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Abstract
The continued scaling of semiconductor technologies leads to diverse challenges such as power and  
temperature, which also forces reliability as another design metric of prime concern. There exists strong need 
to link reliability with physical metrics in a high-level architecture design environment, where estimation of 
reliability impacts can be performed in the early design stage. In this paper, we propose a joint modeling and 
simulation framework for power, thermal and timing variation, which is integrated into a commercial high-level 
processor design environment. A custom timing variation model is provided for estimation of dynamic timing 
variation, which is demonstrated using one nanoscale thermal effect known as Inverted Temperature Dependence.  
The complete modeling flow is automated for customized processor model with arbitrary architectural hierarchy,  
which assists designer to perform architectural and application-level design space exploration with power, 
thermal and reliability impacts.
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1 Introduction

As reliability becomes an essential factor in the design 
of nanoscale digital system, it is important to integrate 
reliability as a design constraint in the traditional  
processor design flow, where instruction-set simulator 
plays an important role in architecture validation and 
performance estimation. Reliability effects, especially 

aging and soft errors, have direct relationship with 
other design parameters such as runtime, power and 
temperature. There is strong need to link reliability 
with other physical metrics in a high-level processor 
design environment, where realistic estimation of  
reliability effects can be simulated together with power 
and thermal footprints.
 Processor power estimation techniques have been  
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continuously a hot topic in both research and industry. 
Instruction level power model is proposed by Tiwari 
et al. [1], [2], where each instruction is provided 
with an individual power model. The run-time power 
can be determined through the profiling of executed  
instructions. Wattch [3] introduces architecture-level 
power model which decompose main processor units 
into categories based on their structures, and separates 
each of the units into stages and forms RC circuits for 
each stage. McPAT [4] models all dynamic, static and 
short-circuit power while provides joint modeling 
capability of area and timing. To increase modeling  
accuracy, a hybrid FLPA(functional level power analysis)  
and ILPA(instruction level power analysis) model 
[5] is elaborated which advantageously combines the 
lower modeling and computational efforts of an FLPA 
model and the higher accuracy of an ILPA model. The 
trade-off is further explained in [6] with a 3-D LUT 
and a tripartite hyper-graph.
 The heat dissipation from power consumption 
leads to increased and un-evenly distributed temperature  
which causes potential reliability problems [7], [8], 
where the research committee demands highly for 
architecture-level thermal management techniques. 
Consequently, accurate architecture level thermal 
modeling has received huge interests. In this domain, 
HotSpot [9] is the de facto standard, where the thermal 
effects for individual architecture blocks can be fast  
estimated by creating a thermal RC network. HotSpot is  
easy to integrate with any source level power simulator,  
which spreads its appliance into huge research bodies 
[10], [11]. SUNRED [12] and 3D-ICE [13] are other 
prevalent thermal simulators, which can also simulate 
microfluidic cooling by modeling convective heat 
transfer.
 Recently, there is an emerging research trend 
for logic-thermal co-simulation in the field of digital 
system. The logic-thermal simulation principle is 
first proposed in [14]. For gate-level, [15], and [16] 
introduce methodology for temperature dependent 
timing simulation in standard cell designs. To bridge 
the gap between simulation accuracy and complexity 
of modern digital system, several work performs logic-
thermal simulation at higher design abstractions. Cacti 
[17] estimates power, area and timing specifically for 
memory system. McPAT [4] jointly models power, area 
and timing for individual system-level blocks including  
cores and memories. [18] applies a joint performance, 

power and thermal simulation framework for the 
design of network-on-chip. [19] extends the work 
with the ability to simulate optimization techniques 
such as Dynamic Voltage Frequency Scaling (DVFS) 
and Power Gating. [20] develops a logic-thermal 
simulation engine for circuit descriptions of multiple 
abstraction levels.
 However, the previous work simulates the physical  
behaviors using off the shelf libraries on a higher  
abstraction level for individual blocks, which did not  
address to the complexity of processor architecture itself. 
On the other hand, accurate power modeling, which is 
the centralized module of the joint simulation, requires 
significant efforts due to manual characterization.  
An Application-Specific Integrated Processor (ASIP) 
can have arbitrary logic blocks which need detailed 
block level modeling. Previous work also lacks the 
ability to accurately estimate power/temperature with 
application specific switching activities. The reason is 
that modeling and simulation are treated as separate 
issues, where the modeling part is more tent to be 
provided from IP vendors as technology dependent  
databases. Furthermore, to the best knowledge, no 
work has been tried to integrate reliability issue  
directly into the high-level simulation framework. 
Such issues are still open to be addressed.
 Contribution In this work, a joint modeling 
framework which integrating power, thermal and logic 
delay simulation is introduced in a industrial processor 
design environment, where both accurately modeling 
through low-level characterization and cross-domain  
simulation using cycle accurate instruction-set simulator  
are fast generated. The main contributions include:

