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Abstract
The combined use of trucks and drones in last-mile delivery offers a more efficient and faster way to make 
deliveries from an operational standpoint. In this paper, we propose a new routing model that combines  
different vehicle fleets, including hybrid trucks, traditional trucks, and large drones, to deliver packages from 
a depot to different destinations cooperatively. This research will give us a better understanding of this drone 
logistics application, particularly in routing optimization. It can be further implemented to mitigate the impacts 
of natural disasters, mainly earthquakes, flooding, and landslides. This research aims to study the possibility 
of using drones to deliver relief supplies such as food, water, and medicine for humanitarian purposes during 
natural disaster periods to find the best possible route to directly reach the destination and minimize the flying 
time in the air. We develop a Mixed Integer Programming (MIP) formulation to solve the I-VRPD optimally 
on a simulated small-scale problem and conduct a case study in one of the most affected regions by natural 
disasters. The numerical analysis demonstrates an improvement in the delivery time using three experiments 
that include testing the model on a set of benchmark problems and a case study based on the real scenario. The 
results show that the delivery time of the proposed model with the integration of three types of vehicle fleets 
can outperform the operation performed by a single-vehicle fleet by a significant percentage.
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1 Introduction

In the last half-century, the world has been impacted by 
natural disasters that have killed and injured countless  
thousands and economically destroyed residential 
property and infrastructure. Typical natural disasters in  
different countries include floods, droughts, tropical 
storms, tsunamis, forest fires, landslides, earthquakes and 
hailstorms, etc. Many private and public organizations  
collaborate in mitigating such threats, monitoring 
disaster situations, responding and managing the 
situation, and providing assistance and relief in the 
immediate aftermath of a disaster. In this modern 
age, various technologies can help reduce the impact 
of natural disasters by presenting the opportunity to  
expedite and magnify the impact of humanitarian relief 
efforts through greater efficiency and responsiveness, 

reaching more people sooner, more cost-effectively, 
and saving more lives. 
 Traditionally, the supply delivery during the 
natural disaster period was made by ground networks, 
massive regional distribution facilities, and fleets of 
vehicles, which are only suitable for long-distance, 
intercity shipping [1]. The traditional truck is not well 
suited to deliver in areas where the road is damaged 
from natural disasters like flooding, earthquakes, 
and landslides, etc. Because of this, transportation 
providers are developing a better solution to last-mile 
delivery by disrupting their long-standing traditional 
model and replacing it with a faster, more versatile, 
and more cost-efficient delivery system. During a 
pandemic, the last mile is also faced with an ever-
increasing parcel ship volume that needs fast, cost-
effective and ecologically friendly deliveries. The 
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most prominent approach discussed by practitioners 
and the academic literature to meet these requests is 
delivery by autonomous drones, which either depart 
from a central depot or are launched from a delivery 
truck. Over the past few years, there has been a recent 
discussion about using drones, robots, and autonomous 
vehicles to deliver products to the customer's doorstep 
in last-mile delivery [2]. Among various types of  
futuristic vehicles, drones have been recently tested in 
both academic research and practical aspect to perform 
such delivery in a specific region permitted by the  
regulator. Following the announcement of Amazon 
Prime Air in 2013, many well-known e-commerce 
companies and traditional logistics couriers like USPS, 
UPS and FedEx have been testing drone delivery  
services to deliver various items, including relief  
supplies, food, and commercial products [3], [4].    
 Drones have several advantages, including their 
speed, flexibility, and accessibility to areas where no 
other modes of transportation can reach. In addition, 
drones can carry supply kits, such as food, water, and 
medicine during a natural disaster. A small delivery 
drone weighs 0.5 to 3 lbs (250–1,300 g) and delivers  
items between 5 and 30 kg (11–66 lbs). On the  
contrary, a delivery truck/trailer usually weighs around 
6 t and has a payload capacity of around 15 t to 35 t. 
Therefore, when pairing a drone with a truck that can 
carry huge loads and travel long-range, this combination  
can offset the drone's disadvantages, such as its small 
capacity and short battery duration. The recent research 
focuses on synchronizing small drones with trucks to 
improve last-mile delivery performance. One of the 
very first models to include this function was introduced  
by Murray and Chu [5] as the “Flying Sidekick Traveling  
Salesman Problem” (FSTSP) in which a drone initially 
travels together with a truck, then departs from a truck 
to make a delivery and returns to a truck for a battery  
service. Simultaneously, a truck can travel to the  
following location without waiting for a drone.    
 In this paper, we propose a new routing model, 
which includes the synchronization feature between 
multiple trucks and multiple drones and the capacities of 
both vehicles that were not previously presented in the 
FSTSP. We refer to this specific type of truck with the 
drone equipped on top as a “hybrid truck”. In addition  
to that, we include two more types of vehicle fleets 
in the routing operation, including a “large drone” or 
“cargo drone” and a “traditional truck”. A large drone  

