity

The functional scope of a service is determined by all

of its capabilities together with semantic annotation

which would describe the scope of use of the service

semantically. Service granularity Sw of a service w is

computed by (7):

1

i

k

w o w w

i

S C ac ap


   (7)

where k = the number of operations of the service w

 Co = capability granularity of an operation o

 acw = semantic granularity in the class-subclass
relation of the service w, computed by (1)

apw = semantic granularity in the whole-part
property relation of the service w,
computed by (1).

In Figure 1, the online booking service is associated

with the semantic term OrderManagement. Suppose

the term OrderManagement has no subclasses but

comprises eight concepts (i.e., parts) in a whole-part

property relation. So its service granularity is the

summation of capability granularity of the operation

viewProduct (i.e., 23), capability granularity of all

other operations, and semantic granularity in class-

subclass and whole-part property relations (i.e., 1+9).

It is seen from the granularity measurement model

that semantic annotation helps complement

granularity measurement. For the case of the

operation viewProduct, for example, the granularity

of its capability can only be inferred from the

granularity of its data if the operation has no semantic

annotation. However, by annotating this operation

with the generalized term SearchProductDetail, we

gain knowledge about its broad scope such that its

capability encapsulates both specialized

SearchProductInfo and SearchRelatedProductInfo

tasks. The additional information refines the

measurement.

5 Reusability and Composability Measurement

Models

As mentioned in Section I, reusability is the ability to

express agnostic logic and be positioned as a reusable

enterprise resource, whereas composability is the

ability to participate in multiple service composition.

We see that reusability is concerned with putting a

service as a whole to use in different contexts.

Composability is seen as a mechanism for reuse but it

focuses on assembly of functions, i.e., it touches

reuse at the operation level, rather than the service

level. We follow the method in [7] to first identify

the impact the granularity has on reusability

and composability attributes and then derive

measurement models for them. Table 1 presents

impact of granularity.

For reusability, a coarse-grained service with a broad

functional context providing several functionalities

should be reused well as it can do many tasks serving

many purposes. Coarse-grained data, exchanged by

an operation, could be a sign that the operation has a

large scope of work and should be good for reuse as

well. So we define a positive impact on reusability

for coarse-grained data, capabilities, and services. For

composabilty, we focus at the service operation level

and service granularity is not considered. A small

operation doing a small task exchanging small data

should be easier to include in a composition since it

does not do too much work or exchange excessive

data that different contexts of use may require or can

provide. So we define a negative impact on

composability for coarse-grained capabilities and

data. For constraints on data elements, the bigger

number of constraints means finer-grained

Muchalintamolee N. and Senivongse T. / AIJSTPME (2012) 5(3): 41-48

47

restrictions are put on the data; they make the data

more specific and may not be easy for reuse, hence a

negative impact on both attributes.

Table 1: Impact of granularity on Reuse

Granularity Type Reusability Composability

Service Granularity  -

Capability Granularity  

Data Granularity  

Constraint Granularity  

A. Reusability Model

Reusability measurement is derived from the impact

of granularity. It can be seen that different types of

granularity measurement relate to each other. That is,

service granularity is built on capability granularity

which in turn is built on data granularity, and they all

have a positive impact. So we consider only service

granularity in the model since the effects of data

granularity and capability granularity are already part

of service granularity. The negative impact of

constraint granularity is incorporated in the model

(8):

1

i

k

w o

i

Reusability S R


  (8)

where Sw = service granularity of the service w

 Ro = constraint granularity of the operation o

 k = the number of operations of the service w.

A coarse-grained service with small data constraints

has high reusability.

B. Composability Model

In a similar manner, we consider only capability

granularity and constraint granularity in the

composability model because the effects of data

granularity are already part of capability granularity.

Since they all have a negative impact, we represent

composability measure in the opposite meaning. We

define a term “uncomposabilty” to represent an

inability of a service operation to be composed in

service assembly (9):

 o oUncomposability C R  (9)

where Co = capability granularity of the operation o

 Ro = constraint granularity of the operation o.

A fine-grained capability with small data constraints

has low uncomposability, i.e. high composability.

6 Evaluation

We apply the measurement models to two Web

services. The first one is the online booking Web

service which we have used to demonstrate the idea.

It is a general service including a large number of

small data and operations. Its scope covers viewing,

managing, and booking products. Another Web

service is an online order service which has only a

booking-related function. The two Web services are

annotated with semantic terms from the online

booking ontology which describes detail about

processes and data in the online booking domain.

Table 2 shows details of some operations of the two

services including their capabilities, data, and

semantic annotation.

For the evaluation, a granularity measurement tool is

developed to automatically measure granularity of

Web services. It is implemented using Java and Jena

[10]0 which helps with ontology processing and

inference of relations.

Table 3 presents granularity measurements and

reusability scores. The online booking service is

coarser and has higher reusability. It is a bigger

service with wider range of functions, exchanging

more data, and having a number of data constraints. It

is likely that the online booking service can be put to

use in various contexts. On the other hand, the online

order service is finer-grained focusing on order

management. The two services are annotated with

semantic terms of the same ontology, and additional

semantic detail helps refine their measurements.