• A processor power modeling technique which 
characterizes and estimates power for customized  
processor model with arbitrary architectural 
hierarchy.

• A processor thermal simulator which is efficiently  
achieved by integrating power simulator with 
HotSpot.

• A timing simulator for logic paths extended 
from the processor fault injector, where faults 
are modeled as delay variation on logic paths.

• Estimation of processor timing variation under 
one of the nanoscale thermal induced reliability  
issues.

 By automating the complete modeling and  
simulation flow, the processor designer can easily 
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perform architectural and application-level design 
space exploration with power, tempera-ture and  
reliability factors.
 The work is organized in following manner. 
Section 2 briefly discusses the approach of high-
level power modeling and estimation for LISA based  
processor design framework. Section 3 illustrates the 
thermal modeling and integration with HotSpot. After 
that, Section 4 presents the extension to the high-level 
fault injection with timing fault simulation. Taking  
advantage of fault injector, Section 5 introduces 
the approach of high-level logic delay simulation.  
Section 6 focuses on the automation flow and analyses 
its runtime overhead. Finally, the paper is concluded 
in Section 7.

2 High-level Processor Power Modeling

This section briefly introduces the proposed high-level 
power modeling methodology. First, an overview on 
the LISA language is present. Second, an overall  
introduction on the power estimation flow is illustrated. 
The detailed experiments of proposed power modeling 
technique on embedded processors are referred in [21].

2.1  Brief on LISA language

LISA (Language for Instruction Set Architectures) is 
the state-of-the-art Architecture Description Language  
(ADL) for describing the micro-architecture of  
customized processors [22]. In LISA, the micro-
architecture and Instruction Set Architecture (ISA) are  
described in the OPERATION section. The declarations  
for processor resources such as pipeline stages, 
registers, memories and ports are located in the  
RESOURCE section and they can be accessed from any  
LISA operation. Structural information can be added 
by assigning the operations to different pipeline stages. 
C-compiler, assembler, linker and cycle-accurate  
instruction set simulator are automatically generated 
by LISA compiler, while synthesizable RTL codes 
with different options of optimizations are produced 
by the HDL generator. For further information on LISA 
language please refer to [23].

2.2  Power estimation flow

High-level power estimation flow characterizes power 

models for LISA units (operations and resources) from 
low level power simulation. Such power models are  
applied later in instruction-set simulator to produce  
run-time power for targeted applications. The simulation  
is independent of gate-level power simulation so that 
significant efforts are saved. The simulation accuracy 
depends on the efforts in the characterization of power 
model.
 Figure 1 explains the proposed power estimation 
flow which consists of simulation, characterization, 
estimation and exploration phases.
 a) Simulation: High level power models are 
usually characterized by the data from low level 
simulation. In this phase, cycle accurate power data 
for special testbenches are gathered according to  
PrimeTime-based power simulation which can be  
performed at either RTL, gate-level or layout. Currently  
gate level is chosen for trade-off between simulation  
accuracy and modeling efforts. Each simulation testbench  
consists of single type of instructions such as ALU, 
Load/Store and Branch types. The testbenches are 
composed in such a way that operands and immediate 
values are randomly distributed. Special instruction 
features such as operand bypassing are also covered 
according to the target architecture. Larger coverage 
of instruction modes and operand values leads to  
enhanced accuracy of power modeling.
 b) Characterization: Besides cycle accurate  
power data, the inputs of characterization phase also take 
into account the switching activities from instruction-set  
simulation. Both data are used to characterize the 
coefficients for the unit level power models which are 
detailed in the next section. Multivariate curve fitting  
technique is applied for extraction of coefficient 
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values. Exploration between accuracy and extraction 
effort of coefficients can be explored through linear 
and polynomial modes in curve fitting.
 c) Estimation: The power models are applied on 
target applications to estimate power consumption. 
The run-time switching activities from cycle accurate  
Instruction Set Simulator (ISS) are gathered and 
provided to the power simulator. Due to the nature 
of unit-based power modeling, instantaneous power 
consumption for each hardware unit is calculated and 
recorded in the PrimeTime recognized power format.
 d) Exploration: The ISS-level run-time power is 
compared with low level simulation to determine the 
estimation accuracy. Based on the user requirements 
the unit-based power models can be further improved 
taking advantage of the techniques in the simulation 
and characterization phases.