is a new “plane-sized” autonomous delivery vehicle 
that can weigh roughly over 200 lbs and can carry 
heavy weight items up to hundreds of pounds. They 
can fly over long distances for hundreds of miles 
[6]. Large drones offer speed benefits similar to 
small drones with more endurance and capacity [7].  
However, it comes with a high cost and has been  
recently tested in only a specific region. 
 Furthermore, unlike a small drone designed to 
carry a single item one at a time, a large drone can  
carry many basic disaster supply kits, such as food, 
water, and medicine. It can stop at multiple locations 
to deliver the kits before returning to the depot. Lastly, 
a traditional truck is simply a truck without a small 
drone and is used in the current delivery. Figure 1(a) 
and (b) illustrate the hybrid truck with a small drone 
and the large drone. 
 To the best of our knowledge, previous studies 
have yet to integrate and combine different types of 
vehicle fleets involving drones/large drones. Therefore, 
we intend to study and investigate the benefits of this 
approach in comparison with the other existing drone 
routing models used for last-mile delivery. We name 
this model “Integrated Vehicle Routing Problem with 
Drones” (I-VRPD). Figure 2 demonstrates a simple  
I-VRPD feasible solution in which three different types 
of vehicles are used in the setting. As illustrated, the 
solution routes consist of one hybrid truck with two 
drones, one traditional truck, and one large drone. The 
solid grey line represents the solution for the traditional 
truck, and the dashed line represents the solution for 
a large drone.
 The I-VRPD solution contains a mix of different 
routes, which can be categorized into three types: a 
hybrid truck route, a traditional truck route and a large 

                  (a)                                       (b)
Figure 1: Examples of a hybrid truck with a small 
drone and a large/cargo drone for delivery purposes. 
(a) A hybrid truck by Workhorse. (b) A large/cargo 
drone by Elroy.
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drone route. The objective of the proposed model is 
to find a combination of solution routes from different 
fleets of vehicles that gives the minimum total delivery 
time while satisfying all demands from diaster victims. 
We believe that the successful integration of drones 
combining with other vehicle types could result in 
cost efficiency and reduce the delivery time performed 
by the operators. In this study, we formulate a new  
mathematical model to solve the Integrated Vehicle 
Routing Problem with Drones (I-VRPD). The main 
contributions of this work are presented as follows. 
Firstly. a Mixed Integer Program (MIP) formulation for 
the I-VRPD was proposed. The MIP formulation can 
be solved for the solutions for small-size problems by 
any commercial MILP solver, e.g., CPLEX and GAM.  
We transform the conceptual idea of integrating different  
vehicle fleets to transport supply kits to the people in 
the affected area of natural disaster. We must develop a 
mathematical model to validate our proposed concept. 
Secondly, a case study and numerical experiments on 
different problem sets solved by the MIP model. We 
use a MIP solver to solve the solutions in the case study 
and the small-size problems and verify the model using 
a case study. These experiments are conducted to test 
if the model can return optimal solutions on different 
problem sets using a short amount of computational 
time. The case study can be used to verify if the route  
solution makes sense from a practical standpoint. Thirdly,  
the results of the I-VRPD with the classical VRP 
optimal solutions and other VRP with Drone (VRPD) 
routing models on various benchmark problems  
were compared. The results give us an insight into 
the delivery time savings achieved by implementing 
mixed vehicle fleets compared to a single vehicle fleet.   

