
1

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

Mining Bug Report Repositories to Identify Significant Information for Software Bug
Fixing

Bancha Luaphol*, Jantima Polpinij and Manasawee Kaenampornpan
Department of Computer Science, Faculty of Informatics, Mahasarakham University, Maha Sarakham, Thailand

* Corresponding author. E-mail: bancha.lu@ksu.ac.th DOI: 10.14416/j.asep.2021.03.005
Received: 6 December 2020; Revised: 20 January 2021; Accepted: 5 February 2021; Published online: 17 March 2021
© 2022 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
Most studies relating to bug reports aim to automatically identify necessary information from bug reports for
software bug fixing. Unfortunately, the study of bug reports focuses only on one issue, but more complete
and comprehensive software bug fixing would be facilitated by assessing multiple issues concurrently. This
becomes a challenge in this study, where it aims to present a method of identifying bug report at a severe
level from a bug report repository, together with assembling their related bug reports to visualize the overall
picture of a software problem domain. The proposed method is called “mining bug report repositories”. Two
techniques of text mining are applied as the main mechanisms in this method. First, classification is applied for
identifying severe bug reports, called “bug severity classification”, while “threshold-based similarity analysis”
is then applied to assemble bug reports that are related to a bug report at a severe level. Our datasets are obtained
from three opensource namely SeaMonkey, Firefox, and Core:Layout downloaded from the Bugzilla. Finally,
the best model from the proposed method is selected and compared with two baseline methods. For identifying
severe bug reports using classification technique, the results show that our method improved accuracy, F1, and
AUC scores over the baseline by 11.39, 11.63, and 19% respectively. Meanwhile, for assembling related bug
reports using threshold-based similarity technique, the results show that our method improved precision, and
likelihood scores over the other baseline by 15.76, and 9.14% respectively. This demonstrate that our proposed
method may help to increase the chance to fix bugs completely.

Keywords: Bug report, Severe bug report, Related bug report, Text mining, Classification, Similarity analysis

Research Article

1 Introduction

Bug reports contain all significant information for
helping a development team to find and fix problems
occurred in software. To gather bug reports on a global
scale, bug tracking systems (BTSs) have been developed
and proposed, where BTSs are able to gather bug
reports from people from around the world. After
gathering bug reports from end-users worldwide,
software experts, so called bug triagers, are required
to analyze the bug reports, which includes classifying
bug and non-bug reports, checking for duplicated bug
reports, prioritizing bug reports, and assigning suitable
developers. These tasks are time-consuming and costly
[1]–[3]. As a result, there are subsequently a large

number of bug report studies, and generally they can
be divided into three main areas.
 The first area of bug report studies concerns bug
report optimization which aims to enhance report quality
and reduce the amount of incorrect information in
reports. Bug report optimization can be classified into
three tasks: Content optimization [4], [5]; bug report
misclassification [6]–[10]; and severity prediction
[11]–[15]. Yet, the most important task in bug report
optimization is the bug report misclassification. This
is because analysis time in the following stage can
increase if outlier bug reports are not removed from
the bug reports. The second study in the bug report
area is the report triage which concerns duplicated
bug detection [1], [16]–[19], prioritization [20]–[23],

