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Abstract

A finite volume element method is combined with an adaptive meshing technique to solve the two-dimensional
unsteady convection-diffusion-reaction equation. The characteristic-based scheme is used to derive the
governing equation and then the finite volume method is employed to discretize the characteristic equation.
Concept of the weighted residual method in the finite element method is applied to evaluate the gradient
quantity at the cell faces. Finally, an adaptive meshing technique is applied to further improve the solution
accuracy, and to minimize the computational time and computer memory requirement. The efficiency of the
combined method is evaluated by the examples of pure-convection, convection-diffusion, convection-diffusion,
and diffusion-reaction problems.
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1 Introduction

Numerical simulation for predicting the transport time and computer memory than the implicit method.
phenomena governed by the unsteady convection- The disadvantage of the explicit method is it’s
diffusion-reaction equation is difficult due to the constrain by the CFL condition in order to stabilize
convection term. The flow behaviours usually contain  the spatial error from growing without bound. On the
steep gradients that require special treatment of  other hand, the implicit method provides more stable
numerical schemes. Most of the classical schemes solution but a large time step may not be used
suffer from the spurious oscillations, otherwise yields  because the solution accuracy degrades with time.
excessive numerical dispersion [1,2]. During the past  The inversion of the coefficient matrix is another
decade, several stabilizing schemes have been  disadvantage because it is a time consumable process.
developed for solving such difficulty. These Furthermore, a large block of memory is required for
schemes include the upwind-based methods [3,4], The the coefficient matrix formation.

characteristic Galerkin method [5], the Galerkin , this paper, the characteristic-based scheme is used
projected residual method [6], and the Taylor-Galerkin 5 gerive the two-dimensional unsteady convection-
algorithm [7]. For both finite volume method and finite giffusion-reaction equation along the characteristic
element method, the upwind based schemes have been  path. The cell-centered finite volume method is
employed widely for analysing convective-dominated  fyrther discretized the equation using triangular
flow. The characteristics Galerkin method is an  meshes. The concept of weighted residuals method
attractive one due to its simple implementation and can  anq the midpoint quadrature rule are applied to the
be written in a fully explicit form for obtaining solution.  ynknown quantity gradient at the cell faces. Finally,
At present, development of new numerical schemes for 4 agaptive meshing technique is implemented to
accurate solution of the convection-diffusion-reaction is  fyrther improve the solution accuracy by refining
still needed. meshes in the region of high solution gradients.
Computational techniques for solving the hyperbolic  Coarse meshes are constructed in the other regions to
equation are generally classified into explicit and reduce the computational time and computer
implicit (or semi-implicit) methods. The explicit memory. The presentation of this paper starts from
method is simple and requires less computational the explanation of the theoretical formulation and the
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corresponding characteristic-based scheme in section
2. The finite volume element method for the
characteristic equation and implementation of the
adaptive meshing technique are explained in section
3 and 4, respectively. Performance of the combined
method is examined by using four examples. These
examples are: (1) Smith and Hutton problem, (2) the
boundary layer flow problem, (3) the oblique inflow
problem, and (4) the corner layer problem.

2 Characteristic-Based Scheme

The concept of characteristic-based scheme have
been developed and extensively applied with the
finite element method [8,9]. In this section the idea of
the characteristic is applied to the two-dimensional
unsteady convection-diffusion-reaction equation. The
governing equation is,

0

-2 +V.

0o (vp- 9 9) rp= &

where ¢ is the unknown scalar quantity, v =v(x) is
the given velocity, >0 is the diffusivity parameter,
and q=q(x,t) is the prescribed source term.
Equation (1) is defined for the spatial domain x € R
where Q< R? and the time interval of te(0,T)
with T > 0. The initial condition is given by,

#(%,0)= gp(x) ?)

This governing equation is subjected to the boundary
conditions

$=0p on &% (32)
0

with 0Q =0Qp L oQy and 0Qp NoQy #0.

By changing the independent variable, x, on the
reference coordinate system to the moving coordinate
system along their characteristic directions, X', such
that

dx’ = dx — vdt 4)

where v is the velocity of the moving coordinate
system, let ¢ = ¢(x',t) then,

o9 —y.vgs?
P =-V-Vg+

ot ®)

Xx=const. x'=const.

with Vg =V'¢ (6)

()

By substituting Egs. (5)-(7) into Eq.(1) and applying
the divergence free assumption, (V-v=0), the

unsteady convection-diffusion-reaction along the
characteristic can be rewritten as,

9% _y.
ot

The time discretization of the above equation in the
explicit form is obtained as,

1
At

and V-(eVg)=V-(eV'g)

(eVeg)+xp=q 8)

(¢n+l _ ¢n (X_AX))z (V . (€V¢)_ K¢+ qX(X—AX) (9)

where At is the increment time period from n to
n+1, and Ax =VAt is the distance travelled by the
particle which v is the average velocity along the
characteristic, that is