2 Materials and Methods 

2.1  Related literature

The academic routing community has acknowledged 
the potential application of drones in industrial and 
commercial operations. There has been an increase 
in related literatures in drone routing optimization 
problems over the past few years, which includes  
different classifications, such as the objectives  
optimized, solution methods, applications, constraints, 
and practical use from the industry perspective. Several 
recent survey articles on drone routing for last-mile 
delivery provide insights into general and emerging 
modeling approaches and outline trends and future 
research directions [8]–[10]. Most of the papers focus 
on the vehicle-drone integration routing for delivery, 
which incorporates the use of truck and drone as a  
combined working unit. The Integrated Vehicle  
Routing Problem with Drones (I-VRPD) can be 
considered a variant of the classical Vehicle Routing 
Problem (VRP) with the implementation of small 
drones and large drones combined with other fleet 
types of vehicles. The Vehicle Routing Problem (VRP) 
is a well-known combinatorial optimization problem 
in the operation research field to minimize the travel 
cost of vehicles [11]–[14]. We provide relevant papers 
on our work in this drone routing optimization area.
 Initially, FSTSP by Murray and Chu [5] highlighted  
the idea of synchronizing between a single truck and 
a single drone. The authors proposed a mathematical 
formulation and provided a simple heuristic to solve 
the solutions. Ponza [15] examined the FSTSP in detail 
and proposed a metaheuristic based on the simulated 
annealing technique to find reasonable solutions. Ha 
et al. [16] modified the FSTSP objective to minimize 
the total cost of transportation and applied TSP-LS 
and a Greedy Randomized Adaptive Search Procedure 
(GRASP) to search for reasonable solutions. Jeong 
et al., [17] studied how the payload affected drone  
battery consumption and considered the operation in a 
prohibited area. In a recent study, Murray and Raj [18] 
introduced the "Multiple Flying Sidekicks Traveling  
Salesman Problem" (mFSTSP) by considering  
heterogeneous drones deployed from the truck or 
the depot. Kitjacharoenchai et al., [19] proposed the 
“Multiple Traveling Salesman Problem with Drones” 
(mTSPD), which has the same feature as FSTSP but 

Figure 2: Illustration of the Integrated Vehicle Routing 
Problem with Drones (I-VRPD).
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considers multiple trucks and drones as well as allows 
drones to land at any available truck. 
 Agatz et al., [20] proposed a similar problem 
to FSTSP called the “Traveling Salesman Problem 
with Drone” (TSP-D), which can be solved by the 
MIP model, the heuristics based on local search and 
dynamic programming. Bouman et al., [21] solved the 
TSP-D exactly using dynamic programming, while 
Yurek and Ozmutlu [22] solved the same problem with 
an iterative optimization algorithm. The TSP-D was 
further extended by Marinelli et al., [23] so that drones 
can be launched or land at any location in the network. 
Other drone routing problems based on TSP include 
the “Heterogeneous Delivery Problem” (HDP) by 
Mathew et al., [24], the “Traveling Salesman Problem 
with multiple Drones” (TSP-mD) by Tu et al., [25], 
the “TSP with a drone station” (TSP-DS) by Kim and 
Moon [26] and the “Truck-drone in Tandem Delivery 
Network” by Ferrandez et al., [27].
 As for the drone routing problem extended from 
the VRP, we found many papers on the “Vehicle 
Routing Problem with Drones” (VRPD) in which the 
worst-case analyses and the upper bounds on the cost 
of deployment were developed [28], [29]. At the same 
time, others examined the VRPD by implementing  
“Continuous Approximation” (CA) models to  
determine the optimal sets of parameters, such as the 
number of vehicles, the total cost of operation, and the 
minimum completion time [30], [31]. Hong et al., [32] 
developed a heuristic to determine the optimal network 
of recharging locations of drones. Schermer et al., [33] 
also solved the VRPD with the MILP and the heuristic 
based on the “Variable Neighborhood Search” (VNS). 
Similarly, Dorling et al., [34] proposed the “Vehicle 
Routing Problems for Drone Delivery” with two  
objective functions: delivery costs and delivery time. 
Ham [35] additionally extended the dropping and 
pickup operations for drones in the “Parallel Drone 
Scheduling Traveling Salesman Problem” (PDSTSP) 
introduced by Murray and Chu [5]. Other drone  
routing problems based on VRP include “Same-Day 
Delivery Routing Problems with Heterogeneous 
Fleets” (SDDPHF) by Ulmer and Thomas [36].  
“Multi-Trip Drone Routing Problem” (MTDRP) by 
Cheng et al., [37]. “Vehicle Routing Problem with 
Drones and Time Windows” (VRPDTW) by Pugliese 
and Guerriero [38] and “Vehicle Routing Problem with 
Drone Resupply” (VRPDR) by Dayarian et al. [39].

 Considering problems in which drones are  
allowed to carry many packages and stop at multiple 
locations per launch, we found the following papers, 
including the “Two-Echelon cooperated Routing  
Problem for the Ground Vehicle (GV) and its carried 
unmanned aerial vehicle (UAV)” (2E-GU-RP) by Luo  
et al., [40]. the “Hybrid Vehicle-Drone Routing Problem”  
(HVDRP) by Karak and Abdelghany [41], the “Vehicle 
Routing Problem with Drones” (VRPD) by Wang and 
Sheu [42], the “k-Multi-visit Drone Routing Problem” 
(k-MVDRP) by Poikonen and Golden [43], [44], and 
lastly the “Two Echelon Vehicle Routing Problem with 
Drones” (2EVRPD) by Kitjacharoenchai et al., [45].
 In the recent VRPD research, Zhu [46] investigated  
collaborative multi-truck–multi-drone delivery based 
on local takeoff and landing modes. Trucks were not 
involved in the problem of distribution by drones 
(DDP) and the carrier problem of drones (CVP-D). 
Salama and Srinivas [47] first relaxed the common 
assumption of restricting drone operations to customer 
locations by allowing the truck to stop at non-customer 
locations (referred to as flexible sites for drone) LRO.

