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Abstract  

The Self-Organizing Map (SOM) is one of the artificial neural networks that perform vector quantization and 

vector projection simultaneously. Due to this characteristic, a SOM can be visualized twice: through the out-

put space, which means considering the vector projection perspective, and through the input data space, em-

phasizing the vector quantization process.  This paper aims at the idea of presenting high-dimensional clusters 

that are ‘disjoint objects’ as groups of pairwise disjoint simple geometrical objects – like 3D-spheres for in-

stance. We expand current cluster visualization methods to gain better overview and insight into the existing 

clusters. We analyze the classical SOM model, insisting on the topographic product as a measure of degree of 

topology preservation and treat that measure as a judge tool for admissible neural net dimension in dimension 

reduction process. To achieve better performance and more precise results we use the SOM batch algorithm 

with toroidal topology. Finally, a software solution of the approach for mobile devices like iPad is presented. 

 

Keywords:  Self- organizing maps (SOM); topology preservation; clustering; data-visualisation; dimension 

reduction; data-mining. 

1 INTRODUCTION 

Neural maps are biologically inspired data repre-
sentations that combine aspects of vector quantization 
with the property of function continuity. Self-
Organizing Maps (SOMs) have been successfully 
applied as a tool for visualization, for clustering of 
multidimensional datasets, for image compression, 
and for speech and face recognition.  

A SOM is basically a method of vector quantiza-
tion, i.e. this technique is obligatory in a SOM. Re-
garding dimensionality reduction, a SOM models 
data in a nonlinear and discrete way by representing 
it in a deformed lattice. The mapping, however, is 
given explicitly and well defined only for the proto-
types and in most cases only offline algorithms im-
plement SOMs. For our purpose we concern the so-

called „batch‟ version of the SOM which can easily 
be derived from the basic model: instead of updating 
prototypes one by one, they are all moved simulta-
neously at the end of each run, as in a standard gra-
dient descent. In order to reduce border effects in the 
neural network we use a toroidal topology. For more 
details concerning the degree of organization we 
refer the reader to [1]. Applying this approach, we 
work with a so-called well-organized neural grid. 
One of our main tasks concerning the application of 
Self-Organizing Maps is to implement a suitable 
mapping procedure that should result in a topology 
preserving projection of high-dimensional data onto a 
low dimensional lattice. 

In our project we consider only three admissible 
dimensions of output space, namely 𝑑𝐴 = 1,2,3 for a 
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given neuronal grid 𝐴. However, in general, the 
choice of the dimension for the neural net does not 
guarantee to produce a topology-preserving mapping. 
Thus, the interpretation of the resulting map may fail. 
Therefore, we introduce the very important concept 
of a topologically preserving mapping, which means 
that similar data vectors are mapped onto the same or 
neighbored locations in the lattice and vice versa. 

In this paper we propose a new concept of cluster 
visualization; we illustrate clusters as disjoint objects 
in pairs of simple geometrical objects like spheres in 
3D centered at best matching units (BMUs) coordi-
nates within a neural network of admissible dimen-
sion. 

Our paper is organized as follows: in section 2 we 
give a precise mathematical description of SOM 
including the topology preservation measure (topo-
graphic product) as a measure for an admissible di-
mension of the output space. In section 3 we present 
existing methods of cluster visualization followed by 
the extension of a graphical visualization method for 
providing a new solution. In section 4 we demon-
strate a software realization approach for our new 
visualization concept. Finally, we outline our conclu-
sion and emerging further work in section 5. 

 

2 MATHEMATICAL BACKGROUND OF THE SOM 

One of the powerful approaches to adopt our clus-
ter considerations within SOM is the application of 
Self-Organizing Maps to implement a suitable map-
ping procedure, which should result in a topology-
preserving projection of the high-dimensional data 
onto a low dimensional lattice. In most applications a 
two- or three-dimensional SOM lattice is the com-
mon choice of lattice structure because of its easy 
visualization. However, in general, this choice does 
not guarantee to produce a topology-preserving map-
ping. Thus, the interpretation of the resulting map 
may fail. Topology preserving mapping means that 
similar data vectors are mapped onto the same or 
neighbored locations in the lattice and vice versa. 