Vn+1 +Vn

V= (x—Ax)

5 (10)

Applying the Taylor’s series expansion in space to
the second term of the left-hand side, to all the right-
hand side terms of Eq.(9), to the second term of the
right-hand side of Eq.(10), and further approximate

n+1 n
n+1/2 — \ +V

half time step velocity, v 5 , as,
V2 2y 1 0(At) (11)
Finally, an explicit scheme can be rewritten as,
P =g =tV -(vp - eV g)+ xp-0)
(12)

+A—;V-(v(vw)+rc¢—q)

3 Finite volume element formulation

The finite volume element technique, herein, is based
on the discretization on the cell-centered method. The
computational domain is discretized into the non-
overlapping triangular control volumes, Q, eQ,

i=12,...,N, such that Q=UN,Q;,Q;#0, and
Q;nQ;=0 if i=j. Equation (12) is integrated

over the control volume Q; as,

92



Theeraek P. / ALJSTPME (2013) 6(3): 91-99

j¢“+ldx j #"dx

) —Atj

At

(Vg — eV )+ xg—q)dx (13)

v(v-Vg)+xp—q))dx

2 |

QI

The approximations to the cell average of ¢ over
tn+l

control volume €; at time t" and are
represented by,

qi,””:ij.yﬁ(x,t””)dx (14&)
2F

(14b)

:ﬁé[gﬁ(x,t”)dx

where |y;| is the measure of cell i. Applying the
divergence theorem to the convection-diffusion term

yield,
U]

¢In+l — ¢In
U]

U (o) vl o, 0)- (. O)io

o0,

=l o) ()lot)- v (o, t)d

|

(15)

For an arbitrary triangular control volume, the flux
integral over 6Q); appearing on the right-hand side of
Eq.(15) could be approximated by summation of the
fluxes passing through the three adjacent cell faces.
By applying the quadrature integration formula, the
flux integral over 6Q; in the above equation can be

approximated by,

jni(v)- Vo)l t)- V(v t)dv

i| b 07)- v

and

[ (0, 0)-ve)v(x)- V{x,t)+ x{x,t) - a(x, o

= Zi,h |(”ij Vi) )(Vi Vé, (tn)+ K¢ (t”)— ] (t”))

(16)

(17)

where subscript ij indicate the quantity evaluated at

midpoint of the cell face between the two adjacent,
Q; and Q; . The segment of the boundary 0Q;, Tj;

is defined by 8Q; U 40 and T =0Q; N oQ;

The velocity vector, v;;, and the unknown quantity,

i (t”) , are also evaluated at midpoint of the cell
face.

Integration of the reaction and source terms could be
approximated by the cell average over the control
volume, then

[ xax. o = o (") (18)
Q;
Jq(x,t)dx = |Qi|qi(t“) (19)
Q

By substituting Eqs.(16)-(19) into Eq.(15), an explicit
finite volume scheme for solving Eq.(1) is obtained
as,

n+l n

eVl
ai )}

where the quantities at time t" are defined by

a1 =4t"). 4" =4 lt"),and o =q,t").

Z|Fu|nu [(

_%Vij (Vi V' + g - (20)

- At(’(ﬂn - Qin)
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The unknown quantity at the cell face, ¢,Jr-‘ , can be

approximated by applying Taylor’s series expansion
according to the upwind direction as,

{ﬂn +(Xij - Xi)'vﬂn
9 +(x; —x;) v}

_ Vi 20

¢ (21)

’vij n” <0

In this paper, the concept of finite element method is
applied to determine the gradient quantities. The

gradient at the centre of control volume, Vg, is

determined by the weighted residuals method and is
assumed to be linearly distributed over cell Q;,

Ve = N (X)Vey (22)
k=1
where N, (x) denotes the linear interpolation

functions for the triangular cell and k=1,2,3
represent the control volume vertices. By applying
the standard Galerkin method and the Gauss’s
theorem to Eq.(22), the gradient quantities at a grid
point are obtained as,

oN, (x)

"dx
OX 4

Veli=MT J.ni (LN (0)gdo

a0 o)
(23)

where M s the lumped mass matrix and V¢y; are

the contributions of the gradient quantities in the
control volume Q; to the gradient quantities at the

grid point J . In order to determine the total gradient
quantities at the grid point J, Eq.(23) is applied to
all the volumes surrounding it such that,

NV
Vgl =D Ve, (24)
i=1
where NV is the number of the surrounding
triangular cells. The gradient quantities at the cell

face, ng},?, is then determined by applying the

midpoint quadrature integration rule along the edge
that connects grid point | and J .