2.2  Mathematical formulation

In general, the humanitarian supplies delivery problem 
focuses on making relief goods distribution operations  
such that supplies can be efficiently and quickly  
transported from distributing points to affected areas. 
The delivery problem is considered a critical operation in 
the Response phase as part of the Disaster Management  
Cycle diagram, as shown in Figure 3, which aims to 
save lives and minimize the immediate impacts of the 
disasters. Many studies have examined this problem by 
treating it as a vehicle routing problem with different  
objectives. Time is the most common objective in 
disaster relief, including the sum of travel times, the 
total delay cost, and the total response time. 
 The I-VRPD is a combinatorial optimization 
problem that can be formulated by Mixed Integer 
Programming (MIP). The problem can be defined on 
a directed graph G = (V,E) in which V represents a set 
of n destination nodes with one depot and E represents 
the set of arcs in the graph. The new integrated system 
provides flexibility and options for clients to receive 
items from any vehicle fleet in which each type of fleet 
has its advantage. For example, while a traditional 
truck delivers packages with large volumes or loads 
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to natural disaster victims who might be located far 
from the depot, the hybrid truck with small drones 
can deliver items with small volumes or light loads 
to the victims who are located close to the depot. In 
addition, a large drone can carry multiple heavy items 
with more extended battery capacity than small drones, 
ideally an excellent fit for the disaster period, which 
requires faster delivery for large items. The benefits of 
this configuration could potentially reduce operational 
costs, improve overall delivery speed, and reduce the 
waiting times of the victims in the affected zones.
 It is important to note that each vehicle fleet 
is operated independently, and all vehicle units are  
assumed to be homogenous. Each hybrid truck can 
only carry a limited amount of small drones. A small 
drone has a single unit capacity while a large drone has 
its certain capacity. Both hybrid truck and traditional 
truck have the same capacity and unlimited endurance. 
All small drones in the fleet have the same battery  
capacity and so do the large drones. The battery capacity  
will determine how long it can fly before receiving a 
service. We assume that small drones can only land at 
the destination locations (nodes) on the graph. This 
assumption applies to all other vehicle fleets as well. 
In addition, a small drone and a hybrid truck must wait 
for each other if one happens to arrive at the node first. 
Finally, whenever a small drone is launched from a 
hybrid truck, it must return to the same hybrid truck 
after finishing the delivery. 

2.2.1 Notation

Three vehicle fleet types are defined as a set of K =  
{1, 2, 3,…,k}, VT = {1,2,3,…,vt} and VD = 
{1,2,3,…,vd}, which represent a hybrid truck fleet, 
a traditional truck fleet, and a large drone fleet  

accordingly. They must carry a load less than their 
capacities (Q for a hybrid truck, QVT for a traditional 
truck, and QVD for a large drone). Each fleet type 
consists of a certain number of homogeneous vehicle 
units. Each unit of a hybrid truck is attached with a set 
of small drones, KD = {1, 2, 3,…,kd}, each can handle 
a load up to QD. The amount of load is measured by 
weight unit for all vehicles. In addition, the drone’s 
travel capability is restricted by its battery limitation, 
defined as B for a small drone and BVD for a large 
drone. Let Di be a demand for each destination node 
i from 1,2,3,…,n.
 Let  be a truck travel time between node i 
and node j and similarly let  be a drone travel time 
between node i and node j. The I-VRPD is said to be 
symmetric if  =  and  =  and asymmetric 
otherwise. Based on the triangle inequality, the travel 
time for both truck and drone must satisfy  +  ≥  

 ,  +  ≥  .
 For readability purposes, we define the set 
of destination nodes C = {1,2,3,…,n} and a set  
C0 = {0(s),1,2,3,…,n} as the set of destination nodes 
plus a starting depot, and set C+ = {1,2,3,…,0(r)} 
as the set of destination nodes plus the returning 
depot. We define the following decision variables:  
Let  = 1 if a hybrid truck k travels from a node 
i to a node j and 0 otherwise. Similarly, let   
and  = 1 if a traditional truck vt and a large 
drone vd each from a node i to a node j and 0  
otherwise. Let  = 1 if a small drone kd of hybrid 
truck k travels from a node i to a node j and from a 
node j to a node p and 0 otherwise. Additionally, we 
use variables , ,  and  to indicate 
whether a hybrid truck, a traditional truck, a large 
drone, and a small drone serve destination node i 
accordingly or not.

