
163

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 163–175, 2017

Automated High-level Modeling of Power, Temperature and Timing Variation for
Microprocessor

Zheng Wang*
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Shazia Kanwal
Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok,
Bangkok, Thailand

Lai Wang
Analog Devices, Beijing, China

Anupam Chattopadhyay
School of Computer Science and Engineering, Nanyang Technological University, Singapore

* Corresponding author. E-mail: wangz@ntu.edu.sg DOI: 10.14416/j.ijast.2017.08.002
Received: 10 October 2016; Accepted: 18 April 2017; Published online: 10 August 2017
© 2017 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
The continued scaling of semiconductor technologies leads to diverse challenges such as power and
temperature, which also forces reliability as another design metric of prime concern. There exists strong need
to link reliability with physical metrics in a high-level architecture design environment, where estimation of
reliability impacts can be performed in the early design stage. In this paper, we propose a joint modeling and
simulation framework for power, thermal and timing variation, which is integrated into a commercial high-level
processor design environment. A custom timing variation model is provided for estimation of dynamic timing
variation, which is demonstrated using one nanoscale thermal effect known as Inverted Temperature Dependence.
The complete modeling flow is automated for customized processor model with arbitrary architectural hierarchy,
which assists designer to perform architectural and application-level design space exploration with power,
thermal and reliability impacts.

Keywords: Power modeling, Thermal estimation, Timing variation, Simulation

Please cite this article as: Z. Wang, S. Kanwal, L. Wang, and A. Chattopadhyay, “Automated high-level
modeling of power, temperature and timing variation for microprocessor,” KMUTNB Int J Appl Sci Technol,
vol. 10, no. 3, pp. 163–175, Jul.–Sep. 2017.

Research Article

1 Introduction

As reliability becomes an essential factor in the design
of nanoscale digital system, it is important to integrate
reliability as a design constraint in the traditional
processor design flow, where instruction-set simulator
plays an important role in architecture validation and
performance estimation. Reliability effects, especially

aging and soft errors, have direct relationship with
other design parameters such as runtime, power and
temperature. There is strong need to link reliability
with other physical metrics in a high-level processor
design environment, where realistic estimation of
reliability effects can be simulated together with power
and thermal footprints.
 Processor power estimation techniques have been

http://dx.doi.org/10.14416/j.ijast.2017.08.002

164

Z. Wang et al., “Automated High-level Modeling of Power, Temperature and Timing Variation for Microprocessor.”

continuously a hot topic in both research and industry.
Instruction level power model is proposed by Tiwari
et al. [1], [2], where each instruction is provided
with an individual power model. The run-time power
can be determined through the profiling of executed
instructions. Wattch [3] introduces architecture-level
power model which decompose main processor units
into categories based on their structures, and separates
each of the units into stages and forms RC circuits for
each stage. McPAT [4] models all dynamic, static and
short-circuit power while provides joint modeling
capability of area and timing. To increase modeling
accuracy, a hybrid FLPA(functional level power analysis)
and ILPA(instruction level power analysis) model
[5] is elaborated which advantageously combines the
lower modeling and computational efforts of an FLPA
model and the higher accuracy of an ILPA model. The
trade-off is further explained in [6] with a 3-D LUT
and a tripartite hyper-graph.
 The heat dissipation from power consumption
leads to increased and un-evenly distributed temperature
which causes potential reliability problems [7], [8],
where the research committee demands highly for
architecture-level thermal management techniques.
Consequently, accurate architecture level thermal
modeling has received huge interests. In this domain,
HotSpot [9] is the de facto standard, where the thermal
effects for individual architecture blocks can be fast
estimated by creating a thermal RC network. HotSpot is
easy to integrate with any source level power simulator,
which spreads its appliance into huge research bodies
[10], [11]. SUNRED [12] and 3D-ICE [13] are other
prevalent thermal simulators, which can also simulate
microfluidic cooling by modeling convective heat
transfer.
 Recently, there is an emerging research trend
for logic-thermal co-simulation in the field of digital
system. The logic-thermal simulation principle is
first proposed in [14]. For gate-level, [15], and [16]
introduce methodology for temperature dependent
timing simulation in standard cell designs. To bridge
the gap between simulation accuracy and complexity
of modern digital system, several work performs logic-
thermal simulation at higher design abstractions. Cacti
[17] estimates power, area and timing specifically for
memory system. McPAT [4] jointly models power, area
and timing for individual system-level blocks including
cores and memories. [18] applies a joint performance,

power and thermal simulation framework for the
design of network-on-chip. [19] extends the work
with the ability to simulate optimization techniques
such as Dynamic Voltage Frequency Scaling (DVFS)
and Power Gating. [20] develops a logic-thermal
simulation engine for circuit descriptions of multiple
abstraction levels.
 However, the previous work simulates the physical
behaviors using off the shelf libraries on a higher
abstraction level for individual blocks, which did not
address to the complexity of processor architecture itself.
On the other hand, accurate power modeling, which is
the centralized module of the joint simulation, requires
significant efforts due to manual characterization.
An Application-Specific Integrated Processor (ASIP)
can have arbitrary logic blocks which need detailed
block level modeling. Previous work also lacks the
ability to accurately estimate power/temperature with
application specific switching activities. The reason is
that modeling and simulation are treated as separate
issues, where the modeling part is more tent to be
provided from IP vendors as technology dependent
databases. Furthermore, to the best knowledge, no
work has been tried to integrate reliability issue
directly into the high-level simulation framework.
Such issues are still open to be addressed.
 Contribution In this work, a joint modeling
framework which integrating power, thermal and logic
delay simulation is introduced in a industrial processor
design environment, where both accurately modeling
through low-level characterization and cross-domain
simulation using cycle accurate instruction-set simulator
are fast generated. The main contributions include:

• A processor power modeling technique which
characterizes and estimates power for customized
processor model with arbitrary architectural
hierarchy.