http://dx.doi.org/10.14416/j.asep.2021.03.005

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

2 Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

and suitable developer assignment tasks [24],
[25]. Duplicated bug reports are detected and
removed from the bug report repository where further
processing is not required [1], [17], [18]. Bug report
prioritization serves to predict the priority of bug
reports and assigning suitable developers for fixing the
bug is the last task of the bug report triage. The third
study in the bug report area is bug fixing, which can
also be divided into three main tasks: bug localization
[26]–[28]; recovering links between bug reports and
change files [29], [30]; and bug fixing time prediction
[31], [32]. Bug localization aims to identify the
location of bugs in software code or in a program.
Recovering links between bug reports serves to
connect bug reports and change files, where the change
files are the logs of the software correction history.
In this case, when software is corrected according to
a specific bug report, the report must be linked to its
related log. However, some links may be missing, so
this task also seeks to recover the links between the
bug reports and the change files. Finally, predicting the
bug fixing time seeks to identify how long it will take
between identifying a bug and resolving it.
 In fact, most studies mentioned above aims to
automatically identify necessary information from bug
reports for software bug fixing. Bug severity analysis
is an important process that involves estimating the
impact of the bug on software according to a ranking
scale. Severity is a measure of the seriousness of a
software issue and how it terribly affects functionality.
Consequently, bug triagers often look for bug reports
that contain the most severity, especially severity
information at “blocker” and “critical” levels [12]–
[15]. Software bugs involved in blockers can impact
further testing in a specific environment, while bugs
at a critical level result in software crashing, data loss,
or other serious damage. Bug reports at blocker or
critical levels are defined as “severe bug reports”.
Many studies have proposed automatic bug severity
analysis, mostly driven by text classification, called
“bug severity classification” [13]–[15].
 However, bug severity analysis alone cannot help
to obtain sufficient information for completely fixing
software bugs because the development team may not
see the overall picture of a software problem domain.
A solution to see the overall picture of a software
problem domain is to find all related bug reports
that are called “related bug reports” or “bug report

dependency”. Related bug reports can be described by
a situation in which an unfixed bug ‘a’ affects bug ‘b’.
That is, bug ‘b’ continues to occur despite it being fixed
if bug ‘a’ is not yet completely fixed. Unfortunately,
this issue has not yet been earnestly studied. It was
just mentioned in [2], [32]. This may be because
performance improvements are still required for
bug report misclassification, severity and priority
prediction, bug duplicated detection, bug localization,
and bug fixing tasks [3]. Therefore, finding a solution
to see the overall picture of a software problem domain
is a challenge in this study.
 This study aims to present a method of identifying
severe bug reports from a bug report repository,
together with assembling their related bug reports to
visualize the overall picture of a software problem
domain. The proposed method is called “mining bug
report repositories”. Two techniques of text mining are
applied as the main mechanisms. First, classification is
applied for bug severity analysis, called “bug severity
classification”, while text similarity is then applied to
assemble related bug reports, called “threshold-based
similarity analysis”. In classification tasks, machine
learning and deep learning algorithms are compared
to obtain the most appropriate models. We selected
multinomial naïve bayes (MNB), support vector
machines (SVM), random forest (RF), and convolutional
neural networks (CNN). Furthermore, to increase the
class distinguishing power, a supervised term weighting
(STW) scheme, called term frequency - inverse gravity
moment (tf-igm), is applied because this weighting
scheme can determine the importance of a word in a
document of a specific class.
 Finally, the best model from our “bug severity
classification” method is compared with the baseline
method proposed by Ramay et al. [15], while the best
model of the “threshold-based similarity analysis”
method is compared with the baseline method
proposed by Rocha et al. [33].
 The paper is organized as follows. In section 2,
we present the datasets used for this study. Meanwhile,
the proposed method is presented in section 3 and the
experimental results are presented in section 4. Finally,
the conclusion is in section 5.

2 Dataset

The dataset used here was gathered from Bugzilla,

3

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

while bug reports relating to Mozilla were downloaded
between 1 September 2019 and 30 October 2020. Our
dataset is from three opensource namely SeaMonkey,
Firefox, and Core:Layout. The dataset consists of
66,989 bug reports. Here, the bug report statuses used
in this study are ‘verified’ and ‘closed’ because bug
reports with these statuses were confirmed by bug
triagers, software developers, and software testers that
might be “real” bug reports [3], [21].
 In general, a bug report contains three major
parts, i.e. summary, description, and discussion.
The summary is the title of the bug report, while the
description contains details of each particular bug
report. The discussion contains information concerning
mentions or comments on that particular bug report
submitted by other end users. However, many bug
report studies deploy only the summary because this
part contains less noise [17], [34], [35]. Therefore,
here, we also investigated only the summary part.
 Bug reports labeled as “blocker”, “critical” and
“major” are re-assigned as severe bug reports, while
bug reports labeled as “normal”, “minor” or “trivial”
are re-assigned as non-severe bug reports. However,
when we downloaded bug reports from Bugzilla, none
were labeled as “major”. Therefore, major bug reports
were not utilized in our study.
 Each bug report is also assigned information to
indicate its associated bug reports, labeled as “depends
on” (Figure 1). This dataset was used in both the
proposed and compared methods, and these were set

