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Abstract
The paper deals with the problem of the inversion of the so-called shortened LDI matrix for conversion between 
the coefficients of continuous-time and discrete-time linear filters whose s- and z-domain transfer functions are 
coupled via LDI transform. The elements of the inverse matrix are expressed by analytic formulae for general 
order of the matrix. The corresponding mathematical proofs are given.
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1 Introduction

In engineering practice, the relationship between  
the models of continuous-time system and system 
originating from it by discretizing the time axis is 
analyzed in two different aspects.
 The first one is a numerical solution of  
differential equations in simulation programs where 
the solution is searched via approximating difference  
equation. The corresponding methods, such as  
Backward Euler, Trapezoidal, Gear, and others, 
are then universally usable for solving linear and 
non-linear problems [1,2]. The concrete integration 
algorithm introduces an error to the solution of the 
differential equation due to approximation of the 
derivative by difference relations. The nature and 
the gravity of this error generally depend on the 
type of the approximation, on the system model, on 
the type of its excitation, and on the selection of the  
integration step and the method of its control. It 
turns out that some simulation models exhibit large 
sensitivity of the solution to the way of the time axis 
discretization, and that then the numerical solution 
can be far from the reality [3,4]. Such anomalous  

manifestations of the numerical methods increase 
the level of uncertainty of the designer about the 
correctness of the outputs generated by commercial 
simulation programs. Therefore they are currently 
analyzed at large, among other with the use of the 
theory of chaos [5].
 The second aspect, falling into the operator  
domain, deals with the relationship between the 
transfer functions of linear continuous-time (CT) and 
discrete-time (DT) systems [6,7]. For linear systems, 
one-to-one relations exist between both areas which 
result from the well-known connections between 
the system behavior in time, operator, and spectral 
domains.
 The paper is concerned with the problem from 
the second aspect. The bilinear (BL) s-z transform 
belongs to frequently utilized methods of designing 
linear DT system from its CT prototype [8,9]. Probably 
the first attempts at algorithmic solution of the task of 
the conversion of the coefficients of s-domain transfer 
function of CT system into coefficients of z-domain 
transfer function of DT system for BL transform and 
several other transformations are described in [10] and 
[11]. It is shown that the vectors of the coefficients are 
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matched via the so-called Pascal matrix. Its elements 
as well as the elements of its inverse matrix can be eas-
ily generated for an arbitrary order of the system, thus 
for an arbitrary matrix size [12]. The Pascal matrix 
is used for digital filter design [13-16], in numerical 
mathematics [17-22], and for signal processing [23-
25]. Some papers indicate that the Pascal matrix also 
attracts the attention of pure mathematicians [26].
 However, the BL transform is only one of 
more utilized first-order s-z transformations for  
converting s-domain transfer function to z-domain 
transfer function of the same order. Among other  
transforms, let us mention BD (Backward-Difference),  
FD (Forward-Difference) [8], and parametric  
transforms, the latter representing combinations of 
the basic transformations [27,28]. For these reasons, 
the so-called generalized Pascal matrix is introduced 
in [29], which includes the classical Pascal matrix as 
a special case, concurrently enabling conversions of 
the coefficients of CT and DT systems for all existing 
first-order s-z transforms. The rules for compiling the 
generalized Pascal matrix and also the inverse matrix 
are described in [30]. The rigorous mathematical 
analysis of the generalized Pascal matrix for various 
s-z transforms is given in [31] and [32].
 Another useful s-z transform, the LDI (Lossless  
Discrete Integration) [33], plays an important role 
since the eighties of the last century, either directly or 
in combination with the BL transform, for designing 
low-sensitive digital filters and switched-capacitor  
filters based on analog ladder structures [34,35].  
At later stage, it was utilized for designing switched-
current filters [36,37] and switched-capacitor sigma-
delta AD converters [38]. For example, the LDI 
transform is used for designing digital filters with 
low complexity coefficients in [39], Lossless Discrete 
Differentiator (LDD) in [40], and digital allpass filters 
in [41].
 In contrast with the BL, BD, FD transforms and 
the parametric transforms derived from them, the LDI 
is not the first-order s-z transformation, such that the 
generalized Pascal matrix cannot be used for this case. 
The corresponding computations are provided by the 
so-called LDI matrix, introduced in [42]. However, 
unlike Pascal matrix, the LDI matrix is not square  
because the DT system has more coefficients than 
the CT system. Owing to a certain symmetry of the 
vector of the coefficients of the DT system, all the 
information about the elements of the LDI matrix 