To ensure the stability of an explicit scheme on a
triangular mesh, the CFL-like stability criterion must
be fulfilled. In this paper, the permissible time step
within each cell is determined from

c 2
_ o] L
At =Cmin , (25)
Pl MaX_123Vn,jj 2¢
where v, ;; is the normal velocity at Ty, I, is the

characteristic length of cell i,and 0<C <1.

4 Adaptive meshing technique

The concept of the adaptive meshing technique is to
generate an entirely new mesh based on the solution
obtained from an earlier mesh [10,11]. The new mesh
consists of small cells in the regions with large
change in solution gradients and larger cells in the
other regions where the change in solution gradients
are small. The adaptive meshing procedure employed
in this paper is based on the advancing front
technique for which the grid points are firstly
generated along the outer domain boundary.
Triangular elements are then constructed from these
grid points and gradually propagate into the domain
interior. The mesh construction is complete when the
domain interior is fulfilled with all triangular cells.
To determine proper element sizes at different
locations in the flow field, the solid-mechanics
concept for finding the principal stresses from a given
state of stresses at appoint is employed. The second
derivatives of the unknown quantity ¢ with respect

to global coordinates X can be computed in the
principal directions X as,

3% | [o%

2 o v 2

2’2‘¢ a"%’ | oX s 26)
oxoy  oy? 2

The second derivatives of the unknown quantity ¢
with respect to coordinates x are determined by
using the concept of weighted residuals method. For

2

example, to determine v the computed solution
X

@ , is assumed to be linearly over cell Q; as
(27)
N,(x) denotes the linear interpolation

functions for the triangular cell and k =1,2,3 are the
control volume vertices. By applying the standard

where

94



Theeraek P. / AIJSTPME (2013) 6(3): 91-99

Galerkin method, the first derivative can be derived
and determined from

o¢ 1 o¢

- =M N ;dx—= 28

OX |y é[ T ox i (28)
. . od| .

where M is the lumped mass matrix and —— is

Jii
the contribution of the first derivative quantity at the
grid point J. By applying the same procedure, the
second derivative is,

it

v, (29)

2
- M’lj.dex—a f
OX
[

Jii i

Then, the second derivative at the grid point J is
determined from,

2 NV 2

T 3% 0
Xy T Xy

where NV is the number of the surrounding

triangular cells.

The second derivatives are used to determine the
proper mesh sizes, h;,i=1,2 in the two principal
directions using condition,

M2 = Do 2 Amax = CONStant (31)

where 4;,i=1,2 are the second derivatives of the
unknown quantity in the two principal directions of
the cell considered. h,;, is the minimum
characteristic length and A, is the maximum
principal quantity for the entire model.

Base on the above condition, the cell sizes are
generated according to the given minimum cell size,
hyin - Specifying too small h;,, may result in a
model with an excessive number of cells. On the
other hand, specifying too large h,;, may result

inadequate solution accuracy. These factors must be
considered prior to generating a new mesh.

5 Numerical Examples

To evaluate the performance of the finite volume
element method and to demonstrate the solution
improvement after combining it with the adaptive
meshing technique, four examples of pure
convection, convection-diffusion, convection-

reaction, and diffusion-reaction problems are
performed. These examples are: (1) Smith and Hutton
problem, (2) The boundary layer problem, (3) The
oblique inflow problem, (4) The corner layer problem

5.1 Smith and Hutton problem

The first example is a pure convection problem in a
rectangular domain  Q=(-10)x(L1) [12]. The

velocity field is given by v = (Zy(l— xz)— 2x(1— yz))
and the initial condition ¢(x) is set to be zero. The

boundary condition is prescribed in a step function as
shown in Figure 1.

The computation starts from using an unstructured
mesh with 1886 uniform triangular cells. Figure 2(a)-
(b) shows the initial and the third adaptive meshes
with their computed solutions. The comparison of the
exact and the computed solutions at the outflow
boundary are shown in Figure 3. The comparison
shows the computed solutions from the third adapted
mesh are consistent with the exact solutions.

y

<

9=0 [ =2

| |
05 | 05 |

1.0

Figure 1: Physical domain of Smith and Hutton Problem.
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(b) Third adaptive mesh and solution

Figure 2: Adaptive meshes and computed solutions
of Smith and Hutton problem.
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Figure 3: Comparisons of the exact and computed
solutions of Smith and Hutton problem.
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(b) Third adaptive mesh and solution

Figure 4: Adaptive meshes and computed solutions
of the boundary layer problem.

5.2 The boundary layer problem

The second example is a convection-diffusion
problem for determining the behaviour of the
boundary layer flow in a square domain
Q=(01)x(021) [13]. The initial condition, ¢ (x), is
set to be zero and the velocity field is given by
v =(1,0). The small diffusion coefficient is specified

as £=10"* with the source term of g=1. The

boundary condition is set to be zero along the upper,
lower, and the left-hand side of the computational
domain.