• A processor thermal simulator which is efficiently
achieved by integrating power simulator with
HotSpot.

• A timing simulator for logic paths extended
from the processor fault injector, where faults
are modeled as delay variation on logic paths.

• Estimation of processor timing variation under
one of the nanoscale thermal induced reliability
issues.

 By automating the complete modeling and
simulation flow, the processor designer can easily

165

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 163–175, 2017

perform architectural and application-level design
space exploration with power, tempera-ture and
reliability factors.
 The work is organized in following manner.
Section 2 briefly discusses the approach of high-
level power modeling and estimation for LISA based
processor design framework. Section 3 illustrates the
thermal modeling and integration with HotSpot. After
that, Section 4 presents the extension to the high-level
fault injection with timing fault simulation. Taking
advantage of fault injector, Section 5 introduces
the approach of high-level logic delay simulation.
Section 6 focuses on the automation flow and analyses
its runtime overhead. Finally, the paper is concluded
in Section 7.

2 High-level Processor Power Modeling

This section briefly introduces the proposed high-level
power modeling methodology. First, an overview on
the LISA language is present. Second, an overall
introduction on the power estimation flow is illustrated.
The detailed experiments of proposed power modeling
technique on embedded processors are referred in [21].

2.1 Brief on LISA language

LISA (Language for Instruction Set Architectures) is
the state-of-the-art Architecture Description Language
(ADL) for describing the micro-architecture of
customized processors [22]. In LISA, the micro-
architecture and Instruction Set Architecture (ISA) are
described in the OPERATION section. The declarations
for processor resources such as pipeline stages,
registers, memories and ports are located in the
RESOURCE section and they can be accessed from any
LISA operation. Structural information can be added
by assigning the operations to different pipeline stages.
C-compiler, assembler, linker and cycle-accurate
instruction set simulator are automatically generated
by LISA compiler, while synthesizable RTL codes
with different options of optimizations are produced
by the HDL generator. For further information on LISA
language please refer to [23].

2.2 Power estimation flow

High-level power estimation flow characterizes power

models for LISA units (operations and resources) from
low level power simulation. Such power models are
applied later in instruction-set simulator to produce
run-time power for targeted applications. The simulation
is independent of gate-level power simulation so that
significant efforts are saved. The simulation accuracy
depends on the efforts in the characterization of power
model.
 Figure 1 explains the proposed power estimation
flow which consists of simulation, characterization,
estimation and exploration phases.
 a) Simulation: High level power models are
usually characterized by the data from low level
simulation. In this phase, cycle accurate power data
for special testbenches are gathered according to
PrimeTime-based power simulation which can be
performed at either RTL, gate-level or layout. Currently
gate level is chosen for trade-off between simulation
accuracy and modeling efforts. Each simulation testbench
consists of single type of instructions such as ALU,
Load/Store and Branch types. The testbenches are
composed in such a way that operands and immediate
values are randomly distributed. Special instruction
features such as operand bypassing are also covered
according to the target architecture. Larger coverage
of instruction modes and operand values leads to
enhanced accuracy of power modeling.
 b) Characterization: Besides cycle accurate
power data, the inputs of characterization phase also take
into account the switching activities from instruction-set
simulation. Both data are used to characterize the
coefficients for the unit level power models which are
detailed in the next section. Multivariate curve fitting
technique is applied for extraction of coefficient

Phase 4
Exploration

Application Testbenches

LISA-level
VCD (App)

LISA-based
Power

Simulation

Cycle-
accurate

power

Cycle-
accurate

power

Error
Analysis

LISA-level
VCD (Test)

Power
Coefficient

s LUTs
optionalResource Mapping

and
Signal Extraction

Power
Characterization
with MATLAB

If not acceptable

RTL
VCD

Gate-level
VCD

PrimeTime PX

Tech
Library(.db)

Gate-level
Netlist

Phase 1
Simulation

Phase 2
Characterization

Phase 3
Estimation

Figure 1: LISA-based power modeling and simulation
flow.

166

Z. Wang et al., “Automated High-level Modeling of Power, Temperature and Timing Variation for Microprocessor.”

values. Exploration between accuracy and extraction
effort of coefficients can be explored through linear
and polynomial modes in curve fitting.
 c) Estimation: The power models are applied on
target applications to estimate power consumption.
The run-time switching activities from cycle accurate
Instruction Set Simulator (ISS) are gathered and
provided to the power simulator. Due to the nature
of unit-based power modeling, instantaneous power
consumption for each hardware unit is calculated and
recorded in the PrimeTime recognized power format.
 d) Exploration: The ISS-level run-time power is
compared with low level simulation to determine the
estimation accuracy. Based on the user requirements
the unit-based power models can be further improved
taking advantage of the techniques in the simulation
and characterization phases.

3 High-level Processor Thermal Modeling

This section illustrates the integration of HotSpot
thermal simulator with proposed power modeling
technique to achieve a fast and dynamic thermal
simulator for processors with generic architectures.

3.1 Thermal modeling using HotSpot

HotSpot is an opensource package for temperature
estimation of architecture-level units. It has been
applied in both academia and industry for architecture-
level thermal modeling and management. HotSpot is
easily integrated into any performance/power simulator
by providing the floorplan and instantaneous power
information. By transforming the floorplan into an
equivalent thermal RC circuits which is called compact
models, HotSpot calculates instantaneous temperature
by solving the thermal differential equation using a
fourth-order Runge-Kutta method. The temperature
for each block is updated by each call to the RC solver.
For details of applying HotSpot for thermal modeling
please refer to [10].