in the same environment. The summary of our dataset
is presented Table 1.

Table 1: Summary of dataset

Dataset Total of Bug
Reports

Number of Bug Reports
Severe Non-severe

Core:Layout 9,840 1,067 8,773
Firefox 36,324 1,762 34,562
SeaMonkey 20,825 2,643 18,182

 It notices that 70% of the available data in the
severe class is allocated for training. The remaining
30% of data are referred to test datasets. To prevent a
problem of imbalance class, the number of non-severe
bug reports at the test set should be equal to the number
of severe bug reports at the training set.

3 The Proposed Method

An overview of the proposed method, called “mining
bug report repositories”, is shown as Figure 2. It
consists of two main stages. The first stage is to select
bug reports that are deemed to a severe level utilizing
text classification technique, called “identifying severe-
bug report” stage. The second stage is to assemblage
bug reports related to those severe bug reports
using threshold-based text similarity analysis, called
“assembling related bug reports”. Each stage can be
detailed as follows.

Figure 1: An example of bug report and its severe level and related bug reports.

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

4 Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

3.1 Identifying severe bug reports using severity
classification

This stage is to apply the text classification technique
to identify bug reports that are deemed to the severe
level. It consists of three main processing steps. They
are pre-processing, bug report representation, and term
weighting, and severe bug classifier modeling. An
overview of the proposed methodology for identifying
severe bug reports can be shown in Figure 3. Each
processing step can be described as follows.

3.1.1 Pre-processing

The first stage of bug report pre-processing is text
tokenization. This process separates text to tokens,
called “words” in this study. Bug report features (or
words) used in this study are unigram and CamelCase.
Unigram means a single word, while CamelCase
[6], [26]–[28], [36] (also referred to as Snakecase or
Compound words) refers to words that combine many
single words or abbreviations with no intervening
spaces or punctuation. Some examples are “browser_
views” and “AutoComplete”. Unigram and CamelCase
are popularly used in bug report studies because a
unigram is simple to extract from a bug report, while
CamelCase can indicate the specificity of the software.
However, when using CamelCase words, these words
are split into single words before use. This expands the
bug report features. Therefore, examples of CamelCase
words such as “browser_views” and “AutoComplete”
can be split as “browser”, “views”, “Auto”, and
“Complete”, respectively. It is noted that both original
CamelCase words and words that are split from those
CamelCase words are used in this study.

 After tokenizing text to words, the stop-words are
removed. This is followed by the stemming process. In
this case, the Snowball stemmer is utilized to reduce
inflection in words to their common base, stem, or
root form. It is noted that we performed bug report
pre-processing using the Natural Language Tool Kit
(NLTK) library in Python.
 Suppose there is an example of the summary part
of a bug report. It is “AutoComplete for URLs isn't
working (urlbar)”. An example of pre-processing bug
report can be illustrated in Table 2.

Table 2: An example of pre-processing bug report
Processing Tasks Result of Each Step

Tokenized AutoComplete/ for/ URLs/ is/ n't/ working/
./ (/ urlbar/)

Stop-words removal AutoComplete/ URLs/ working/ urlbar
CamelCase words
splitting

AutoComplete/ Auto/ Complete/ URLs/
working/ urlbar

Stemming autocomplet/ auto/ complet/ url/ work/
urlbar

3.1.2 Bug report representation and term weighting

After obtaining features of bug reports, they are
represented as vector space model (VSM) format.