3 High-level Processor Thermal Modeling

This section illustrates the integration of HotSpot 
thermal simulator with proposed power modeling 
technique to achieve a fast and dynamic thermal  
simulator for processors with generic architectures.

3.1  Thermal modeling using HotSpot

HotSpot is an opensource package for temperature 
estimation of architecture-level units. It has been  
applied in both academia and industry for architecture-
level thermal modeling and management. HotSpot is 
easily integrated into any performance/power simulator  
by providing the floorplan and instantaneous power 
information. By transforming the floorplan into an 
equivalent thermal RC circuits which is called compact 
models, HotSpot calculates instantaneous temperature 
by solving the thermal differential equation using a 
fourth-order Runge-Kutta method. The temperature 
for each block is updated by each call to the RC solver. 
For details of applying HotSpot for thermal modeling 
please refer to [10].

3.2  Integration of power simulator with HotSpot

The integration of LISA power simulator with HotSpot 
generally follows the guideline in [24]. Two phases are 
required, the initialization and runtime phases, which 
are briefly explained in the following.

• The initialization phase, where the RC equivalent  
circuits are first initialized based on user provided  
floorplan and thermal configurations, such as  
parameters for heat sink and heat spread. 
Afterwards, the initial temperature is set by 
the user. For instance, 60 degree is initialized  
for starting temperature while 45 degree is set as  
ambient temperature. The floorplan information  
of can be obtained from commercial physical 
synthesis tool such as Cadence SoC Encounter 
or derived according to the area report from 
logic synthesize.

• The runtime phase, where the simulator 
iteratively calls the temperature computing 
routine to update the block temperatures. Such 
routine does not need to be called during each 
clock cycle due to the nature of slow changing 
temperature. In practice, a sampling interval 
of 10 Kilocycles at 3 GHz is adapted, which 
corresponds a time of 3.33 microseconds. For  
different clock frequency, the same interval is  
maintained to make fair comparison. The power  
values which provide to HotSpot are the average  
values among the previous sampling interval.

3.3  Temperature simulation and analysis

Figure 2 shows an example of the runtime temperature 
simulation for BCH application under a synthesis  
frequency of 500 MHz. The unit of time is in  
nanosecond while the temperature is in Degree Celsius. 
Instead of the whole simulation time, a snapshot has 
been shown.

Figure 2: Instantaneous temperature generated by 
HotSpot.
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 Table 1 shows the temperature and power 
consumption for architectural units with different 
design frequencies, where BCH application runs on 
the processor. The same floorplan is applied for all 
frequencies. As the power increases dramatically with 
frequency, the temperature shows slightly increment 
for most of the units such as DC, MEM and WB. 
Rapid increment lies between 100 MHz and 500 MHz 
for units FE and FE DC, even though their power  
consumptions are relatively small compared with other 
units. On the contrary, units such as RegisterFile which 
incur higher power consumption shows only a slight 
increment in temperature. The reason behind this is 
the high power density on such units due to their small 
area provided by the floorplan.
 Table 2 shows the temperature for BCH application  
using different floorplans. The first floorplan adopts the 

ratio of unit size from logic synthesis tools. However,  
the runtime tempera-ture shows strong differences 
among different architectural units, which has the 
potential to incur temperature related reliability issues. 
Floorplan 2 tries to increase the sizes of units with high 
power density (FE, FE DC and RegisterFile units) so 
that the power density will be significantly reduced. 
As seen from the thermal simulation, the temperature 
of hot units reduces dramatically so that the thermal 
footprints of pipeline registers and RegisterFile are 
finalizing at similar values.
 To prevent large area overhead, a slight increment  
to the area of registers is introduced due to their initially  
large size. The area of FE, which is initially very small 
(0:01 mm2), is increased 100x to achieve uniform  
temperature for all logic between pipeline stages. 
Overall a 38.6% area overhead is incurred to achieve 