3.2 Integration of power simulator with HotSpot

The integration of LISA power simulator with HotSpot
generally follows the guideline in [24]. Two phases are
required, the initialization and runtime phases, which
are briefly explained in the following.

• The initialization phase, where the RC equivalent
circuits are first initialized based on user provided
floorplan and thermal configurations, such as
parameters for heat sink and heat spread.
Afterwards, the initial temperature is set by
the user. For instance, 60 degree is initialized
for starting temperature while 45 degree is set as
ambient temperature. The floorplan information
of can be obtained from commercial physical
synthesis tool such as Cadence SoC Encounter
or derived according to the area report from
logic synthesize.

• The runtime phase, where the simulator
iteratively calls the temperature computing
routine to update the block temperatures. Such
routine does not need to be called during each
clock cycle due to the nature of slow changing
temperature. In practice, a sampling interval
of 10 Kilocycles at 3 GHz is adapted, which
corresponds a time of 3.33 microseconds. For
different clock frequency, the same interval is
maintained to make fair comparison. The power
values which provide to HotSpot are the average
values among the previous sampling interval.

3.3 Temperature simulation and analysis

Figure 2 shows an example of the runtime temperature
simulation for BCH application under a synthesis
frequency of 500 MHz. The unit of time is in
nanosecond while the temperature is in Degree Celsius.
Instead of the whole simulation time, a snapshot has
been shown.

Figure 2: Instantaneous temperature generated by
HotSpot.

FE DC
EX MEM
WB FE_DC
DC_EX EX_MEM
MEM_WB RegisterFile

Te
m

pe
ra

tu
re

 (°
C

)

0 100 200 300 400 500 600 700 800 900

90

85

80

75

70

65

60

Time (µsec)

167

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 163–175, 2017

 Table 1 shows the temperature and power
consumption for architectural units with different
design frequencies, where BCH application runs on
the processor. The same floorplan is applied for all
frequencies. As the power increases dramatically with
frequency, the temperature shows slightly increment
for most of the units such as DC, MEM and WB.
Rapid increment lies between 100 MHz and 500 MHz
for units FE and FE DC, even though their power
consumptions are relatively small compared with other
units. On the contrary, units such as RegisterFile which
incur higher power consumption shows only a slight
increment in temperature. The reason behind this is
the high power density on such units due to their small
area provided by the floorplan.
 Table 2 shows the temperature for BCH application
using different floorplans. The first floorplan adopts the

ratio of unit size from logic synthesis tools. However,
the runtime tempera-ture shows strong differences
among different architectural units, which has the
potential to incur temperature related reliability issues.
Floorplan 2 tries to increase the sizes of units with high
power density (FE, FE DC and RegisterFile units) so
that the power density will be significantly reduced.
As seen from the thermal simulation, the temperature
of hot units reduces dramatically so that the thermal
footprints of pipeline registers and RegisterFile are
finalizing at similar values.
 To prevent large area overhead, a slight increment
to the area of registers is introduced due to their initially
large size. The area of FE, which is initially very small
(0:01 mm2), is increased 100x to achieve uniform
temperature for all logic between pipeline stages.
Overall a 38.6% area overhead is incurred to achieve

Table 1: Temperature and power of LT_RISC at different frequencies running BCH application

Frequencies 25 MHz 100 MHz 500 MHz

Units Temp (°C) Power (mW) Temp (°C) Power (mW) Temp (°C) Power (mW)

FE 63.90 3.19e-3 69.39 9.08e-3 84.25 3.88e-2

DC 60.16 2.56e-2 60.43 7.18e-2 61.15 2.99e-1

EX 60.23 4.91e-2 60.60 1.40e-1 62.11 7.06e-1

MEM 60.17 3.88e-3 60.63 9.53e-3 61.48 3.72e-2

WB 60.05 2.69e-3 60.20 8.47e-3 60.66 3.86e-2

FE_DC 62.16 2.71e-2 68.44 1.05e-1 89.04 4.93e-1

DC_EX 60.74 5.72e-2 62.66 2.08e-1 67.68 1.08

EX_MEM 60.74 4.09e-2 62.40 1.50e-1 67.66 7.61e-1

MEM_WB 60.45 2.32e-2 61.74 8.73e-2 66.89 4.36e-1

RegisterFile 61.09 2.39e-1 63.25 7.54e-1 69.79 3.52

Table 2: Temperature of LT_RISC running BCH application using different floorplans

Units
Power

@500MHz
(mW)

Floorplan 1 Floorplan 2
Size

(mm2)
Power Density

(W/m2)
Temp
(°C)

Size
(mm2)

Power Density
(W/m2)

Temp
(°C)

FE 3.88e-2 0.01 4.95 84.25 1.00 0.04 60.19
DC 2.99e-1 1.24 0.24 61.15 1.24 0.24 61.15
EX 7.06e-1 1.50 0.47 62.11 1.50 0.47 62.11

MEM 3.72e-2 0.28 0.13 61.48 0.28 0.13 61.37
WB 3.86e-2 0.27 0.14 60.66 0.27 0.14 60.66

FE_DC 4.93e-1 0.08 6.03 89.04 1.00 0.49 62.40
DC_EX 1.08 0.69 1.57 67.68 0.76 1.43 67.02

EX_MEM 7.61e-1 0.48 1.59 67.66 0.49 1.55 67.42
MEM_WB 4.36e-1 0.26 1.65 66.89 0.30 1.45 66.17
RegisterFile 3.52 1.74 3.52 69.79 2.25 2.02 67.57