Figure 2: Overview of the mining bug report repositories method.

Figure 3: Overview of the proposed methodology for
identifying severe bug reports.

5

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

Later, term frequency - inverse gravity moment (tf-igm)
which is one of supervised term weighting (STW)
schemes is used to assign weight score for each bug
report feature [37]. The specific character of STW
is to consider term distribution in the classes of
interest. Consequently, this may help to improve its
discriminating power for text classification tasks [37],
[38]. The tf-igm is to combine term frequency (tf) with
the igm measure. The equation of tf-igm is represented
in Equation (1).

 (1)

The igm is indicated in Equation (2), where fir (r =
1,2,...,M) is the number of bug reports containing the
word ti in the r-th class, which are sorted in descending
order. Thus, fi1 represents the frequency of word ti in
the class in which it occurs most often. The equation
of igm is represented in Equation (2).

 (2)

In Equation (1), λ is an adjustable coefficient used to
relatively balance between the global and local factors
in the weight of a term. To the best of our knowledge,
the λ coefficient should have a default value of 7.0.
However, it and can be set as a value between 5.0 and
9.0 [37].

3.1.3 Severe bug classifier modeling

To build the severe bug report classifiers, suppose
BR is bug reports allocated as training set and br is a
bug report. This can be denoted as BR = {br1,br2,...,bri}.
A fixed set of classes can be denoted as C = {severe,
non-severe}. In this study, four classification algorithms
are applied. These algorithms can be briefly described.

• Multinomial Naïve Bayes (MNB)

The Naïve Bayes (NB) is a classification algorithm
which refers to conditional independence of each of the
bug report features in the classifier model. However,
this algorithm was improved by adding Laplacian or
add-one smoothing to prevent the zero probability
for an unseen word and this NB version is called
multinomial naïve bayes (MNB). The MNB classifier

is a specific instance of an NB classifier that uses a
multinomial distribution for each of the features [39].
From the training set, we can calculate as follows
[Equation (3)].

 (3)

While the equation of is:

 (4)

where count(wi, c) is the total count of word i in
all documents of class c of the training set, and |V|
represents the entire words found in the document.
It can be seen that Equation (4) uses Laplacian or
add-one smoothing to prevent the zero probability for
an unseen word.

• Support Vector Machine (SVM)

The SVM is a popular algorithm for text classification.
It determines a decision boundary together with a
maximal margin to separate almost all the documents
into two classes. The SVM has returned good results
in many studies. In SVM learning, the classification
problem involves finding a separating hyperplane that
maximizes “the margin” [40]. This technique allows
for errors in classification using “slack-variables”, and
also, operates as a “dual problem” that only depends on
inner products between feature vectors which can be
replaced with kernels [40]. In SVM learning, a kernel
function uses an infinite number of features for pattern
analysis [41], [42].

• Random Forest (RF)

RF is also a popular classification method. This
comprises an ensemble of a set of trees as a learning
classification method [43]. RF performs by building
a lot of decision trees at training time. Each node
in the decision tree conducts on a random subset of
features to generate the output. Finally, the random
forest aggregates the output of individual decision
trees to a summary as the final output. One of the most
popular forest construction procedures proposed by
[43]. In this study, 100 trees were constructed.

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

6 Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

• Convolutional Neural Network (CNN)

CNN is a class of deep neural networks (DNN) that is
most commonly applied to image analytics. CNN has
also been applied to text classification. It has proved
useful for this task. The architecture of CNN for text
classification consists of four connected layers as word
embedding layer, convolutional layer, pooling layer,
and softmax layer, as shown in Figure 4.
 Each layer of CNN for text classification can be
described as follows.
 Word Embedding Layer: Word embedding is the
first layer in CNN. This process is performed to map
vocabulary word indices to low dimensional vectors
by transforming natural language into a meaningful
numerical form. Word embeddings are represented
as vectors, and each vector depicts the features of a
word. The closeness of two words embedding vectors
in the vector space indicates the degree to which they
are semantically related. A word embedding vector is
learned for every word in all of the texts included in
the text corpus.
 Convolutional Layer: This layer converts the
texts to sequences of word embeddings as input, and
then creates feature vectors by analyzing the word
embeddings for each text using a mechanism called
“convolution filters”. A convolution filter is a matrix
filled with weights that analyzes multiple consecutive
words in a text concurrently. This process continues
throughout the whole text to create a feature map. The
same operation is performed for every text to detect
different relationships between the words using multiple
convolution filters. These convolution filters also differ
from each other in height, which indicates how many
consecutive words a filter considers concurrently in