 

A. SOM Algorithm and Toplogy Preservation 

Within the framework of dimensionality reduc-
tion, SOM can be interpreted intuitively as a kind of 
nonlinear but discrete PCA. Formally, Self-
organizing maps (SOM) as a special kind of artificial 
neural network map project data from some (possibly 
high-dimensional) input space 𝑉 ⊆ ℜ𝐷𝑉  onto a posi-

tion in some output space (neural map) 𝐴, such that a 
continuous change of a parameter of the input data 
should lead to a continuous change of the position of 
a localized excitation in the neural map. This proper-
ty of neighborhood preservation depends on an im-
portant feature of the SOM, its output space topology, 
which has to be predefined before the learning 
process to be started. If the topology of 𝐴  (i.e. its 
dimensionality and its edge length ratios) does not 
match that of the data shape, neighborhood violations 
will occur. This can be written in a formal way by 
defining the output space positions as 𝑟 =
 𝑖1 , 𝑖2 , 𝑖3, . . , 𝑖𝑛𝑚

 ,   1 < 𝑖𝑘 < 𝑛𝑛  with 𝑁 = 𝑛1 × 𝑛2 ×
𝑛3. .× 𝑛𝑚  where 𝑛𝑘 , 𝑘 = 1. .𝑚 represents the dimen-
sion of 𝐴 (i.e. length of the edge of the lattice) in k

th
-

direction. In general, other arrangements are possible, 
e.g. the definition of a connectivity matrix. Neverthe-
less, we consider hypercubes in our project. We asso-
ciate a weight vector or pointer 𝑤𝑟  with each neuron 
𝑟 ∈ 𝐴 in 𝑉. 

The mapping Ψ𝑉→𝐴  is realized by rule: the winner 
takes it all (WTA). It updates only one prototype (the 
BMU) at each presentation of a datum. WTA is the 
simplest rule and includes the classical competitive 
learning as well as the frequency-sensitive competi-
tive learning 

Ψ𝑉→𝐴: 𝑣 ↦ 𝑠 = arg min𝑟𝜖𝐴  𝑣 − 𝑤𝑟         (1) 

where the corresponding reverse mapping is de-
fined as Ψ𝐴→𝑉 : 𝑟 ↦ 𝑤𝑟 . These two functions together 
determine the map 

𝑀 =  ΨV→A , ΨA→V                                    (2) 

realized by the SOM network. All data points 
𝑣 ∈ ℜ𝑛  that are mapped onto the neuron 𝑟 make up 

its receptive field Ω𝑟
′ . The masked receptive field of 

neuron 𝑟 is defined as the intersection of its receptive 
field with 𝑉 namely  

Ω𝑟 =  𝑣 ∈ 𝑉: 𝑟 = Ψ𝑉→𝐴(𝑣) (3) 

Therefore, the masked receptive fields Ω𝑟  are 
closed sets. All masked receptive fields form the 
Voronoi tessellation (diagram) of 𝑉. If the intersec-

tion of two masked receptive fields Ω𝑟 , Ω𝑟
′  is non-

vanishing ( Ω𝑟 ∩ Ω𝑟
′ ≠ ∅ ), we call both of them 

Ω𝑟Ω𝑟
′  neighbored. The neighborhood relations form 

a corresponding graph structure in 𝐺𝑉  in 𝐴: two neu-
rons are connected in 𝐺𝑉  if and only if their masked 
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receptive fields are neighbored. The graph 𝐺𝑉  is 
called the induced Delaunay-graph. For further de-
tails we refer the reader to [2]. Due to the bijective 
relation between neurons and weight vectors, 𝐺𝑉  also 
represents the Delaunay graph of the weights (Figure. 
1). 

 

To achieve the map 𝑀, the SOM adapts the poin-
ter positions during the presentation of a sequence of 
data points 𝑣 ∈ 𝑉  selected from a data distribution 
𝑃(𝑉) as follows: 

∆𝑤𝑟 = 𝜀 ∙ ℎ𝑟𝑠(𝑣 − 𝑤𝑟)                        (4) (  (4) 

where 0 ≤ 𝜀 ≤ 1 denotes learning rate, and ℎ𝑟𝑠  is 
the neighborhood function, usually chosen to be of 
Gaussian shape: 

ℎ𝑟𝑠 = exp  −
 𝑟−𝑠 2

2𝜎2                          (5) 

We note that ℎ𝑟𝑠  depends on the best matching 
neuron defined in (1). 