Table 1: Temperature and power of LT_RISC at different frequencies running BCH application

Frequencies 25 MHz 100 MHz 500 MHz

Units Temp (°C) Power (mW) Temp (°C) Power (mW) Temp (°C) Power (mW)

FE 63.90 3.19e-3 69.39 9.08e-3 84.25 3.88e-2

DC 60.16 2.56e-2 60.43 7.18e-2 61.15 2.99e-1

EX 60.23 4.91e-2 60.60 1.40e-1 62.11 7.06e-1

MEM 60.17 3.88e-3 60.63 9.53e-3 61.48 3.72e-2

WB 60.05 2.69e-3 60.20 8.47e-3 60.66 3.86e-2

FE_DC 62.16 2.71e-2 68.44 1.05e-1 89.04 4.93e-1

DC_EX 60.74 5.72e-2 62.66 2.08e-1 67.68 1.08

EX_MEM 60.74 4.09e-2 62.40 1.50e-1 67.66 7.61e-1

MEM_WB 60.45 2.32e-2 61.74 8.73e-2 66.89 4.36e-1

RegisterFile 61.09 2.39e-1 63.25 7.54e-1 69.79 3.52

Table 2: Temperature of LT_RISC running BCH application using different floorplans

Units
Power 

@500MHz 
(mW)

Floorplan 1 Floorplan 2
Size 

(mm2)
Power Density 

(W/m2)
Temp 
(°C)

Size 
(mm2)

Power Density 
(W/m2)

Temp 
(°C)

FE 3.88e-2 0.01 4.95 84.25 1.00 0.04 60.19
DC 2.99e-1 1.24 0.24 61.15 1.24 0.24 61.15
EX 7.06e-1 1.50 0.47 62.11 1.50 0.47 62.11

MEM 3.72e-2 0.28 0.13 61.48 0.28 0.13 61.37
WB 3.86e-2 0.27 0.14 60.66 0.27 0.14 60.66

FE_DC 4.93e-1 0.08 6.03 89.04 1.00 0.49 62.40
DC_EX 1.08 0.69 1.57 67.68 0.76 1.43 67.02

EX_MEM 7.61e-1 0.48 1.59 67.66 0.49 1.55 67.42
MEM_WB 4.36e-1 0.26 1.65 66.89 0.30 1.45 66.17
RegisterFile 3.52 1.74 3.52 69.79 2.25 2.02 67.57

Total - 6.55 - - 9.08 - -
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the thermal footprints where all units show temperature 
under 68 degree. In other word, the improved floorplan 
reflects a maximal power density around 2.00 W=m2 for  
arbitrary logic units. According to the relationship of 
temperature with power density, thermal optimization 
techniques could be investigated taking advantage of 
the fast estimation framework. Detailed optimization 
techniques will be investigated in future work.
 Table 3 shows the temperature of processor 
units by end of the simulation time for 10 embedded  
benchmarks using the initial floorplan. The temperature  
differs among applications mainly due to the difference 
in execution time of the applications. For instance the 
BCH application which runs for 900 μs is significantly  
hotter on most of the units than other short applications.  
For applications with similar execution time such as 
CRC32 and Sieve, no huge differences in temperature  
among all units is detected. Note that change in  
temperature is a slow process compared with power 
consumption, where application dependent thermal  
effects will exhibit for long execution time. For 
instance, with 91.4% execution time of median 
application, viterbi achieves a slightly higher  
temperature in EX units, which is due to the nature 
of more ALU instructions. Assembly level profiling 
shows that viterbi incurs 59,739 ALU instructions 
(37.12% of all instructions) while median has the 
amount of 46,301 (26.39% of all instructions), which 
verifies viterbi’s hotter temperature in EX pipeline unit 
than that for median.