Table 4 presents granularity measurements and

uncomposability of the operations annotated with the

semantic term UpdateOrder. The operation

editOrderItem of the online order service has coarser

data and capability compared to the three finer-

grained operations of the online booking service, and

therefore it is less composable.

7 Conclusions

This paper explores the application of semantics-

annotated WSDL to measuring design granularity of

Web services. Four types of granularity are

considered together with semantic granularity. The

models for reusability and composability (represented

by uncomposability) are also introduced.

As explained in the example, semantic annotation can

help us derive the functional contexts and concepts

that the service, capability, and data element

encapsulate. Granularity measurement which is

Muchalintamolee N. and Senivongse T. / AIJSTPME (2012) 5(3): 41-48

48

traditionally done by analyzing the size of capability

and data described in standard WSDL and XML

schema documents can be refined and better

automated.

Table 2: Part of Service Detail and Semantic

Annotation
Operation Input Data Type Output Data Type

Name Annotation Name Annotation Name Annotation

Online booking web service

newCart Insert Order userId ID orderId ID

addProduct

ToCart

Update

Order

addProduct OrderItem process Result Status

delete

Product

FromCart

Update

Order

delete

Product

OrderItem process Result Status

editProduct

Quantity

InCart

Update

Order

editProduct

Quantity

OrderItem process Result Status

view

Product

InCart

Search

OrderItem

ByOrderID

orderId ID orderItem List -

reservation EditOrder reserved

Order

ID process Result Status

Online order web service

createOrder Create Order order

Request

Order order

Response

Status

edit

OrderItem

Update

Order

editOrder

ItemInfo

Order orderItem

Response

Status

submit

Order

EditOrder orderId ID order

Response

Status

Table 3: Granularity and Reusability

Service Name
Granularity Reusability

Ro Do Co Sw Sw - Ro

OnlineBookingWSService 48 143 184 194 146

OnlineOrderWSService 10 47 62 72 62

Table 4: Service Granularity and Uncomposability of

Operations Annotated with UpdateOrder

Service

Name

Operation

Name

Granularity Uncomposability

Ro Do Co Sw Co + Ro

Online

Booking

WSService

addProduct

ToCart

4 15 18 - 22

 DeleteProduct

FromCart

3 14 17 - 20

 editProduct

Quantity

InCart

4 15 18 - 22

Online

Order

WSService

editOrderItem 3 19 22 - 25

For future work, we aim to refine the domain

ontology and WSDL annotation. It would be

interesting to see the effect of annotation on

granularity, reusability, and composability when the

WSDL contains a lot of annotations compared to

when it is less annotated. Since annotation can be

made to different parts of WSDL, the location of

annotations can also affect granularity scores.

Additionally we will try the models with Web

services in business organizations and extend the

models to apply to composite services.

References

[1] T. Erl, SOA: Principle of Service Design,

Prentice Hill, 2007.

[2] T. Senivongse, N. Phacharintanakul, C.

Ngamnitiporn, and M. Tangtrongchit, “A

capability granularity analysis on Web service

invocations,” in Procs. of World Congress on

Engineering and Computer Science 2010

(WCECS 2010), 2010, pp. 400-405.

[3] W3C (2004, February 10) OWL Web Ontology

Language Overview [Online]. Available:

http://www.w3.org/TR/2004/REC-owl-features-

20040210/

[4] W3C (2007, August 28) Semantic Annotations

for WSDL and XML Schema [Online].

Available: http://www.w3.org/TR/2007/REC-

sawsdl-20070828/

[5] R. Haesen, M. Snoeck, W. Lemahieu and S.

Poelmans, “On the definition of service

granularity and its architectural impact,” in

Procs. of 20
th

 Int. Conf. on Advanced

Information Systems Engineering (CAiSE

2008), LNCS 5074, 2008, pp. 375-389.

[6] G. Feuerlicht, “Design of composable services,”

in Procs. of 6
th

 Int. Conf. on Service Oriented

Computing (ICSOC 2008), LNCS 5472, 2008,

pp. 15-27.

[7] B. Shim, S. Choue, S. Kim and S. Park, “A

design quality model for service-oriented

architecture,” in Procs. of 15
th

 Asia-Pacific

Software Engineering Conference (APSEC

2008), 2008, pp. 403-410.

[8] S. Alahmari, E. Zaluska, D. C. De Roure, “A

metrics framework for evaluating SOA service

granularity,” in Procs. of IEEE Int. Conf. on

Service Computing (SCC 2011), 2011, pp. 512-

519.

[9] A. Khoshkbarforoushha, P. Jamshidi, F. Shams,

“A metric for composite service reusability

analysis,” in Procs. of the 2010 ICSE Workshop

on Emerging Trends in Software Metrics

(WETSoM 2010), 2010, pp. 67-74.

[10] Apache Jena [online]. Available:

 http://incubator.apache.org/jena/, Last accessed:

January 30, 2012.