is contained in its specific part, forming a square  
submatrix, denoted in [43] as shortened LDI matrix. 
General properties of the original and shortened  
LDI matrices are analyzed in [43], and effective 
procedure for their composition for general order 
is found therein. However, the analytical formulae 
of the elements of the matrix, coming from the  
inversion of shortened LDI matrix for backward  
DT-CT transformation, have not been known till now.
 This paper presents the inverse matrix of the 
shortened LDI matrix in the analytical form. That 
completes the missing part of the matrix algorithm 
for bi-directional transformation between s and z 
domains, which was formerly built for the first-order 
s-z transform via generalized Pascal matrix.
 The paper has the following structure: Section 2,  
following this Introduction, summarizes the definition  
of LDI transform and the resultant definitions of 
complete and shortened LDI matrices. The inverse 
matrix of the shortened LDI matrix in the analytic 
form is presented in Section 3. Section 4 presents the 
respective mathematical proofs. Section 5 describes 
software experiments, demonstrating the correctness 
and usefulness of the proposed method of the matrix 
inversion.

2 LDI Transform and Its Matrix Description

The LDI transform is defined by the well-known 
equation [33]

 (1)

where s and z are operators of the Laplace and 
z transforms, and T is the sampling period,  
utilized for time axis discretization during CT to DT  
transformation.
 Applying the substitution

,  , (2)

where fS is the sampling frequency, Eq. (1) is modified 
to the form

, x

Consider N-th order CT linear system with the transfer 
function 
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(12)

 . 
(4)

 

 Applying the LDI transform (3) to (4) and  
arrangement yield the transfer function of DT system 
[43]

 
.
 

 The ck coefficients in the numerator can be 
obtained from the ak coefficients in the numerator 
of the transfer function (4) of CT system. Similarly, 
the dk coefficients in the denominator can be derived 
from the bk coefficients in the denominator of (4).  
The procedure is given by the following uniform 
algorithm [43]:

, . (6)

Here C and D are vectors of the coefficients of DT 
system

, , (7)

and ,   are vectors of modified coefficients of the 
CT system 

, , (8)

where

,  , i = 0, 1, ..., N. (9)

 The transformation matrices L appearing in 
both formulae (6) are identical. In [42] and [43], L is 
denoted LDI matrix. Its structure is obvious from the 
following notation of the first equation in (6) [43]:

k N, (10)

k N, (11)

where the notation [ ] denotes the integer part of the 
argument. The proof is given in [43].
 Example of the matrix formula (10), (11) for N = 5  
is given below as Eq. (12). It demonstrates specific 
symmetry of the LDI matrix, which can be described 
as follows:

 .  (13)

(5)
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 It is obvious that the complete LDI matrix can 
be unambiguously restored only from its upper square 
submatrix, which is expressed by Eq. (10). In [43],  
this matrix LS is called shortened LDI matrix. Its 
analytical notation results from Eq. (10):

 
 (14)

 
 

 Note that the shortened (N+1)×(N+1) LDI matrix 
can be used for transforming the coefficients of Nth-
order CT system into a subset of the coefficients of 
DT system according to the rule

, , (15)

where CS and DS are shortened vectors of the  
coefficients of DT system

, . (16)

 The remaining coefficients, not included in the 
shortened vectors, can be easily determined according 
to the rule of symmetry (13).
 Detailed analysis of the properties of shortened  
LDI matrix is given in [43]. Similar analysis is  
provided below for the inverse matrix to the matrix LS.

3 Inversion of Shortened LDI Matrix

Beside the shortened LDI matrix LS, we will also 
work with a lower square submatrix of L of size 
(N+1)×(N+1), which we denote . This matrix is 
upper triangular with ones on the main diagonal, 
hence it is invertible. The main reason why we prefer 
this matrix is that triangular matrices are easier to 
handle (unlike LS which has zero elements above the 
antidiagonal).
 In the sequel, for two integers p, q the symbol 
p|q means that p is a divisor of q and p q means that 
p is not a divisor of q.
 Let  us  denote   and  
 . Then according to (11)

 (17)

 
 In the following section it will be proven that

 

 (18)

 The proof is quite crucial. It is well-known 
that if an augmented matrix ( ), where E is the 
identity matrix, is transformed using elementary row  
operations to a matrix (E |P), then .  
Proceeding this way, rather complicated recurrence 
formulae are obtained from which the closed form 
(18) can be guessed, although it is not trivial (two 
partially overlapping Pascal triangles occur there). 
Nevertheless, once the formula for the inverse matrix 
is predicted, it is possible to verify its correctness—the 
product with  must be equal to the identity matrix.
 The inverse matrix (LS)–1 can then easily be  
obtained as follows. Consider a matrix

having zeros outside the antidiagonal. It is orthogonal, 
i.e., M–1 = MT. From (10) and (11) it is evident that 