4 High-level Processor Timing Fault Simulation

The LISA-based Fault Injection (FI) framework  
developed using Synopsys Processor Designer in [25] 
is utilized to simulate the behavior of cycle accurate 
processor models under faults. The framework supports  
standard fault models such as bit-flip and stuck-at 
faults. All the hardware resources such as registers, 
memories, global/local signals and interface pins are 
exposed to fault injection. The fault configuration 
file can be generated from a graphical user interface 
or directly written in XML format. Taking advantage 
of application programming interface associated with 
Processor Designer [22], a runtime scheduler injects 
the faults according to the injection clock cycles and 
duration provided by the fault configurations. In [25] 
it is reported that the high-level simulator achieves 10x 
simulation speed compared with Verilog-based fault 
injection [26] with similar accuracy.
 However, such framework lacks the ability for 
physical timing simulation, which is usually acquired 
after simulation on post-layout netlist. To integrate 
low-level timing as a constraint for fault injection, 
LISA-based processor simulator is extended with  
timing annotation for logic paths, which are extracted 
from the timing analysis files. Such annotated path 
timing will be compared with runtime clock period, 
so that delay faults can be injected. The simulation 
kernel is extended by the modules in Figure 3, which 
are briefly discussed in the following.

Table 3: Temperature of LT_RISC at 500 MHz for different applications

Units
Block-level Temperature (°C) for Different Applications

bch cordic crc32 fft idct median qsort sieve sobel viterbi

FE 84.25 60.38 61.10 60.57 61.70 73.67 72.62 61.27 60.73 72.65

DC 61.15 60.02 60.06 60.03 60.09 60.70 60.65 60.06 60.04 60.69

EX 62.11 60.05 60.15 60.06 60.20 61.50 61.51 60.07 60.10 61.69

MEM 61.48 60.03 60.07 60.03 60.09 60.94 60.95 60.02 60.04 60.80

WB 60.66 60.02 60.05 60.02 60.06 60.50 60.52 60.03 60.03 60.48

FE_DC 89.04 60.44 61.29 60.66 62.04 76.01 75.13 61.51 60.86 75.50

DC_EX 67.68 60.12 60.34 60.17 60.55 64.25 64.02 60.37 60.23 64.06

EX_MEM 67.66 60.12 60.36 60.18 60.54 64.32 64.14 60.38 60.25 64.22

MEM_WB 66.89 60.14 60.39 60.19 60.57 64.42 64.31 60.39 60.27 64.22

RegisterFile 69.79 60.15 60.44 60.22 60.70 65.33 65.17 60.48 60.30 65.10

Finish Time (μs) 900.2 6.7 20.0 10.0 33.3 350.1 333.4 23.3 13.3 320.1
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• Initial path timing: It indicates the bit-level 
logic delay from initial flip-flop to the end 
flip-flop of a logic path, which are extracted  
during logic synthesis or placement and routing  
using timing analysis. Such delay information  
is back-annotated as extra information for the 
hardware resources in instruction-set simulator.  
For instance, Static Timing Analysis (STA) 
[27] calculates one timing value for each  
flop-to-flop logic path. Dynamic Timing 
Analysis (DTA) [28] will create a set of timing 
values for each path, according to instruction 
and operand types. Such values are kept in a 
Look-Up-Table (LUT) for runtime addressing.

• Timing variation model: which updates 
the runtime delay based on initial delay and  
specific timing variation function. For instance,  
temperature aware timing variation function 
is provided when the path timing is changed 
through temperature and time. In DTA, this 
could be the runtime state information from 
the executed instruction within each pipeline 
stage, used to select the corresponding entry 
in the path timing LUT.

• Frequency constraint: which is provided by 
the user to compare with the runtime delay, 
so that a fault could be injected. A runtime 
adjustable frequency can be applied to model 
Dynamic Frequency Scaling (DFS). Voltage 
variation can also be modeled by a fixed  
frequency with corresponded frequency swing.