Total - 6.55 - - 9.08 - -

168

Z. Wang et al., “Automated High-level Modeling of Power, Temperature and Timing Variation for Microprocessor.”

the thermal footprints where all units show temperature
under 68 degree. In other word, the improved floorplan
reflects a maximal power density around 2.00 W=m2 for
arbitrary logic units. According to the relationship of
temperature with power density, thermal optimization
techniques could be investigated taking advantage of
the fast estimation framework. Detailed optimization
techniques will be investigated in future work.
 Table 3 shows the temperature of processor
units by end of the simulation time for 10 embedded
benchmarks using the initial floorplan. The temperature
differs among applications mainly due to the difference
in execution time of the applications. For instance the
BCH application which runs for 900 μs is significantly
hotter on most of the units than other short applications.
For applications with similar execution time such as
CRC32 and Sieve, no huge differences in temperature
among all units is detected. Note that change in
temperature is a slow process compared with power
consumption, where application dependent thermal
effects will exhibit for long execution time. For
instance, with 91.4% execution time of median
application, viterbi achieves a slightly higher
temperature in EX units, which is due to the nature
of more ALU instructions. Assembly level profiling
shows that viterbi incurs 59,739 ALU instructions
(37.12% of all instructions) while median has the
amount of 46,301 (26.39% of all instructions), which
verifies viterbi’s hotter temperature in EX pipeline unit
than that for median.

4 High-level Processor Timing Fault Simulation

The LISA-based Fault Injection (FI) framework
developed using Synopsys Processor Designer in [25]
is utilized to simulate the behavior of cycle accurate
processor models under faults. The framework supports
standard fault models such as bit-flip and stuck-at
faults. All the hardware resources such as registers,
memories, global/local signals and interface pins are
exposed to fault injection. The fault configuration
file can be generated from a graphical user interface
or directly written in XML format. Taking advantage
of application programming interface associated with
Processor Designer [22], a runtime scheduler injects
the faults according to the injection clock cycles and
duration provided by the fault configurations. In [25]
it is reported that the high-level simulator achieves 10x
simulation speed compared with Verilog-based fault
injection [26] with similar accuracy.
 However, such framework lacks the ability for
physical timing simulation, which is usually acquired
after simulation on post-layout netlist. To integrate
low-level timing as a constraint for fault injection,
LISA-based processor simulator is extended with
timing annotation for logic paths, which are extracted
from the timing analysis files. Such annotated path
timing will be compared with runtime clock period,
so that delay faults can be injected. The simulation
kernel is extended by the modules in Figure 3, which
are briefly discussed in the following.

Table 3: Temperature of LT_RISC at 500 MHz for different applications

Units
Block-level Temperature (°C) for Different Applications

bch cordic crc32 fft idct median qsort sieve sobel viterbi

FE 84.25 60.38 61.10 60.57 61.70 73.67 72.62 61.27 60.73 72.65

DC 61.15 60.02 60.06 60.03 60.09 60.70 60.65 60.06 60.04 60.69

EX 62.11 60.05 60.15 60.06 60.20 61.50 61.51 60.07 60.10 61.69

MEM 61.48 60.03 60.07 60.03 60.09 60.94 60.95 60.02 60.04 60.80

WB 60.66 60.02 60.05 60.02 60.06 60.50 60.52 60.03 60.03 60.48

FE_DC 89.04 60.44 61.29 60.66 62.04 76.01 75.13 61.51 60.86 75.50

DC_EX 67.68 60.12 60.34 60.17 60.55 64.25 64.02 60.37 60.23 64.06

EX_MEM 67.66 60.12 60.36 60.18 60.54 64.32 64.14 60.38 60.25 64.22

MEM_WB 66.89 60.14 60.39 60.19 60.57 64.42 64.31 60.39 60.27 64.22

RegisterFile 69.79 60.15 60.44 60.22 60.70 65.33 65.17 60.48 60.30 65.10

Finish Time (μs) 900.2 6.7 20.0 10.0 33.3 350.1 333.4 23.3 13.3 320.1

169

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 163–175, 2017

• Initial path timing: It indicates the bit-level
logic delay from initial flip-flop to the end
flip-flop of a logic path, which are extracted
during logic synthesis or placement and routing
using timing analysis. Such delay information
is back-annotated as extra information for the
hardware resources in instruction-set simulator.
For instance, Static Timing Analysis (STA)
[27] calculates one timing value for each
flop-to-flop logic path. Dynamic Timing
Analysis (DTA) [28] will create a set of timing
values for each path, according to instruction
and operand types. Such values are kept in a
Look-Up-Table (LUT) for runtime addressing.

• Timing variation model: which updates
the runtime delay based on initial delay and
specific timing variation function. For instance,
temperature aware timing variation function
is provided when the path timing is changed
through temperature and time. In DTA, this
could be the runtime state information from
the executed instruction within each pipeline
stage, used to select the corresponding entry
in the path timing LUT.

• Frequency constraint: which is provided by
the user to compare with the runtime delay,
so that a fault could be injected. A runtime
adjustable frequency can be applied to model
Dynamic Frequency Scaling (DFS). Voltage
variation can also be modeled by a fixed
frequency with corresponded frequency swing.

 For each simulation clock cycle, the simulator
first updates the clock cycle time using the initial delay
and timing variation function for all annotated paths.
In the next, the simulator checks timing violation for
all annotated logic paths. In case there is a timing
mismatch, the simulator overwrites the current value
in the target resource by a random value which is
either zero or one to model metastability or the value
from previous clock cycle to model a failed latching of
logic value. Otherwise, the simulator stores the current
resource values which may be used thermal effects on
threshold voltage dominates the delay change. as fault
injection value for the following clock cycles.
 The annotation of timing faults incur extra
simulation over-heads. Such overhead is aggregated
when more hardware sources are prone to timing faults.
To address the speed issue, two special features are
implemented which are explained in the following.