Topology preservation in SOMs is defined as the 
preservation of the continuity of the mapping from 
the input space onto the output space. More precisely, 
it is equivalent to the continuity of 𝑀 (in the mathe-
matical topological sense) between the topological 
spaces with a properly chosen metric in both 𝐴 and 
𝑉 . Thus, to indicate the topographic violation we 
need metric and topological conditions, e.g. in Fig-
ure. 2 a) a perfect topographic map is indicated, whe-
reas in 2 b) topography is violated. The pair of near-
est neighbors 𝑤1 ,𝑤3  is mapped onto the neurons 1 

and 3, which are not nearest neighbors. The distance 
relation between both is inverted as well: 
𝑑𝑉 𝑤1 ,𝑤2 > 𝑑𝑉(𝑤1 ,𝑤3)  but 𝑑𝐴 1,2 < 𝑑𝐴(1,3) . 
Thus, topological and metric conditions are violated. 
For detailed considerations we refer to [3]. The to-
pology preserving property can be used for imme-
diate evaluations of the resulting map, e.g. for inter-
pretation as a color space which we applied in Sec. 3. 

As we already pointed out in the introduction, vi-
olations of the topographic mapping may raise false 
interpretations. Several approaches were developed to 
measure the degree of topology preservation for a 
given map. We chose the topographic product 𝑃 , 
which relates the sequence of input space neighbors 
to the sequence of output space neighbors for each 
neuron. Instead of using the Euclidean distances 
between the weight vectors, this measure applies the 
respective distances 𝑑𝐺𝑉 (𝑤𝑟 ,𝑤𝑟 ′)  of minimal path 

lengths in the induced Delaunay graph 𝐺𝑉  of 𝑤𝑟 . 
During the computation of 𝑃 the sequences 𝑛𝑚

𝐴 (𝑟) of 
the m

th
 neighbors of 𝑟 in 𝐴 and 𝑛𝑚

𝑉 (𝑟), describing the 
m

th
 neighbor of 𝑤𝑟  have to be determined for each 

node 𝑟. These sequences and further averaging over 
neighborhood orders 𝑚 and nodes 𝑟 finally lead to 

Figure 2 : Metric vs. topological conditions for map 

topography. 
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The sign of 𝑃 approximately indicates the relation 
between the input and output space topology whereas 
𝑃 < 0  corresponds to a too low-dimensional input 
space, 𝑃 ≈ 0  indicates an approximate match, and 
𝑃 > 0  corresponds to a too high-dimensional input 
space. 

Figure 1: The Delaunay triangulation and Voronoi 

diagram are dual to each other in the graph theoretical 

sense. 
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 In the definition of 𝑃, topological and metric 
properties of a map are mixed. This mixture provides 
a simple mathematical characterization of what 𝑃 
actually measures. However, for the case of perfect 
preservation of an order relation, identical sequences 
𝑛𝑚
𝐴 (𝑚)  and 𝑛𝑚

𝑉 (𝑚)  result in 𝑃  taking on the value 
𝑃 = 0. 

Application of SOMs to very high-dimensional 
data can produce difficulties that may result from the 
so-called ‟curse of dimensionality‟: the problem of 
sparse data caused by the high data dimensionality. 
We refer to approach proposed by KASKI in [4]. 

 

B. Application of the Topographic Product 

involving real-world Data 

Data set in case of speech feature vectors 
(𝐷𝑉 = 19, dimension of input space) obtained from 
several speakers uttering the German numerals

1
. We 

see (Fig. 3) in that case topographic product single 
out 𝑑𝐴 ≈ 3. 

 

C. Batch Version of Kohonen’s Self-Organizing 

Map 

Depending on the application, data observations 
may arrive consecutively or alternatively, the whole 
data set may be available at once. In the first case, an 
online algorithm is applied. In the second case, an 
offline algorithm suffices. More precisely, offline or 
batch algorithms cannot work until the whole set of 
observations is known. On the contrary, online algo-
rithms typically work with no more than a single 
observation at a time.  

