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Abstract
Within the automotive industry, the clients’ high demand for individually customized products results in a growing  
number of product variants. In order to control the complexity of developing these variants, a product line  
approach is used that supports reuse of the common set of assets (e.g. requirements, software code, and test cases). 
The naive approach to assure quality of the variants derived from the product line would be to individually test 
each variant. However, due to the large number of variants it is virtually impossible to test all variants in detail 
and still release the product line on time. In this paper, we propose a new test approach based on requirements 
coverage and variant properties coverage (i.e. feature coverage) that leads to effective but also efficient test 
coverage of all variants of the product line. A set of variants is selected that is 1) as small as possible, 2) covers 
all requirements of the product line, and 3) covers all features of the product line. This small set of variants is 
then tested in detail. Reducing the number of tested variants allows for deeper testing and thus finding more 
defects. Because of the coverage achieved by the variant set, the quality of all other variants can be inferred 
from the test results. Finding the optimal set of variants in itself is a very hard problem, i.e. in an industry  
setting with huge numbers of possible variants it is practicably infeasible to strive for the optimum. Therefore,  
we developed two approaches which are not guaranteed to find the optimal set but get very near to it in little time. 
First, a greedy algorithm was created which produced very good results in very little time in all case studies. For 
example, for a system with one million variants a set of eight representing variants was selected within seconds. 
Second, a simulated annealing approach was evaluated in order to check for further potential of improvement. 
However, the case studies showed that the greedy algorithm is the better choice for practical results. 
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1 Introduction

Within the automotive industry, individual customers’  
demands, market specific requirements, technical 
variability, strategic decisions etc. cause the number 
of features and options to grow. The resulting space 
of valid vehicle variants increases exponentially with 
the number of possible options [1]. For example, the 
current Mercedes-Benz A-class allows customers  
to configure approx. 1015 possible variants. The  
methodology of Product Line Engineering (PLE) helps 
to cope with the resulting complexity and variability 
of these systems in the development process. PLE  

supports a systematic and proactive reuse of  
development artefacts by taking advantage of the 
products’ common set of assets and hence efficiently 
reduces the time-to-market and the development costs 
of the product line while at the same time improving 
its quality [2]. 
 The PLE approach chosen at Daimler AG is 
to use common feature models for all development 
artefacts [3]. In this paper, the focus is on Product  
Line (PL) requirements specifications and the  
associated test cases in test specifications. Such generic  
specification documents allow deriving specific product  
specifications by selecting the relevant features with  
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respect to a certain product, as illustrated in Figure 1. 
This way, the specifications have a generic character and  
provide a high degree of reusability for the development  
artefacts [4].
 Before products derived from a product line 
can be delivered to customers, they need to be tested 
whether they work as intended. This would mean  
running all test cases associated with all products 
planned for release to customers [5]. As the number of 
products is very high, this is infeasible as testing would 
take much too long. In order to reduce the number of test 
cases executed, there are two vectors of approach which 
can be combined. First, the number of products tested 
can be reduced to a subset representing all products.  
Second, the number of test cases executed over all 
products is reduced, e.g. using appropriate regression 
strategies for common features. In this paper, the main 
focus is on the first approach, i.e. selecting a subset of 
products as small as possible that still gives sufficient 
confidence that products tested as well as products 
not tested will have the necessary quality for release.

2 Related Work

In the literature, three main approaches for selection 
of variants for product line testing can be identified. 
First, the combinatorial testing, which determines  
variants based on the interaction coverage of features, 
e.g. pairwise coverage [6]. The approach exclusively 
uses information from the variability model but 
achieves an effective reduction of the product subset 
for testing. The second strategy prioritizes variants  
according to criteria like most critical, most sold etc. [7].  
This strategy requires a lot of effort for providing the 

necessary additional information. The third method 
is similar to the one used in this paper and selects  
variants based on requirements and architecture  
coverage [1]. The drawback is that it does not scale 
with real world product lines.