• Fault time window: In most case the timing
faults are only injected within specific time
windows. For instance, the boot-up code is
usually skipped for FI when purely application-
level error effects are focused on. FI window
is also useful when vulnerability of different
program segments need to be investigated. User
can specify fault time windows by either clock
cycles or debugging flags in the application.

• Early termination: Timing faults tend to disturb
program execution flow, usually due to the
error in branch address calculation. In most
case the wrong branch will lead the processor
into a deadlock state. We detect such deadlock
situation by checking the value of instruction
register of the processor. In case that among
100 continuous clock cycles the processor
executes the same instruction, the simulation
is forced to terminate earlier than the complete
simulation time with a no response error report.

5 Thermal-aware Logic Delay Simulation

The effects of temperature on the logic delay of
nanoscale CMOS technology have been heavily
investigated such as Negative-Bias Temperature
Instability (NBTI) [7] and Inverted Temperature
Dependence (ITD) [8]. Most of previous work focus on
device and gate-level. Such effects can be modeled using
the architectural level thermal simulation framework

Figure 3: Simulator extension for timing faults.

Error
Reports

Initial Path
Timing

Post P&R netlist

Potential
Delay Fault

Simulate Next
Clock Cycle

Within FI
Window?

F

F

F

T

TT

Delay Fault
Injection

Timing
Violation?

Early
Termination?

Frequency
Constraint

Update Runtime
Path Timing

Timing
Variation

Model Simulation Kernel

170

Z. Wang et al., “Automated High-level Modeling of Power, Temperature and Timing Variation for Microprocessor.”

proposed in this work, so that an thermal-delay simulator
for generic processor architecture could be easily
generated and explored.
 Figure 4 shows the integration framework with
power and thermal simulator to model the delay fault.
As discussed in Section 3, the LISA-level temperature
simulator is generated using power simulator, HotSpot
package and architectural floorplan. Thermal directed
delay fault is modeled combining the thermal simulator
and the high-level timing fault injection discussed in
Section 4, where the runtime delay of individual logic
paths is updated using temperature and a user provided
delay variation model. In this section, the effects of
delay change with temperature are modeled according to
a second order polynomial model for 65 nm technology.
The effect of ITD for different applications running on
a RISC processor is also presented.

5.1 Inverted temperature dependence

Propagation delay of CMOS transistor is widely
modeled using the Alpha-power law [29] as:

where Cout is the load capacitance, α is a constant,
μ(T) is the temperature dependent carrier mobility,
Vth(T) is the temperature dependent threshold voltage.
The temperature affects the delay in two ways: at high
voltage Vdd, delay is less sensitive to the term Vth(T) but

to the mobility, while at low temperature the thermal
effects on threshold voltage dominates the delay
change. As a consequence, for advanced technology
which has small driving voltage, the increment in
temperature could reduce the propagation delay
rather than increase it for technologies with higher
voltage. Such effect is named as Inverted Temperature
Dependence (ITD) and the voltage which inverts the
trend of thermal dependent, is the Zero-Temperature
Coefficient (ZTC) voltage.

5.2 Timing variation function for inverted temperature
dependence

The effects of ITD for 65 nm technology are modeled
using the trend of delay change for clock tree network
in [30]. Two assumptions are made to simplify the
high-level modeling:
 1) The delay of logic path follows the same ration
of temperature/voltage dependency of individual logic
buffer.
 2) The temperature within one architecture block
is uniform.
 3) Other thermal effects on the change of threshold
voltage such as NBTI is not modeled currently.
 Figure 5 shows two critical paths for he RISC
processor and their transverse architectural blocks,
which are generated by the STA tools. The delay of the
complete logic path equals to the sum of path delay of
on the path. For instance, the critical operands from
pipeline register and RegisterFile transverse in order

Technology
Parameters

Power
Modeling

LISA-level
Power

Simulator

Architecture
Floorplan

LISA Processor
Models

Gate-level
Netlist

SoC Encounter

STA
Path Timing

Application,
Frequency
Constraint LISA-level

Variation model
LISA-level

Temperature
Simulator

Error Reports Delay fault
Simulation

Figure 4: High-level thermal-aware fault injection.

171

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 163–175, 2017

the following block: MEM_WB, DC, BYPASS_DC, DC,
RegisterFile, DC, ALU_DC, DC, DC_EX. The critical
path 2 transverses EX_MEM, EX, BYPASS_EX, EX,
ALU_EX, EX, EX_MEM. The delay within individual
architectural units are updated using its own running
temperature, which is generated from the thermal
simulation. In extreme case, each cell uses its own
running thermal footprints to update its delay, which can
only be simulated using gate-level thermal analysis.
 With the above assumption and the referred
data for 65 nm technology in [30], the second order
polynomials shown in Figure 6 are interpolated to
represent the relationship between supply voltage,
instantaneous temperature and propagation delay. Due
to unavailability of ITD-induced timing behaviors
under other process technologies, no estimation has
been performed for other process corners.
 It is observed that the trend of propagation delay
with temperature differs with supply voltage. For
1.0 V and 1.1 V the delay increases with temperature
while decreases at 0.9 V. In [30] the ZTC voltage
is known to be 0.95 V for 65nm technology from
STMicroelectronics, which proves the effect of ITD
for advanced technology.