Figure 3 : Values of the topographic product for the 

speech data. 

                                                           
1  The data is available at III. Physikalisches Institut Goet-

tingen; previously investigated in [8], [9]. 

For most methods the choice of the model largely 
orients the implementation towards one or the other 
type of algorithm. Generally, the simpler the model, 
the more freedom is left to the implementation. In our 
project we apply the batch version of the SOM de-
scribed in the following algorithm: 

1) Define the lattice by assigning the low-

dimensional coordinates of the prototypes in the 

embedding space. 

2) Initialize the coordinates of the prototypes in 

the data space. 

3) Assign to 𝜀 and to the neighborhood function 

ℎ𝑟𝑠 their scheduled values for epoch q. 

4) For all points 𝑣 in the data set, compute all 

prototypes as in (1) and update them according to 

(4). 

5) Continue with step 3 until convergence is 

reached (i.e. updates of the prototypes become 

negligible). 

 

3 DATA MINING WITH SOM 

If a proper SOM is trained according to the above 
mentioned criteria several methods for representation 
and post-processing can be applied. In case of a two 
dimensional lattice of neurons many visualization 
approaches are known. The most common method 
for visualization of SOMs is to project the weight 
vectors in the first dimension of the space spanned by 
the principle components of the data and connecting 
these units to the respective nodes in the lattice that 
are neighbored. However, if the shape of the SOM 
lattice is hypercubical there are several more ways to 
visualize the properties of the map. For our purpose 
we focus only on those that are of interest in our 
application. An extensive overview can be found in 
[6]. 

 

A.  Current Cluster Visualization Methods of SOM 

An interesting evaluation is the so-called U-
matrix introduced by [5] (Figure. 4).  

 

 

 

 

 

 



 

 

 

Marcin Z .et al. / AIJSTPME (2011) 4(4): 61-68 

 

 

65 

 

The elements of the matrix U represent the dis-
tances between the respective weight vectors and are 
neighbors in the neural network A. Matrix U can be 
used to determine clusters within the weight vector 
set and, hence, within the data space. Assuming that 
the map is topology preserving, large values indicate 
cluster boundaries. If the lattice is a two-dimensional 
array the U-matrix can easily be viewed and gives a 
powerful tool for cluster analysis. Another visualiza-
tion technique can be used if the lattice is three-
dimensional. The data points then can be mapped 
onto neuron r which can be identified by the color 
combination red, green and blue (Figure. 5) assigned 
to the location r. In such a way we are able to assign 
a color to each data point according to equation (1) 
and similar colors will encode groups of input pat-
terns that were mapped close to one another in the 
lattice A.  

Figure 5: Cluster visualization via U-Matrix. 

It should be emphasized that for a proper interpre-
tation of this color visualization, as well as for the 
analysis of the U-matrix, topology preservation of the 
map M is a strict requirement. Furthermore, we 
should pay regard to the fact that the topology pre-

serving property of M must be proven prior to any 
evaluation of the map. 

 

B.   A new Concept for Cluster Visualization 

We provide a new idea in order to get insight of 
visualizing clusters as disjoint objects in pairs of 
simple objects like 3D spheres, independently of the 
resulting admissible output space. In this manner, 
additionally to existing visualization methods, we are 
able to distinguish and illustrate the “volume” of each 
cluster obtained by the radius of the constructed 
spheres. 

In the following steps we describe our visualiza-
tion approach in further detail. At the very beginning 
the input data set is predefined as clustered data set 
after the GNG [11] learning process is finished. Af-
terwards the batch version of the SOM algorithm is 
performed whereas all BMUs are computed for all 
input clusters respectively. Finally, the dimension 
reduction of the input space is achieved by utilizing 
the topographic product as a judgment tool for an 
admissible output space. 

Affine spaces provide a better framework for 
doing geometry. In particular, it is possible to deal 
with points, curves, surfaces, etc., in an intrinsic 
manner, i.e., independently of any specific choice of 
a coordinate system. Naturally, coordinate systems 
have to be chosen to finally carry out computations, 
but one should learn to resist the temptation to resort 
to coordinate systems until it becomes necessary. So, 
we treat the admissible output space as an affine 
space in intrinsic manner where no special origin is 
predefined. We set the origin neuron numbered with 
1 (Figure. 6). For simplicity, in the neuronal grid, 
distances between all directly neighboring neurons 
are set to 1. 