Figure 3: Supplies delivery problem as part of the response phase in the disaster management cycle diagram.
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 To track operational time, we denote the variable  
 as the arrival time of the hybrid truck k and 

as the arrival time of the small drone kd of the hybrid  
truck k at node j.  and  are adjusted to be 
the same in any node j. The variables  and   
represent the traditional truck vt and large drone arrival 
time at node j ∈ C+ accordingly. Lastly, we define the 
variables  ,  for the VRP sub-tour elimination 
constraints and the variable  for the launching and 
landing status of a small drone.
 The notations can be summarized as follows:

Set
 C = {1,2,3,4,5,6,…,n} represents the set of all 
customers 
 C0 = {0(s),1,2,3,4,5,…,n} represents the set of all 
customers including the depot 
 C+ = {1,2,3,4,5,…,n,0(r)} represents the set of 
all customers including the depot  
 N = C ∪ C0 ∪ C+ represents all the nodes in the 
entire operation
 K = {1,2,3,…,k} represents the set of all units of 
hybrid-trucks in the operation. 
 KD = {1,2,3,…,kd} represents the set of all units 
of small drones in each truck. 
 VT = {1,2,3,…,vt} represents the set of traditional 
trucks in the operation
 VD = {1,2,3,…,vd} represents the set of large 
drones in the operation

Parameters
  = Duration of time for a truck to travel from 
node i to node j
  = Duration of time for a drone to travel from 
node i to node j
 Q = Hybrid-trucks capacity (Same for all hybrid-  
trucks)
 Qd = Small drone capacity (Same for all small 
drones)
 Qvt = Traditional truck capacity (Same for all 
tradtional  trucks)
 Qvd = Large drone capacity (Same for all large 
drones)
 B = Battery limit for small drones (Small drone' 
s battery life)
 BVD = Battery limit for large drones (Large 
drone' s battery life)
 Di = Customer demand at each node i 

Main Variables
  = {0,1} indicates whether a hybrid-truck k 
travels from node i to node j or not
  = {0,1} indicates whether a traditional truck 
vt travels from node i to node j or not
  = {0,1} indicates whether a large drone vd 
travels from node i to node j or not
  = {0,1} indicates whether a drone kd of truck 
k travels from node i to node j and return to node p  
or not
  = The time that a hybrid truck k arrives at  
node i
  = The time that a small drone kd of truck 
k arrives at node i 
  = The time that a traditional truck vt arrives 
at node i
  = The time that a large drone vd arrives at 
node i
  = Auxiliary variables for subtour  
elimination 
  = {0,1} indicates the state of node i which 
can launch a drone (0 means launchable state, 1 means 
unlaunchable state) 
  = The amount of battery consumption at 
node i of a large drone vd

2.2.2 The key part of the model

The optimization is separated into three parts:  
1) Decision variables, 2) Objective function, and  
3) Sets of constraints. All variables used in this model 
are defined and described in Section 2.2.1 in detail. As 
for the objective function, we want to minimize the 
total delivery time of all vehicle fleets, so the objective 
function's components include the delivery time of the 
traditional truck fleet, the delivery time of the hybrid 
truck fleet, and the delivery time of the large drone 
fleet. As the total delivery time decreases, it will benefit 
natural disaster victims. They would be able to receive 
the supply kits such as food, water, and medicine at 
a faster speed which is part of the immediate actions 
to save lives and minimize impacts in the Response 
Phase of the Disaster Management Cycle diagram. 
Lastly, there are several sets of constraints that can be 
divided into different groups as follows:

• The set of constraints ensures that every  
customer is guaranteed to receive a package.

• Flow conservation and continuity for all 
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trucks/large drones.
 • Flow conservation and continuity for small 
drones in Hybrid trucks.
 • Capacity constraints to ensure that each  
vehicle must be able to carry items within its capacity.
 • Battery consumption constraints to make sure 
that drones must operate within their battery limit.
 • Time adjustment constraints to keep track of 
the delivery time of all vehicles. 

2.2.3 Mathematical Formulation

We present the MIP formulation for I-VRPD as  
follows:

Objective

 (1)

 The objective function (1) minimizes the total 
arrival time of all vehicle units across different fleets 
at the depot.