5.3 Case study for ITD simulation

The polynomials are used as the path timing variation
models for the RISC processor and test the change of
critical path running embedded applications. Figure 7
shows the runtime delay of the critical path for the RISC
processor running BCH application. Curves are plotted
for both frequency of 25 MHz and 500 MHz. The

supply voltage is simulated using 0.9 V, 0.95 V, 1.0 V
and 1.1 V. The initial delay of critical path extracted
out of the timing analysis tool is for the worst case
condition under 125°C, 0.9 V. It is observed that for
high supply voltage such as 1.1 V and 1.0 V, the delay
increases with temperature till a saturation point then
slightly decrease according to the characteristics of the
application. For low voltage of 0.9 V, the inverse trend
is shown where the delay decreases with temperature
till the saturation point and then slightly increases.
Under the ZTC voltage which is 0.95 V, the delay is not
effected by the temperature as expected. The effect of
ITD shows potential of frequency overscaling under
lower voltage, which is predicted for 65 nm and further
technologies in [31]. With regard to different running
frequencies, the processor running at 500 MHz consumes
higher power which leads to higher temperature
compared to the data at 25 MHz. Consequently, the speed

Figure 5: Critical paths and transverse blocks.

Figure 7: Runtime delay of critical path for BCH
application.

Figure 6: Delay variation function under several
conditions.

Critical path 2

Critical path 1

FE

FE
_D

C

D
C

_D
C

Fetch

BYPASS_DC BYPASS_EX

ALU_EXBRANCH_
DC

BRANCH_
EX

CTRL_DC

LDST_DC

LDST_MEM

CMP_DC

CMP_EX

op
er

an
d

da
ta

_o
ut

da
ta

_o
ut

WRITE
BACK

Memory
Interface

RegisterFile

EXDC

EX
_M

EM

MEM

M
EM

_W
D

WD

Path Delay Variation Function

Ratio of temperature with respect to 125 °C

R
at

io
 o

f d
el

ay
 w

ith
 re

sp
ec

t t
o

0.
9

V,
 1

25
°C

0.9 V

0.95 V
1.0 V
1.1 V

1.1

1

0.9

0.8

0.6

0.5

0.7

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

y = 0.3168x2 – 0.6371x + 1.3214

y = 0.3202x2 – 0.2821x + 0.7873

y = 0.875

y = 0.3754x2 – 0.3581x + 0.6763

4.6

4.605

4.61

4.615

4.62

4.625

4.63

4.635

4.64

5.482

5.484

5.486

5.488

5.49

5.492

5.494

5.496
0.9 V

4.215

4.22

4.225

4.23

4.235

4.24

4.245

4.25

4.255

3.475

3.48

3.485

3.49

3.495

3.5

3.505

3.51

3.515

0.95 V

25MHz 500MHz

1.1 V 1.0 V

2 20 200 2000 20000 2 20 200 2000 20000

2 20 200 2000 20000 2 20 200 2000 20000

D
el

ay
 (n

s)
D

el
ay

 (n
s)

D
el

ay
 (n

s)
D

el
ay

 (n
s)

Time (μs) Time (μs)

Time (μs) Time (μs)

172

Z. Wang et al., “Automated High-level Modeling of Power, Temperature and Timing Variation for Microprocessor.”

of delay change shows more significant dependence
on temperature for higher frequencies.

5.4 Limitation on NBTI simulation

NBTI is known as the most serious aging problem of
nanoscale CMOS technology. To accurately model
NBTI effect, not only instantaneous temperature
but also switching activity for individual logic cells
need to be carefully handled. However, in a high-
level processor design environment, cycle-accurate
switching information for individual cells are not
present before technology mapping. Using the proposed
framework, it can be demonstrated that it is incorrect
to use one unique NBTI-induced timing variation
function to estimate the aging of entire logic path. The
reason is that NBTI affects timing of connected cells
in alternate stress and release modes instead of stress/
release of the entire logic path. An example is that
one stressed inverter releases its connected inverter.
The high-level estimation framework lacks the ability
of cell-level instantaneous switching analysis, which
gives an extremely pessimistic estimation of NBTI-
induced aging effect. On the other hand, ITD-induced
delay variation has less effect with cell activities,
which can be approximated using high-level design
environment.

6 Automation Flow and Overhead Analysis

In this section the purposed automated estimation
flow for Power/Thermal/Delay is briefly documented,
which functions as an simulator wrapper to the
Synopsys Processor Designer [22]. Furthermore, the
overheads for both characterization and simulation
are discussed.

6.1 Flow summary

Figure 8 illustrates the complete analysis framework,
where the architecture description and application
of interests are provided as inputs. The framework
consists of characterization and simulation phase. The
power characterization phase consists of 4 modules,
which are briefly explained:
 a) Testbench generation: is used to generate processor
specific testbenches for power characterization. This
module parses the syntax section of processor description

to produce instructions with random operands. One
testbench is generated for each type of instruction,
which runs for a predefined simulation clock cycles.
 b) Resource table extraction: gets the hierarchical
information of the architecture and extracts input and
output signals for each architecture unit. Read and write
power models in the form of interpolated polynomial
will be generated to each unit.
 c) Behavioral simulation: dumps the runtime
hamming distance of input/output signals per architecture
unit, which is used for power coefficient extraction.
 d) Power LUT extraction: interpolates power
coefficients in the form of LUT using hamming
distance and data from low-level power simulation.
The interpolation itself is carried out using Matlab
tool.
 e) Power simulation: takes loops to simulate
processor behavior and power consumption until
end of the simulation cycles. In each control step
the simulator calculates power consumption based
on the architecture unit specific instruction type,
runtime hamming distances of the pins and power
coefficient of the architecture units. Instead of list based
implementation of power LUT, hash container is
applied to increase the speed of instruction-architecture
specific LUT addressing. The hierarchical power data for
the targeting architecture is dumped during simulation.
More modeling architecture units lead to higher overhead
of power estimation.
 f) Thermal and delay simulations: are automatically
generated once upon power simulator is ready, since
no further characterization steps is required for thermal
and delay simulation.
 The proposed flow is demonstrated using
Synopsys Processor Designer and is portable to any

Figure 8: Automation flow of power/thermal/logic
delay co-simulation.