The test case is performed until the final time step is
equal to 2. The computation starts from using an
unstructured mesh with 884 uniform triangular cells
(20 cells along each boundary). Figure 4(a)-(b) shows
the initial and the third adaptive meshes with their
computed solutions at the final time by using the
three-dimensional contour plots. The maximum and
minimum cell sizes of the third adaptive mesh are 0.1
and 0.002, respectively. Oscillation of the solution
obtained from the coarse initial mesh occurs along
the edge of the profile. This oscillation disappears
after the second mesh adaptation.

5.3 The oblique inflow problem

The third example is an oblique inflow convection-
reaction problem [9]. The computational is a unit
square of Q=(01)x(0), and the initial condition,
¢o(x), is set to be zero. The source term, q, is given
as a constant of 1. The steady velocity field is given
by v =(vcos(z/3)vsin(z/3)). Two different cases

have been considered corresponding to dominant
convection and reaction, respectively. These cases
are:

1. v=1,x=10"* for convection-dominated problem,

2. v=10"* k=1 for reaction-dominated problem

The computation starts from using the same initial
unstructured mesh as shown in the previous example.
The initial and adaptive meshes with their
corresponding steady-state solutions for case 1 are
shown in Figures 5(a)-(b), respectively. The analysis
is performed until the final time step is equal to 2.
With such a small reaction effect, the solution profile
flows across the domain with an increasing amount of
its height until it approaches the outflow boundaries.
The oscillation occurs along the fronts of the profile
from using of the coarse initial mesh and diminishes
after the second mesh adaptation. For case 2 where
the reaction is dominated, the solution profile also
flows across the domain with an increasing amount of
its uniform height throughout the domain. This latter
case is performed until the final time step is equal to
1. Figure 6(a)-(b) shows the initial and the third
adaptive meshes with their corresponding solutions at
the final time by using the three-dimensional contour
plots. Spurious oscillations occur along the profile
fronts because of the coarse mesh. Such oscillations
disappear after the meshes are adapted with small
cells along the fronts of the profiles.
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(b) Third adaptive mesh and solution

Figure 5: Adaptive meshes and computed solutions
of the oblique inflow (convection dominated)

problem.
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(b) Third adaptive mesh and solution

Figure 6: Adaptive meshes and computed solutions
of the oblique inflow (reaction dominated) problem.

5.4 The corner layer problem

The last example is singularly perturbed diffusion-
reaction problem [14]. The computational domain is a
unit square of Q =(0,1)x(0,1). The initial condition,
¢y(x), and the Dirichet boundary condition, ¢(x) ,
are prescribed as zero. The source term is given by

q=20(x2 +y2)+4 (32)

The diffusion coefficient is specified as & =10~%, and
the reaction coefficient, «,is set to be 2. This
example is performed until the final time step is equal
to 5. The solution profile exhibits very sharp
boundary layer along the upper sides and the right-
hand side. If the meshes in these regions are not fine
enough, oscillated solution may occur along these
boundaries, especially at the corner point (1,1). In
order to suppressing such oscillation, the Barth and
Jespersen limiter function [15] is imposed as follows:

Lol W CIRPL
b~ >
a8 = min {4 gn i (33)

TV e, alj"_ﬂ”

1 otherwise

where 4™ = max (¢|,¢j), ™" = min (¢,,¢j),

VT €dQ VT €00,

and ¢ = 4] —%(vi -V(/ﬁ,”).

The computational domain is initially performed by
using an unstructured mesh with 884 uniform
triangular cells (20 cells along each boundary). As
the meshes are adapted corresponding to the
computed solutions, small cell sizes are generated in
the region of high solution gradients along the upper
sides and the right-hand side. Figure 7(a)-(b) shows
the initial and the third adaptive meshes with their
corresponding solutions at the final time. The
computed solution obtained from the initial mesh
shows some oscillations without overshooting along
the boundary. Oscillations decrease as the meshes are
adapted with the solutions.
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Figure 7: Adaptive meshes and computed solutions
of the corner layer problem.

6 Conclusions

This paper presents a combination of an adaptive
meshing technique and a characteristic-based finite
volume element method for solving the two-
dimensional unsteady convection-diffusion-reaction
equation. The computations are performed on
unstructured triangular meshes based on cell-centered
method. The theoretical formulation of the proposed
method and the concept of adaptive meshing
technique were explained in details. The governing
equation was derived by the characteristic-based
scheme and discretized by the finite volume method.
The weighted residuals concept of the finite element
method was implemented to estimate the gradient
quantities at cell faces. The adaptive meshing
technique generates small clustered cells in the
regions of high solution gradients to increase the
solution accuracy. Larger cell sizes are generated in
the other regions to reduce the computational time
and computer memory. Four examples were used to
evaluate performance of the proposed method.
Results show that the combined method provides
improved accuracy and decrease oscillated solution
with the adaptive meshes.
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