Subject to

 (2)

 Constraints (2) ensure that each destination is 
guaranteed to receive the package from one of the 
following vehicles: a hybrid truck, a small drone, a 
traditional truck, and a large drone exactly once.

 (3)

 (4) 

 (5)

 Constraints (3)–(5) maintain the flow conservation  
of the hybrid truck at the depot, constraints (3) and (4), 
and each destination node i constraint (5) by enforcing 
that the hybrid truck k must leave the node whenever 
it enters the node. 

 (6)

 (7)

 (8) 

 (9)

 (10)

 
 (11)

 Similarly, the sets of constraints (6) to (8) and 
(9) to (11) impose the same restriction for a traditional  
truck and a large drone which ensures the flow  
conservation and guarantees the departure and arrival 
to the depot.
 

 
 (12) 

 Constraints (12) ensure that whenever a small 
drone travels from node i to node j and from node j to 
node p, it will reach a destination at node j. 

 (13)

 (14)

 Constraints (13) and (14) enforce that, at most, 
one small drone must depart from and arrive at a hybrid 
truck at each stop.

 (15)

 Constraints (15) state that if a small drone departs 
from node i, delivers a package at node j, and lands at 
node p, then it is guaranteed that a hybrid truck would 
stop by at node i and node p.

 (16)

 (17)
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 Constraints (16) and (17) ensure that no flow 
enters or leaves node j when a small drone makes a 
delivery at node j accordingly. 
 The sets of constraints (18) to (25) consider the 
correctness of a small drone’s launching and landing 
operation. They track whether a particular drone has 
already been launched and ensure that it can never be 
relaunched before returning to the truck.

 (18)

 (19)

 Constraints (18) and (19) enforce that when  
 = 1, a small drone can not enter or leave node i 

and vice versa.

 (20)

 (21)

 Constraints (20) and (21) state that as a truck  
travels from node i to node j, if a small drone is 
launched from node i and has not returned to node j 
then  must equal 1. 

 (22) 

 (23) 

 Similarly, constraints (22) and (23) state the  
situation where a small drone was previously launched 
(  = 1) and has not arrived at node j where the  
hybrid truck is scheduled to visit. If this is the case, 

then  must equal to 1.  

 (24)

 (25)

 Constraints (24) to (25) state that if a small drone 
returns to node j where a hybrid truck k is scheduled 
to visit, then  must equal 0.

 (26)

 Constraints (26) ensure that a small drone must 
always carry a load less than its capacity (QD).

 (27)

 Constraints (27) restrict that a hybrid truck must 
always carry the combined loads of both hybrid truck 
and small drone less than its capacity at any given time.

 (28)

 (29)

 Constraints (28) and (29) address a similar  
condition as in (27) by ensuring that each traditional 
truck vt must carry the load less and its capacity, and 
so does the large drone.
 The sets of constraints (30)–(32) deal with the 
battery consumption of drones. 

 (30)

 Constraints (30) address that when a small drone 
departs from node i, visit node j and return to node p, 
it must have enough battery to cover the entire flight 
which must be less its battery capacity B. 
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 (31)

 (32)

 Similarly, constraints (31) and (32) ensure that 
the large drone must have enough battery at any point 
by limiting the battery consumption to less than the 
battery capacity.

 (33)

 (34)

 At node i, where both vehicles merge, constraints (33)  
enforce the departure time of both small drone and 
hybrid truck to be the same, while constraints (34)  
enforce the arrival time to be the same for both vehicles.

 (35)

 (36)

 (37)

 (38)

 Constraints (35)–(38) update the arrival time of 
the hybrid truck, traditional truck, small drone, and 
large drone accordingly whenever the vehicles travel 
from one node to another node.

 (39)

 (40)

 (41)

 (42)

 (43)

 (44)

 Pairs of constraints (39)–(44)  ensure that there is no 
sub-tour in all tours of the hybrid truck fleet, traditional  
truck fleet, and large drone fleet accordingly [48].

 (45)

 Lastly, we specify the types and ranges of the 
variables in constraints (45). The M value must be 
large enough,  and we can use the delivery time of the 
traditional trucks by solving the CVRP.
 Since the I-VRPD is considered a generalization  
of the classical VRP, which is proven to be an NP-hard  
problem, the I-VRPD is, by nature, an NP-hard 
problem. Therefore, to test the proposed model's 
performance as part of the strategic operation in 
disaster response, we have designed a different set of 
experiments to verify the model and correspondingly 
compare its solution with different routing models 
from the previous studies.