3 Approach

In this paper, the approach to selecting a small but  
sufficient subset of variants maximizes both requirements  
coverage and feature coverage. Requirements coverage 
is defined as the ratio of requirements in the product 
line requirements specification which are present in 
at least one variant selected to the total number of 
requirements. 100% requirements coverage makes 
sure that there are no untested requirements. Feature 
coverage is the ratio of all features of the common 
feature model present in at least one variant selected 
to the total number of features that were actually used 
in the requirements specification. In general, feature 
coverage is largely achieved by variants selected for 
requirements coverage already, but may add variants 
to cover special cases. 100% feature coverage makes 
sure no feature present in any product is untested.
 Feature coverage makes sure that all features of 
the product line are taken into account. Requirements 
describe the behavior of the product line and also  
reflect relationships between features (e.g. a requirement  
can be associated with various features). For testing, 
it is important to consider both requirements and 
features. 
 Finding the minimal set of variants that yields 
100% requirements and feature coverage is a very hard 
problem: the time needed grows with the increasing 
number of variants, which in general grow exponentially  
with the number of features in the feature model. In 
practical applications the number of variants is huge, 
therefore fast methods for selection are needed that  
result in subsets small enough but possibly not minimal.  
We evaluated both greedy algorithms (a local search 
approach) and simulated annealing (a global search 
approach). 

3.1  Greedy algorithm

Greedy algorithms [8] work towards an optimal solution  
by an iterative approach. In each iteration, from all 
possible steps towards a solution the one step is chosen 

Figure 1: Overview of the relationships between 
feature model, requirements artefacts (RA) and test 
artefacts (TA) at Daimler AG.
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that gets most close to the optimum. This requires a 
measure for the quality of intermediate results. Here, 
this is the combination of requirements and feature 
coverage.
 Some requirements may be relevant for exactly 
one variant, therefore these variants need to be selected 
in any case. Therefore, in a first step, the set of selected 
variants is initialized with such variants. Interestingly, 
in both case studies (see below) there were not such 
variants.
 In the main loop, from the remaining variants the 
one is selected that yields the biggest improvement in 
requirements coverage. If there are several candidates 
with the same yield, among those the one with the 
biggest yield in feature coverage is chosen. If there is 
still more than one candidate left, the choice is made 
random among them. The loop is iterated until both 
requirements coverage and feature coverage reach 
100%. The algorithm is described in detail in [9]. 
 For the average case the run time of the Greedy 
Algorithm is O(|C C|)). It is mainly determined 
by the number of configurations C which have to be 
sorted according to their coverage of requirements and 
features within a priority queue.
 The memory consumption mostly depends on the 
calculation of the configurations C from the feature 
model and which requirements R and features F are 
valid for which configurations: O(|C R|+|C F|). 
The calculations of these lists are performed before 
the actual selection in the Greedy Algorithm. 

3.2  Simulated annealing

Simulated Annealing (SA) is a method for a random-
based search for a global optimum [10]. While a 
Greedy Algorithm only accepts intermediate steps that 
increase the quality of the solution, SA accepts worse 
solutions with a certain probability that decreases over 
iterations until it reaches zero. The big advantage is that 
SA may get out of local optima in the solution space, 
which a Greedy Algorithm cannot.
 Here, a random subset of variants of a fixed size 
is created. Each intermediate step swaps a random 
variant in the subset with another random one from 
the rest of the variants. The quality metric E of the 
new subset Cselected is defined by the ratio of uncovered 
requirements R and features F, multiplying them with 
individual weights w and adding the results to the 

weighted ratio of selected variants to all variants Call 
(see eq. 1). E needs to be minimized for best results. 

 (1)

with 

 Better new subsets are always accepted. Worse 
new subsets are also accepted with a certain probability 
which gets lower by each iteration. Else the former 
solution is retained and used in the next iteration. 
 The acceptance probability depends on a simulated  
cooling schedule in analogy to annealing in metallurgy.  
The cooling is determined by , with 
a starting temperature Tinit = 100°C and an end  
temperature Tend = 0.001°C, which is also used as the 
stop criterion for SA. The cooling rate  determines 
how many iterations are executed between Tinit and 
Tend to search for a better solution. In the case studies 

results of section 4.2 depict case studies with  = 0.01.
 Using a fixed size of the subset is a constraint 
chosen from experience. First, adding or removing 
variants was also a valid change in an iteration, but this 
led to inferior results. Thus it was decided to use the 
size N of the subset yielded by the Greedy Algorithm 
as a starting size. SA runs were started with subset 
sizes from {N-b, …, N, …, N+d} with a small b and 
d, e.g. b, d = 3. The best solution of all subset sizes is 
being saved as the global best solution. As the size of 
the subset is considered in the last term of eq. 1, all 
other terms equal the smaller subset is better.
 The run time of SA depends most on the number 
of iterations performed that swap variants times the 
number of subsets with fixed sizes: .  
The memory consumption for SA is the same as for 
the Greedy Algorithm: O(|C R|+|C F|).