 For each simulation clock cycle, the simulator 
first updates the clock cycle time using the initial delay 
and timing variation function for all annotated paths. 
In the next, the simulator checks timing violation for 
all annotated logic paths. In case there is a timing 
mismatch, the simulator overwrites the current value 
in the target resource by a random value which is 
either zero or one to model metastability or the value 
from previous clock cycle to model a failed latching of 
logic value. Otherwise, the simulator stores the current 
resource values which may be used thermal effects on 
threshold voltage dominates the delay change. as fault 
injection value for the following clock cycles. 
 The annotation of timing faults incur extra  
simulation over-heads. Such overhead is aggregated 
when more hardware sources are prone to timing faults. 
To address the speed issue, two special features are 
implemented which are explained in the following.

• Fault time window: In most case the timing  
faults are only injected within specific time 
windows. For instance, the boot-up code is 
usually skipped for FI when purely application- 
level error effects are focused on. FI window 
is also useful when vulnerability of different  
program segments need to be investigated. User 
can specify fault time windows by either clock 
cycles or debugging flags in the application.

• Early termination: Timing faults tend to disturb  
program execution flow, usually due to the 
error in branch address calculation. In most 
case the wrong branch will lead the processor 
into a deadlock state. We detect such deadlock 
situation by checking the value of instruction 
register of the processor. In case that among 
100 continuous clock cycles the processor 
executes the same instruction, the simulation 
is forced to terminate earlier than the complete 
simulation time with a no response error report.

5 Thermal-aware Logic Delay Simulation

The effects of temperature on the logic delay of  
nanoscale CMOS technology have been heavily  
investigated such as Negative-Bias Temperature  
Instability (NBTI) [7] and Inverted Temperature  
Dependence (ITD) [8]. Most of previous work focus on 
device and gate-level. Such effects can be modeled using 
the architectural level thermal simulation framework  

Figure 3: Simulator extension for timing faults.
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proposed in this work, so that an thermal-delay simulator  
for generic processor architecture could be easily 
generated and explored. 
 Figure 4 shows the integration framework with 
power and thermal simulator to model the delay fault. 
As discussed in Section 3, the LISA-level temperature 
simulator is generated using power simulator, HotSpot 
package and architectural floorplan. Thermal directed 
delay fault is modeled combining the thermal simulator 
and the high-level timing fault injection discussed in 
Section 4, where the runtime delay of individual logic 
paths is updated using temperature and a user provided 
delay variation model. In this section, the effects of  
delay change with temperature are modeled according to 
a second order polynomial model for 65 nm technology.  
The effect of ITD for different applications running on 
a RISC processor is also presented.

5.1  Inverted temperature dependence

Propagation delay of CMOS transistor is widely  
modeled using the Alpha-power law [29] as:

 

where Cout is the load capacitance, α is a constant,  
μ(T) is the temperature dependent carrier mobility, 
Vth(T) is the temperature dependent threshold voltage.  
The temperature affects the delay in two ways: at high 
voltage Vdd, delay is less sensitive to the term Vth(T) but 

to the mobility, while at low temperature the thermal  
effects on threshold voltage dominates the delay 
change. As a consequence, for advanced technology  
which has small driving voltage, the increment in 
temperature could reduce the propagation delay 
rather than increase it for technologies with higher  
voltage. Such effect is named as Inverted Temperature  
Dependence (ITD) and the voltage which inverts the 
trend of thermal dependent, is the Zero-Temperature 
Coefficient (ZTC) voltage.

5.2  Timing variation function for inverted temperature  
dependence

The effects of ITD for 65 nm technology are modeled 
using the trend of delay change for clock tree network 
in [30]. Two assumptions are made to simplify the 
high-level modeling:
 1) The delay of logic path follows the same ration 
of temperature/voltage dependency of individual logic 
buffer.
 2) The temperature within one architecture block 
is uniform.
 3) Other thermal effects on the change of threshold  
voltage such as NBTI is not modeled currently.
 Figure 5 shows two critical paths for he RISC 
processor and their transverse architectural blocks, 
which are generated by the STA tools. The delay of the  
complete logic path equals to the sum of path delay of 
on the path. For instance, the critical operands from 
pipeline register and RegisterFile transverse in order 
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the following block: MEM_WB, DC, BYPASS_DC, DC, 
RegisterFile, DC, ALU_DC, DC, DC_EX. The critical 
path 2 transverses EX_MEM, EX, BYPASS_EX, EX, 
ALU_EX, EX, EX_MEM. The delay within individual  
architectural units are updated using its own running 
temperature, which is generated from the thermal 
simulation. In extreme case, each cell uses its own  
running thermal footprints to update its delay, which can  
only be simulated using gate-level thermal analysis. 
 With the above assumption and the referred 
data for 65 nm technology in [30], the second order 
polynomials shown in Figure 6 are interpolated to 
represent the relationship between supply voltage, 
instantaneous temperature and propagation delay. Due 
to unavailability of ITD-induced timing behaviors 
under other process technologies, no estimation has 
been performed for other process corners. 
 It is observed that the trend of propagation delay  
with temperature differs with supply voltage. For  
1.0 V and 1.1 V the delay increases with temperature 
while decreases at 0.9 V. In [30] the ZTC voltage 
is known to be 0.95 V for 65nm technology from  
STMicroelectronics, which proves the effect of ITD 
for advanced technology.