3 Results and Discussion

In this section, we ran different experiments to find 
out the solution of the I-VRPD on various sets of 
instances. Beginning with a case study conducted in 
Lafayette Indiana, we want to get the visualization 
of the solution routes when integrating different fleet 
types of vehicles. This experiment would give us a 
much clearer picture of how this work can benefit the 
last-mile delivery service in a real-world setting. In the 
second and third experiments, we solved the small-size  
benchmark problems with the MIP formation from  
Section 2 and observe the delivery time among different  
sets of vehicle fleets. We additionally compare the 
results of the I-VRPD with other results of the relevant 
routing models from the literature. These experiments 
demonstrate the potential gain from implementing  
combined fleets vs. a single fleet type. For all experiments,  
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we assume   = 1.5  based on Brar et al., [49].  
Other assumptions still hold valid from Sections 1–2.  
All experiments were conducted, and the MIP  
formulation was solved by CPLEX on GAMS 23.51.  

3.1  A case study 

In this section, we conduct a case study using the real 
world scenario to investigate the usefulness of the 
I-VRPD model in the practical aspect and compare  
different solution routes under various settings. First, 
we randomly select eight destination nodes and one 
depot node in Lafayette/West Lafayette area. For this 
particular experiment, all trucks are assumed to travel 
in the road network while the drones travel in the air 
space in Euclidean space. Other assumptions are still 
the same as we indicated earlier in the paper. Finally, we 
ran the MIP from Section 2 in the solver and generated  
different solution routes, as shown in Figure 4.
 Figure 4(a) represents the solution route using 
a traditional truck alone, which is the typical way of 
delivery, and Figure 4(b) represents the solution route 
using a hybrid truck with one small drone. The gain 
from using a drone in the model accounts for a 33% 
improvement in delivery time. If one traditional truck 
is added to the operation, as shown in Figure 4(c), 
it will reduce the delivery time by 21.8%. Lastly,  
combining a large drone, a hybrid truck, and a  
traditional truck in operation [Figure 4(d)] shows a 
significant reduction in delivery time by 67% from the 
traditional truck alone. The case study demonstrates 
the potential benefit of integrating different types of 
vehicles in last-mile delivery and illustrates the feasible 
solution route from the real-world scenario.  

3.2  Experiment with VRP benchmark

In this experiment, we tested our proposed I-VRPD 
model with the modified CVRP benchmark instances 
[50], [51]. We used samples of the classical A, B, and 
P CVRP sets. The complete sets have 27, 23, and 23  
instances, accordingly, ranging from 31 to 100 customers.  
The problem sizes and demand distributions  
are similar, but the customers in sets A, and P are 
uniformly distributed and in B clustered. For each 
instance, we ran the model by adjusting the type and 
the number of vehicles starting from a traditional truck 
to a whole combination of a hybrid truck, a traditional 

truck, and a large drone. For simplicity, we assume that 
all vehicles travel in Euclidean space. All experiment 
runs use the same set of settings and assumptions, as 
stated in Section 2. Finally, we set the objective as the 
makespan of delivery time and showed the results of 
the experiment in Figures 5 and 6.
 The results suggest combining different vehicle 
types can significantly reduce the total delivery time in 
all tested instances. It can be seen from the chart that 
using the regular truck or traditional truck returns the 
longest delivery time among different types of vehicle 
operations. On the contrary, combining all types of 
vehicles to make delivery returns the shortest delivery 
time suitably works best when time is the most critical 
factor, like during the disaster relief period. Looking at 
the line graph in Figure 6, we can see that the slope is 
steep at the beginning and begins to stay flat as more 
resources are added to the operation. This finding  
shows that adding a hybrid truck equipped with a 
drone can make a substantial impact while adding a 
large drone might be less effective in this small-size 
problem. One explanation is that only a few customers 
are located on the map and can be served simply with 
one or two vehicles. Thus, adding a large vehicle may 
not improve solution performance significantly.

Figure 4: Result of the case study. (a) Single Traditional  
truck (Delivery time: 2046 S.). (b) Single Hybrid 
truck (Delivery time: 1369 S.). (c) One Hybrid truck 
& One Traditional truck (Delivery time: 1070 S.).  
(d) One Hybrid truck, One Traditional truck & One 
Large (Delivery time: 671 S.).