Power LUT
Extraction

Applications Architecture
Description

Power Characterization Power/Thermal/Delay Co-simulation
Behavioral
Simulation Power

Simulation
Thermal

Simulation
Delay Fault
Simulation

Runtime/Avg.
Power

Runtime/Avg.
Temperature

Runtime
Path Delay

Testbench
Generation

Resource Table
Extraction

173

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 163–175, 2017

high-level architecture simulation environment and
architectures. Further work includes the porting of the
framework into other ADL such as SystemC.

6.2 Overhead analysis

Table 4 shows the timing and accuracy for power
characterization phase under two groups of testbenches,
where 10 architecture units are modeled. The first group
consists of 14 types of instructions to cover the most
generalized processor instructions. For instance, ALU
instructions such as add, sub and and which operate
on 2 register operands and 1 immediate are grouped
together in one instruction type. The second group
consists of 33 types of instructions where each instruction
type consists of exact one operational mode. The
characterization is performed on the machine with
Intel Core i7 CPU at 2.8 GHz. Each instruction file is
running for 2,000 clock cycle.

Table 4: Time and accuracy of power characterization
for testbench groups

Number of Testbenches 14 Instructions 33 Instructions

Time (minutes) 3 8

Average Error (%) 21.3 8.6

 As shown in the Table 4, group one achieves
faster characterization time than group two. However,
group two achieves higher estimation accuracy when
benchmarked with gate-level power estimation.
Generally, the power characterization time in the range
of several minutes is acceptable for power modeling
of embedded processors.
 Table 5 represents the runtime overhead of different
simulation mode including pure behavioral simulation,
power estimation, thermal estimation and delay
simulation, where 10 architecture units are modeled.
It is observed that the runtime overhead significantly
lies in the power estimation compared with behavioral
simulation. The thermal simulator achieves only 1.2%
of overhead compared with power simulator, which
is due to the light weight implementation of HotSpot
package and smooth integration with power simulator.
The delay simulation achieves in average 6.3% of overhead
compared with thermal simulator, which is mainly due
to the parsing of delay information from timing analysis
file which contains delay of the longest 1,000 paths.

Table 5: Runtime overhead for different simulation
modes

Apps Behavior
(sec)

Power
(sec)

+% Thermal
(sec)

+% Delay
(sec)

+%

BCH 2.04 124.94 61x 125.47 0.4 129.72 3.4

Viterbi 0.82 43.49 53x 44.37 2.0 47.86 7.9

Median 0.87 49.40 57x 49.45 0.1 53.00 7.2

Qsort 0.81 45.45 56x 46.65 2.6 48.53 4.0

IDCT 0.19 5.17 27x 5.22 1.0 5.69 9.0

Average - - 51x - 1.2 - 6.3

7 Conclusions

In this work, a processor power/thermal/timing
variation joint modeling framework is presented for
LISA-based processor design environment. Detailed
experiments are conducted which explore the usability
of the framework with several design parameters such
as applications, technologies and layouts. An automatic
setup has be constructed which performs estimation and
analysis according to such parameters. The proposed
framework helps processor designer to explore the
physical effects in early design stage.
 Future work includes the modeling of process and
aging induced timing variation. Application-level error
analysis caused by physical effects will be explored.
Future case studies involve complex architectures will
also be presented.

References

[1] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis
of embedded software: A first step towards software
power minimization,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 2,
no. 4, pp. 437–445, 1994.

[2] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-
Chien Lee, “Instruction level power analysis and
optimization of software,” The Journal of VLSI
Signal Processing, vol. 13, no. 2, pp. 223–238, 1996.

[3] D. Brooks, V. Tiwari, and M. Martonosi, “Watch:
A framework for architectural-level power
analysis and optimizations,” in Proceedings of
27th International Symposium on Computer
Architecture (IEEE Cat. No.RS00201), 2000,
pp. 83–94.

[4] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.

174

Z. Wang et al., “Automated High-level Modeling of Power, Temperature and Timing Variation for Microprocessor.”

Tullsen, and N. P. Jouppi, “Mcpat: An integrated
power, area, and timing modeling framework
for multicore and manycore architectures,” in
Proceedings 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO),
2009, pp. 469–480.

[5] H. Blume, D. Becker, M. Botteck, J. Brakensiek,
and T. Noll, “Hybrid functional and instruction
level power modeling for embedded processors,”
in Proceedings Embedded Computer Systems:
Architectures, Modeling, and Simulation, 2006,
pp. 216–226.

[6] Y. Park, S. Pasricha, F. Kurdahi, and N. Dutt,
“A multi-granularity power modeling methodology
for embedded processors,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems,
vol. 19, no. 4, pp. 668–681, 2011.

[7] M. A. Alam and S. Mahapatra, “A comprehensive
mode l o f PMOS NBTI deg rada t ion , ”
Microelectronics Reliability, vol. 45, no. 1,
pp. 71–81, 2005.

[8] K. Kanda, K. Nose, H. Kawaguchi, and T.
Sakurai, “Design impact of positive temperature
dependence on drain current in sub-1-v cmos
vlsis,” IEEE Journal of Solid-State Circuits, vol. 36,
no. 10, pp. 1559–1564, 2001.