3.3  Test case selection

Independent of the method used to select the subset 
of variants for testing, the test cases to be executed 
for each variant from the subset can be derived from 
the generic test specification of the product line by 
generating the specific test specification for each 
variant selected.
 However, there may still be room for improvement  
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by applying regression strategies to reduce the overall  
number of test cases for the subset, such that test cases shared  
by variants from the subset may not have to be executed 
for all variants [11]. Work on this issue is still ongoing.

4 Evaluation

4.1  Case studies

Both methods outlined in section 3 were applied to 
two real world case studies at Daimler. The first case 
study deals with a product line from the area of thermal  
comfort. It has 840 requirements and 37 features,  
resulting in a total of approx. 106 variants. The second 
case study focuses on a product line for car battery 
charging systems. It has 563 requirements and 20 
features, resulting in a total of approx. 103 variants.
 Additionally, the most similar already existing 
method from section 2, the pairwise method, was also 
applied to the case studies and used as a benchmark.

4.2  Results 

The Greedy Algorithm creates very small sets of 
variants in very little time. Requirements and feature 
coverage grow fast in the beginning (see Figure 2), 
which is due to the greedy approach.
 In comparison, the Simulated Annealing takes 
longer and does not guarantee sets having 100%  
requirements and feature coverage. Experiments with 
different set sizes showed that Simulated Annealing 
never found qualifying sets of variants smaller than the 
ones found by the Greedy Algorithm. Figure 3 shows 
an example run for a set size equal to the result of the 
Greedy Algorithm.

 Table 1 summarizes the results for the three 
methods for case study 1, while table 2 does the same 
for case study 2. Both case studies show the large  
differences in run time between the Greedy Algorithm 
and Simulated Annealing. The pairwise method is 
faster still because it does not consider requirements, 
only features. It always yields much larger sets of 
variants because it additionally demands that all valid 
pairs of features are present at least once. 

Table 1: Results for Case Study 1
Greedy 

Algorithm
Simulated 
Annealing Pairwise

#variants (avg.) 8 10.6 32

run time (avg. sec) 30.8 721.2 1

req. cov. (avg. %) 100 97.33 100

feat. cov. (avg. %) 100 100 100

Table 2: Results for Case Study 2
Greedy 

Algorithm
Simulated 
Annealing Pairwise

#variants (avg.) 5 5 19

run time (avg. sec) 10.3 344.4 1

req. cov. (avg. %) 100 100 100

feat. cov. (avg. %) 100 100 100

5 Conclusions

In this paper, two new methods to selecting variants 
from a product line as test representatives for all variants  
were proposed. Both methods have the objective to 
reach full requirements coverage and full feature 
coverage. 

Figure 2: Greedy Algorithm: Cumulative coverages 
of selected configurations for Case Study 1.

Figure 3: Simulated Annealing: Coverages at each 
iteration step for Case Study 1.
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 The first method is based on the ideas of the 
Greedy Algorithm, while the second method adapts 
Simulated Annealing to this task. The results of both 
methods are compared to an already existing method 
based on pairwise feature coverage.
 Results for two real world case studies showed 
that the Greedy Algorithm is superior to Simulated 
Annealing in terms of quality of results and run time. 
Even though Simulated Annealing is capable of leaving 
local optima in the solution space, which the Greedy 
Algorithm is not, Simulated Annealing never found a 
better solution than the Greedy Algorithm.
 In comparison to the pairwise method, the 
number of variants selected by the new methods is  
significantly smaller. This is a large benefit for practical  
work, as testing a single variant takes significant time 
and cost. The fewer variants to be tested the better.  
Nevertheless, the full requirements and feature coverage  
give sufficient confidence that the test results for 
the variants selected are representative for all other  
variants of the product line.
 The major advantage of the pairwise method is 
that it tests each interaction of two features at least 
once, which the new methods in this paper cannot 
guarantee. Therefore, for testing product lines with 
very high demands on functional safety, it may be  
useful to test additional variants selected by the 
pairwise method, but only after testing the variants  
selected by the proposed methods first. Additionally, 
the proposed methods could be extended to additionally  
optimize feature pair coverage, thus fusing the proposed  
approach and the pairwise method. 
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