Let  𝐶𝑥   denote the power of a cluster 𝐶𝑥  (the 
number of entities for a given 𝐶𝑥). We are aiming to 
construct a presentation space in homogenous form in 
the sense of space dimension for any case of 𝑑𝐴 . We 
calculate the radius of spheres

2
 centered on corres-

ponding BMUs as follows: 




















j

j

i

i
C

C
15.0r

       (7) 

                                                           
2 In our considerations we use the term of spheres for all cas-

es of 𝑑𝐴 regarding the topology amongst them. 

Figure 4 : Representation of positions of neurons in the 

three-dimensional neuron lattice A as a vector c=(r,g,b) in 

the color space C, where r, g, b denote the intensity of the 

colors red green and blue. Thus, colors are assigned to 

categories (winner neurons). 
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Obviously, spheres constructed in that manner in 
the output space of dimension 𝑑𝐴  do not have any 
point in common. In our calculations we apply a 
parametric equation of a sphere. In order to keep the 
presentation space homogenous to dimension 3 (Fig. 
7), with no relative topology at presence, we extend 
the output space as described below. 

In case of 𝑑𝐴 = 3 we perform no operation, since 
no extension is needed (identity map). In case of 
𝑑𝐴 = 2 

 𝑟 cos𝑥 , 𝑟 sin 𝑥 ↦  𝑟 cos𝑥 , 𝑟 sin 𝑥 , ± 𝑟𝑖
2 − 𝑟2 ,                   (8)                                                      

where 0 ≤ 𝑥 < 2𝜋, 0 ≤ 𝑟 ≤ 𝑟𝑖 , needs to be ap-
plied. Finally, in case of 𝑑𝐴 = 1 (functions composi-
tion) the application of 

𝑟 ↦  𝑟 cos𝑥 , 𝑟 sin𝑥 ↦  𝑟 cos𝑥 , 𝑟 sin𝑥 , ± 𝑟𝑖
2 − 𝑟2 , (9)                          

  

where 0 ≤ 𝑥 < 2𝜋, 0 ≤ 𝑟 ≤ 𝑟𝑖 , becomes neces-
sary. In our method we propose to describe clusters 
as disjoint spheres‟ centers located at every BMUs 
position respectively after the batch SOM algorithm 
is finished. In any cases of topology preservation 
criterion results (1, 2 or 3 - admissible dimension of 
neuronal net, after dimension reduction process) we 
are able to construct a group of disjoint spheres in 
3D. 

 

C.  Comments 

The novelty of our approach is to present clusters 
via suitable separated object – spheres in 
ous 3D presentation space. In contrast to the k-
clustering concept [12] we apply modern Growing 
Neuronal Gas unsupervised learning process return-
ing separated objects in form of a clustered probabili-
ty distribution for a given input data set of possibly 
high dimension. Finally, we link this concept with 
Self-Organizing Maps framework in order to illu-
strate clusters in space of admissible reduced 
sion. For comprehensive source on dimension reduc-
tion of high-dimensional data the reader is referred to 
[13] 

 

 

 

 

 

4 VISUALIZING CLUSTER INFORMATION VIA SOM 

ON MOBILE DEVICES 

The following example will describe a realization 
of a SOM-based cluster visualization technique for 
information visualization, thus, displaying a seman-
tic-based database index cluster structure on mobile 
platforms. The aim was to visually represent the 
internal database index organization structure intui-
tively to a user. Our realization had to focus on dif-
ferent requirements. 

 

A.   Requirements 

The implementation of a SOM-based cluster vi-
sualization platform to display a database index‟ 
cluster data on mobile entities had to fulfill certain 
requirements. First of all, the requirement to run our 
application on mobile devices with potentially low 
computational power was a challenge. Second, the 
functionality of our application had to be ensured 
using any type of network connection provided by the 
mobile device also including mobile networks with 
low bandwidth. As a functional requirement, it was 
requested to visualize clusters as spheres, where the 
number of data tuples contained in each cluster 
should be presented implicitly. 