, hence it is sufficient to rearrange the rows of 
 in the reverse order and then multiply them through 

consequently by (–1)N, (–1)N–1, …, –1, 1. If we denote 
 , we obtain

 
 (19)
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 Further,  Thus it is  
sufficient to rearrange the columns of  in the 
reverse order and then multiply them through in  
consequence by (–1)N, (–1)N–1, …, –1, 1. If we denote 

, we obtain

 

4 Proof of the Formula for the Inverse of 

Let us denote N0 the set of all nonnegative integers. 
To prove the main result, we will need the following 
auxiliary statement.
Lemma For every a, b 0, there is

. (21)

Proof. Let L denotes the left-hand side of (21). For 
every t b}, the equality 

holds. Using this formula and the substitution –t 
we get
L =

 (22)

 Consider a polynomial P(x, y) = (1–x+y)b(1+y)a+b.  
Applying twice binomial formula we get

 .

 The coefficient at the term xtya+b–t is thus 

 .

 Therefore, if we put y = x, the coefficient at xa+b 

will be

 .

 On the other hand, since P(x,x)=(1+x)a+b, this 
coefficient is obviously equal to 1. According to (22) 
this completes the proof of lemma.
 Now we are ready to prove the main result.
Theorem  Le t   and   be  
(N+1) × (N+1) matrices whose entries are given by 
(17) and (18), respectively. Then B = A–1.
Proof. We will be done if we prove that AB = E. Let  
F = AB = . Both A and B are upper triangular 
matrices with ones in the principal diagonal, which 
implies that matrix F has this property as well.
So we will be done if we prove that all the entries 
of F above the principal diagonal are zeros. For  
r < s,  obviously fr,s = 0. For r < s, 2|(r+s)  
we have

(20)
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according to Lemma. This completes the proof.

5 Software-based Experiments

To verify the correctness and usefulness of the above 
analytical formulae of the inverse of the LDI matrix, 
the following computations in Maple 16 have been 
performed on PC with Intel i5-3337U CPU 1.8 GHz 
with 8 GB RAM. 
 Note that the computation with the LDI matrix 
and also with its inverse has two practical aspects, 
especially for higher matrix sizes, which are typical 
for designing digital filters of orders exceeding values 
of hundreds: the computation time and particularly the 
computation accuracy. The latter aspect is crucial if 
filter zeros and poles are to be evaluated from the filter 
coefficients. Since such computations are extremely 
sensitive to the truncation errors of the coefficients, 
these coefficients should be represented by higher 
number of digits than the commonly used format 
on PCs, double-precision binary floating-point, can 
provide.
 Until explicit formula (20) was known, the only 
way to find the inverse of   was the use of some 
standard numerical method for the evaluation of the 
inverse matrix. Since entries of the inverse of  are 
integers and the inverse LDI transform is sensitive 
to rounding errors, symbolic computations should be  
used. As the following Table 1 shows, this way (see the  
rows “symbol.”) is very slow for large N. Alternatively,  
software floating-point numbers with a lot of digits 
have to be used to obtain accurate results (see the rows 
“numer.”). The entry “Digits” represents a number of 
digits which are necessary for providing numerically 
correct results. The conventional numeric calculation 
utilizing hardware 64-bit IEEE binary floating-point 
numbers is faster, but it gives incorrect results for 
N=100 and 200 and fails for N=1000. Therefore,  
formula (20) represents the true progress in the study 
of the inverse LDI transform.

Table 1: Computational times for various N (first  
column). Computing  from Eq. (14) (second  
column), computing  inverse from Eq. (20) (third 
column) and by numerical inversion (fourth column).

N/Digits

Computational Time [sec]

(14) (20) inversion

symbol.

100/- 0.125 0.109 1.578

200/- 0.828 0.703 11.125

1000/- 88.875 63.578 1520.453

numer.

100/33 0.141 0.140 0.218

200/68 0.860 0.703 1.969

1000/347 101.844 65.922 244.360

6 Conclusions

Analytical formulae for the elements of the matrix, 
which is the inverse matrix of the shortened LDI 
matrix, are derived in the paper. That completes the 
last and hitherto missing part of the matrix algorithm 
for the conversion between the coefficients of CT 
and DT systems, which are interconnected via the 
LDI transformation. The experiments from Section 5 
demonstrate the fundamental limits of conventional 
numerical inversion of large LDI matrices. Then the 
analytic formula for the inverse matrix, proposed 
in the paper, can overcome the numerical problems  
associated with the conventional inversion.
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