5.3  Case study for ITD simulation

The polynomials are used as the path timing variation  
models for the RISC processor and test the change of 
critical path running embedded applications. Figure 7  
shows the runtime delay of the critical path for the RISC 
processor running BCH application. Curves are plotted  
for both frequency of 25 MHz and 500 MHz. The 

supply voltage is simulated using 0.9 V, 0.95 V, 1.0 V  
and 1.1 V. The initial delay of critical path extracted 
out of the timing analysis tool is for the worst case 
condition under 125°C, 0.9 V. It is observed that for 
high supply voltage such as 1.1 V and 1.0 V, the delay 
increases with temperature till a saturation point then 
slightly decrease according to the characteristics of the 
application. For low voltage of 0.9 V, the inverse trend 
is shown where the delay decreases with temperature 
till the saturation point and then slightly increases. 
Under the ZTC voltage which is 0.95 V, the delay is not  
effected by the temperature as expected. The effect of 
ITD shows potential of frequency overscaling under 
lower voltage, which is predicted for 65 nm and further 
technologies in [31]. With regard to different running  
frequencies, the processor running at 500 MHz consumes  
higher power which leads to higher temperature  
compared to the data at 25 MHz. Consequently, the speed 

Figure 5: Critical paths and transverse blocks.

Figure 7: Runtime delay of critical path for BCH 
application.

Figure 6: Delay variation function under several 
conditions.
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of delay change shows more significant dependence  
on temperature for higher frequencies.

5.4  Limitation on NBTI simulation

NBTI is known as the most serious aging problem of 
nanoscale CMOS technology. To accurately model 
NBTI effect, not only instantaneous temperature  
but also switching activity for individual logic cells 
need to be carefully handled. However, in a high-
level processor design environment, cycle-accurate 
switching information for individual cells are not  
present before technology mapping. Using the proposed  
framework, it can be demonstrated that it is incorrect 
to use one unique NBTI-induced timing variation 
function to estimate the aging of entire logic path. The 
reason is that NBTI affects timing of connected cells 
in alternate stress and release modes instead of stress/
release of the entire logic path. An example is that 
one stressed inverter releases its connected inverter. 
The high-level estimation framework lacks the ability 
of cell-level instantaneous switching analysis, which 
gives an extremely pessimistic estimation of NBTI-
induced aging effect. On the other hand, ITD-induced 
delay variation has less effect with cell activities, 
which can be approximated using high-level design 
environment.

6 Automation Flow and Overhead Analysis

In this section the purposed automated estimation 
flow for Power/Thermal/Delay is briefly documented,  
which functions as an simulator wrapper to the  
Synopsys Processor Designer [22]. Furthermore, the 
overheads for both characterization and simulation 
are discussed.

6.1  Flow summary

Figure 8 illustrates the complete analysis framework, 
where the architecture description and application 
of interests are provided as inputs. The framework 
consists of characterization and simulation phase. The 
power characterization phase consists of 4 modules, 
which are briefly explained:
 a) Testbench generation: is used to generate processor  
specific testbenches for power characterization. This 
module parses the syntax section of processor description  