 

Figure 6 : Neurons and best matching units in a chosen 

admissible output space with the origin neuron intrinsically 

numbered with 1. 
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B. Requirements Analysis 

Due to computational limitations of mobile plat-
forms, the possibility of running SOM transforma-
tions on a mobile device could not be regarded as 
feasible. Thus, a separation of our desired application 
into a client and a server part was regarded as the 
most promising solution. Based on the result of the 
analysis of our first requirement, we did not regard it 
as suitable to transmit all cluster data required for 
SOM computations. We decided to transmit only the 
results of the SOM process since this also seemed to 
guarantee a smaller data amount compared to the 
SOM‟s input data. Furthermore, we intended to re-
duce possible error causes with this decision regard-
ing the possible necessity of different implementa-
tions for different mobile platforms. Finally, the re-
quirements analyses led us to centralize computation-
al effort, thus, utilizing the application on a mobile 
device only as interface for visualization and user 
interaction. 

 

Figure 7 : Expansion of output space A to presenta-
tion space depending on admissible output space 
dimension dA. 

 

C. Realization 

We separated our application into two parts: a 
server application, and a client application for mobile 
devices. As described in our requirements analysis 
we decided to centralize computation effort on the 
server side, thus, realizing SOM computations there. 
For realizing the SOM computations we made use of 
SOM Toolbox contained in Matlab® by building a 
bridge to C++ for enabling our server application to 
run the necessary SOM transformations easily. Using 
this tool chain allowed us to prepare the cluster data 

for visualization by dimension reduction through 
SOM efficiently. 

The mobile application was designed to run on 
mobile platforms with touch interfaces but compara-
bly low computational resources. An example screen 
shot of our user interface is given in Fig. 8 showing 
clusters, i.e. spheres, that were transformed from n-
dimensional space to 3-dimensional output space 
using SOM. 

As shown in Figure. 8, the spheres are of different 
size. We decided to use a spheres size to implicitly 
visualize the number of data tuples contained in its 
according cluster. For determining a sphere‟s actual 
size we put the number of data tuples in a cluster into 
relation to the number of data tuples contained in all 
clusters. To prevent the spheres from intersecting 
each other we decided to limit their size by regarding 
the minimum Euclidian distance δmin of each pair of 
spheres amongst all spheres into consideration. At a 
first glance we took the radius of a sphere into con-
sideration for determining its size by making the 
radius proportionally dependent of the number of 
data tuples contained in the underlying cluster. Nev-
ertheless, data is contained in a cluster, which leads 
us to the volume of spheres. Therefore, we decided to 
represent the number of tuples in a cluster by making 
a sphere‟s volume dependent on these. Thus, we were 
able to implicitly represent the data amount contained 
in a cluster. 

Our example was based on a data set with 998 
dimensions in input space. 

 

D. Capabilities  of  our Example 

The software system presented in our example is 

capable of visualizing information on the clustering 

state of a semantic based database index allowing the 
user to navigate through the index‟ cluster structure. 
This may be performed either by using the visualiza-
tion feature of the index‟ hierarchy or by utilizing the 
realized SOM-based visualization feature. In future 
development our aim is to present more detailed 
information and to increase user interaction possibili-
ties potentially influencing the clustering   process. 
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5    Conclusion and further Work 

In our paper we have deeply described SOM from 
the mathematical point of view, giving precise de-
scription for that kind of neuronal nets, emphasizing 
the role of topographic product as a criterion for 
admissible neuronal net dimensions in dimension 
reduction process. 

We have proposed a new illustration method for 
cluster visualization, linking existing visualization 
methods of colors (RGB) with methods of separated 
objects like 3D-spheres, providing better understand-
ing of clusters as joint objects. Finally the software 
realization approach has been presented. 

In our further research we will consider a data-
driven version of SOM, so called growing SOM 
(GSOM). Its output is a structure adapted hypercube 
A, produced by adaptation of both the dimensions 
and the respective edge length ratios of A during the 
learning, in addition to the usual adaptation of the 
weights. In comparison to the standard SOM, the 
overall dimensionality and the dimensions along the 
individual directions in A are variables that evolve 

into the hypercube structure most suitable for the 
input space topology. 
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Figure 8 : Visualization of clusters in three-

dimensional output space after applying SOM. 