[9] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan, “Temperature-
aware microarchitecture,” ACM SIGARCH
Computer Architecture News, vol. 31, no. 2, pp. 2–13,
2003.

[10] W. Huang, S. Ghosh, K. Sankaranarayanan, K.
Skadron, and M. R. Stan, “Hotspot: Thermal
modeling for CMOS VLSI systems,” IEEE
Transactions on Componenst Packaging and
Manufacturing Technology, pp. 200–205, 2005.

[11] J. Donald and M. Martonosi, “Techniques for
multicore thermal management: Classification
and new exploration,” in Proceedings 33rd
International Symposium on Computer Architecture
(ISCA’06), vol. 34, 2006, pp. 78–88.

[12] L. Pohl, “Multithreading and strassens algorithms
in sunred field solver,” in Proceedings 14th
International Workshop on Thermal Inveatigation
of ICs and Systems, 2008, pp. 137–141.

[13] A. Sridhar, A. Vincenzi, D. Atienza, and T.
Brunschwiler, “3d-ice: A compact thermal model
for early-stage design of liquid-cooled ics,” IEEE

Transactions on Computers, vol. 63, no. 10,
pp. 2576–2589, 2014.

[14] V. Szekely, A. Poppe, A. Pahi, A. Csendes, G.
Hajas, and M. Rencz, “Electro-thermal and
logi-thermal simulation of vlsi designs,” IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 5, no. 3, pp. 258–269, 1997.

[15] A. Timár and M. Rencz, “High resolution
temperature dependent timing model in digital
standard cell designs,” Journal of Low Power
Electronics, vol. 9, no. 4, pp. 414–420, 2013.

[16] A. Timár and M. Rencz, “Temperature dependent
timing in standard cell designs,” Microelectronics
Journal, vol. 45, no. 5, pp. 521–529, 2014.

[17] N. Muralimanohar, R. Balasubramonian, and
N. P. Jouppi, “Cacti 6.0: A tool to model large
caches,” HP Laboratories, pp. 22–31, 2009.

[18] M.-y. Hsieh, A. Rodrigues, R. Riesen, K. Thompson,
and W. Song, “A framework for architecture-
level power, area, and thermal simulation and its
application to network-on-chip design exploration,”
ACM SIGMETRICS Performance Evaluation
Review, vol. 38, no. 4, pp. 63–68, 2011.

[19] F. Terraneo, D. Zoni, and W. Fornaciari, “An
accurate simulation frame-work for thermal
explorations and optimizations,” in Proceedings
of the 2015 Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools,
2015, pp. 5:1–5:6.

[20] G. Nagy and A. Poppe, “A novel simulation
environment enabling multilevel power estimation
of digital systems,” in Proceedings 17th
International Workshop on Thermal Investigations
of ICs and Systems (THERMINIC), 2011, pp. 1–4.

[21] Z. Wang, L. Wang, H. Xie, and A. Chattopadhyay,
“Power modeling and estimation during adl-driven
embedded processor design,” in Proceedings
2013 4th Annual International Conference on
Energy Aware Computing Systems and Applications
(ICEAC), 2013, pp. 97–102.

[22] Synopsys. (2017). Processor Designer. Synopsys
Inc., CA. [Online]. Available: http://www.synopsys.
com/Systems/BlockDesign/processorDev

[23] A. Chattopadhyay, H. Meyr, and R. Leupers,
LISA: A Uniform ADL for Embedded Processor
Modelling, Implementation and Software
Toolsuite Generation, Morgan Kaufmann, 2008,
pp. 95–130.

175

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 163–175, 2017

[24] HotSpot. (2015, Jun.). HotSpot 6.0.[Online].
Available: http://lava.cs.virginia.edu/HotSpot/
documentation.htm

[25] Z. Wang, C. Chen, and A. Chattopadhyay, “Fast
reliability exploration for embedded processors
via high-level fault injection,” in Proceedings
International Symposium on Quality Electronic
Design (ISQED), 2013, pp. 265–272.

[26] D. Kammler, J. Guan, G. Ascheid, R. Leupers,
and H. Meyr, “A fast and flexible Platform
for fault injection and evaluation in verilog-
based simulations,” in Proceedings 3rd IEEE
International Conference on Secure Software
Integration and Reliability Improvement (SSIRI),
2009, pp. 309–314.

[27] J. Bhasker and R. Chadha, Static timing analysis
for nanometer designs: A practical approach.
Springer Science & Business Media, 2009.

[28] A. Krstic,Y.-M. Jiang, and K.-T. Cheng, “Pattern
generation for delay testing and dynamic timing

analysis considering power-supply noise effects,”
IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, no. 3,
pp. 416–425, 2001.

[29] T. Sakurai and A. R. Newton, “Alpha-power
law mosfet model and its applications to cmos
inverter delay and other formulas,” IEEE Journal
of Solid-State Circuits, vol. 25, no. 2, pp. 584–
594, 1990.

[30] A. Sassone, A. Calimera, A. Macii, E. Macii, M.
Poncino, R. Goldman, V. Melikyan, E. Babayan,
and S. Rinaudo, “Investigating the effects of
inverted temperature dependence (ITD) on clock
distribution networks,” in Proceedings 2012
Design, Automation & Test in Europe Conference
&Exhibition (DATE), 2012, pp. 165–166.

[31] W. Zhao and Y. Cao, “New generation of predictive
technology model for sub-45 nm early design
exploration,” IEEE Transactions on Electron
Devices, vol. 53, no. 11, pp. 2816–2823, 2006.