(a)

(c)

(b)

(d)
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3.3  Comparison of I-VRPD MIP and other MIP 
routing models

This section compares the solution between the proposed  
I-VRPD and other routing models, including  
VRPD, which utilizes small drones in a hybrid 
truck, and CVRP on different small-size benchmark 
instances. We obtained the exact solutions for both  
I-VRPD and CVRP using the CPLEX. This experiment  
aims to evaluate the cost (time) saving when  
combining different fleets of vehicles to make delivery.  
We also want to get an estimation of how long the 
solver would take to return an optimal solution for 
I-VRPD. For each instance, we set the number of 
destination nodes to eight and the maximum number 
of vehicles to two. The CVRP model consists of only 
traditional trucks, while the VRPD model consists of 
the only hybrid truck in which each unit is equipped 
with one small drone [52]. Exactly one hybrid truck 
with a small drone and one large drone is used in the 

I-VRPD. The results are shown in Table 1. 
 When comparing I-VRPD to VRPD in column  
“I-VRPD v.s. VRPD,” the results show an improvement  
in objective value approximately by 12.98% (9.76% 
(min) to 18.95% (max)) depending on the instance. 
The objective improvement is much more significant 
when compared to CVRP in the column “I-VRPD 
v.s. CVRP,” with an average improvement of 23.76% 
(20.24% (min) to 28.52% (max)). The results from this 
experiment demonstrate the gain from implementing 
the new routing model when using all heterogeneous 
fleet vehicles in the setting. In addition, the MIP takes 
significant time to generate the optimal solutions 
even for the small-size problem (451.26 seconds for 
I-VRPD, 1859.41 for VRPD, and 68.33 for CVRP). 
Numerical analysis shows that substantial savings 
in delivery completion time (13% on average in v.s. 
VRPD case and 25% on average instances in v.s. 
CVRP case) can be achieved by using a large drone  
together with a hybrid truck-drone vehicle for all 

Figure 5: Result of testing the model with the  
benchmark using different combinations of vehicles.

Figure 6: Average delivery time reduction among 
various settings.

Table 1: Comparison of the results between MIP IVRP-D, VRPD, and MIP CVRP on a small-size instance

Instance

MIP CPLEX Improvement (%)
I-VRPD VRPD CVRP I-VRPD 

v.s. 
VRPD

I-VRPD 
v.s. 

CVRPObjective Runtime 
(Second) Objective Runtime 

(Second) Objective Runtime 
(Second)

A1-n8-k2 253 623.13 300 2196.09 338 88.72 15.67 25.15
A2-n8-k2 218 455.85 248 2788.66 305 75.30 12.10 28.52
A3-n8-k2 159 382.53 185 1471.09 204 95.86 14.05 22.06
B1-n8-k2 259 653.64 287 2231.58 340 76.11 9.76 23.82
B2-n8-k2 201 609.42 248 1964.14 252 64.66 18.95 20.24
P1-n8-k2 108 256.87 120 1038.87 140 40.86 10.00 22.86
P2-n8-k2 113 177.37 126 1325.49 148 36.83 10.32 23.65
Average 451.26 1859.42 68.33 12.98 23.76
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instances. Our findings also led to several practical 
insights into using combinations of different types of 
delivery vehicles.
 Based on the experiments, the small-size instances  
can be optimally solved by the MIP formulation run 
on CPLEX shown in Section 3.1. Then, we present 
different routing scenarios in the case study to visually  
demonstrate the implementation of the I-VRPD in 
the real-world aspect. Section 3.2 tests our proposed 
MIP model with some well-known VRP benchmark 
instances and compares the delivery time using  
different vehicle type combinations. The result shows 
that the scenario combining three different delivery 
vehicles returns the shortest delivery time. Lastly, we 
compare the I-VRPD and other routing models using 
the same amount of resources in Section 3.3, which 
shows significant savings in delivery time.

4 Conclusions

In this study, we present a new routing model, the 
Integrated Vehicle Routing Problems with Drones 
(I-VRPD), combining three routing operations:  
Traditional truck routing, Hybrid truck routing, and 
Large drone routing for humanitarian relief delivery. 
The I-VRPD is considered an extension of the traditional  
VRP with heterogeneous trucks and drones in which 
the hybrid truck is equipped with small drones. The 
study results have shown the benefit of integrating 
different vehicle fleet types as the delivery time can be 
reduced significantly, which is quite an essential part 
of the response phase in disaster management. The 
limitations of this work include 1) the restriction of a 
drone with just a payload limit of one parcel per sortie 
and 2) the longer computational time of the proposed 
model as the number of destination nodes as well as 
the number of delivery vehicles increase. The latter 
problem can be resolved by developing an efficient 
heuristic polynomial time algorithm. For future work,  
we can consider different fleets of vehicles or various 
modes of operation, including electric bikes, scooters, 
and droids. We can also reformulate the MIP formulation  
to strengthen the computational performance of the 
mathematical models using valid inequalities. From an 
algorithmic perspective, designing other metaheuristic  
algorithms could effectively solve the I-VRPD  
problem with a better objective value and lower  
computational time.
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