to produce instructions with random operands. One 
testbench is generated for each type of instruction, 
which runs for a predefined simulation clock cycles.
 b) Resource table extraction: gets the hierarchical  
information of the architecture and extracts input and 
output signals for each architecture unit. Read and write  
power models in the form of interpolated polynomial 
will be generated to each unit.
 c) Behavioral simulation: dumps the runtime  
hamming distance of input/output signals per architecture  
unit, which is used for power coefficient extraction.
 d) Power LUT extraction: interpolates power 
coefficients in the form of LUT using hamming  
distance and data from low-level power simulation. 
The interpolation itself is carried out using Matlab  
tool.
 e) Power simulation: takes loops to simulate 
processor behavior and power consumption until 
end of the simulation cycles. In each control step 
the simulator calculates power consumption based 
on the architecture unit specific instruction type, 
runtime hamming distances of the pins and power  
coefficient of the architecture units. Instead of list based  
implementation of power LUT, hash container is  
applied to increase the speed of instruction-architecture 
specific LUT addressing. The hierarchical power data for 
the targeting architecture is dumped during simulation.  
More modeling architecture units lead to higher overhead  
of power estimation.
 f) Thermal and delay simulations: are automatically  
generated once upon power simulator is ready, since 
no further characterization steps is required for thermal 
and delay simulation.
 The proposed flow is demonstrated using 
Synopsys Processor Designer and is portable to any 

Figure 8: Automation flow of power/thermal/logic 
delay co-simulation.
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high-level architecture simulation environment and 
architectures. Further work includes the porting of the 
framework into other ADL such as SystemC.

6.2  Overhead analysis

Table 4 shows the timing and accuracy for power  
characterization phase under two groups of testbenches,  
where 10 architecture units are modeled. The first group 
consists of 14 types of instructions to cover the most 
generalized processor instructions. For instance, ALU 
instructions such as add, sub and and which operate  
on 2 register operands and 1 immediate are grouped 
together in one instruction type. The second group  
consists of 33 types of instructions where each instruction  
type consists of exact one operational mode. The 
characterization is performed on the machine with 
Intel Core i7 CPU at 2.8 GHz. Each instruction file is 
running for 2,000 clock cycle.

Table 4: Time and accuracy of power characterization 
for testbench groups

Number of Testbenches 14 Instructions 33 Instructions

Time (minutes) 3 8

Average Error (%) 21.3 8.6

 As shown in the Table 4, group one achieves 
faster characterization time than group two. However,  
group two achieves higher estimation accuracy when 
benchmarked with gate-level power estimation.  
Generally, the power characterization time in the range 
of several minutes is acceptable for power modeling 
of embedded processors.
 Table 5 represents the runtime overhead of different  
simulation mode including pure behavioral simulation,  
power estimation, thermal estimation and delay  
simulation, where 10 architecture units are modeled. 
It is observed that the runtime overhead significantly 
lies in the power estimation compared with behavioral 
simulation. The thermal simulator achieves only 1.2% 
of overhead compared with power simulator, which 
is due to the light weight implementation of HotSpot 
package and smooth integration with power simulator.  
The delay simulation achieves in average 6.3% of overhead  
compared with thermal simulator, which is mainly due 
to the parsing of delay information from timing analysis  
file which contains delay of the longest 1,000 paths.

Table 5: Runtime overhead for different simulation 
modes

Apps Behavior 
(sec)

Power 
(sec)

+% Thermal 
(sec)

+% Delay 
(sec)

+%

BCH 2.04 124.94 61x 125.47 0.4 129.72 3.4

Viterbi 0.82 43.49 53x 44.37 2.0 47.86 7.9

Median 0.87 49.40 57x 49.45 0.1 53.00 7.2

Qsort 0.81 45.45 56x 46.65 2.6 48.53 4.0

IDCT 0.19 5.17 27x 5.22 1.0 5.69 9.0

Average - - 51x - 1.2 - 6.3

7 Conclusions

In this work, a processor power/thermal/timing  
variation joint modeling framework is presented for 
LISA-based processor design environment. Detailed 
experiments are conducted which explore the usability 
of the framework with several design parameters such 
as applications, technologies and layouts. An automatic 
setup has be constructed which performs estimation and 
analysis according to such parameters. The proposed  
framework helps processor designer to explore the 
physical effects in early design stage.
 Future work includes the modeling of process and 
aging induced timing variation. Application-level error 
analysis caused by physical effects will be explored. 
Future case studies involve complex architectures will 
also be presented.
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