each step. To obtain the feature vectors, the feature
maps generated by the convolution operation are added
with a bias term, and an activation function is also
applied to add non-linearity.
 Pooling Layer: This layer used the variable-
length feature vectors obtained from the convolutional
layer as input and produces fixed-length vectors. By
doing this, the less relevant local information should
be removed.
 Softmax Layer: It is the final layer of CNN used
to convert the fixed length feature vectors to be the
input to a fully-connected layer as an efficient way
of learning non-linear feature combinations. Outputs
of this fully connected layer are numerical values for
each class. To assign a straightforward interpretation
to these numbers, the softmax function is applied to
force the output of the CNN to represent predicted
probabilities for each of the classes. Finally, the class
achieving the highest predicted probability is the
predicted class generated from the CNN.
 During the training of the CNN, the weights in
the embedding, convolutional, and softmax layers are
updated in each epoch using the categorical cross-entropy
loss function. This process of updating the weights is
called “back-propagation”, and is the essence of neural
network training. Back-propagation is used to fine-tune
the weights of a neural network based on the error rate
resulting from the previous epoch. Minimizing the
error rates through proper tuning can increase model
reliability and generalization.
 In this study, we used three layers of CNN with
the following settings. The filter was defined as 128
to represent the number of neurons, with each neuron
performing a different convolution to the input of the
layer. The kernel size was defined as 1, representing
the size of the filter, and the tanh activation function
represented the final value of a neuron. Finally, the
dense output layer fully connected the 128 neurons to
every activation units of the next layer and contained
2 neurons.

3.2 Assembling related bug reports using threshold-
based similarity analysis

After recognition, severe bug reports, identified by
the process described in Section 3.1, are used as the
center point to find their related bug reports. This
solution helps the software development team can see

Figure 4: Overview of general CNN architecture for
text classification.

7

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

an overall picture of the software issue. Consequently,
this may increase the chances of to completely fixing
the software.
 All bug reports used in this study are pre-
processed in the previous stage and formatted as VSM.
Therefore, these bug reports do not require further pre-
processing. However, when using BM25 as the main
algorithm, each bug report feature should be given
weight by term frequency (tf).

3.2.1 Cosine similarity (CS)

CS is applied to assemblage related bug reports because
it has been widely used for bug report studies [26],
[27], [33], [44]. The CS equation is [Equation (5)]:

 (5)

where V1 and V2 are the term vectors of a pairwise
between a severe bug report and related bug reports
in the dataset. The similarity result should be close to
1 if both bug reports are similar. Also, thresholds are
provided to determine the similarity score. Thresholds
used in this study are from 0 to 1 with step 0.1. When
the similarity score of the severe bug report and a
bug report is greater than or equal to the threshold, it
means that those bug reports should be grouped into
the same cluster because they may be relevant. Yet,
when the similarity score of a severe bug report and
a bug report is below the threshold, those bug reports
may be irrelevant.

3.2.2 BM25

When using BM25, each term should be given its
weight by tf. The BM25 is applied for assembling
related bug reports because this algorithm has been
proved that it could return satisfactory for bug reports
analysis, especially in real-bug report identification
and duplicate bug report analysis [18].
 BM25 is a ranking function which was developed
in the Okapi information retrieval system [45]. For
BM25, it does not require giving term weights by
tf-igm, where it requires only document frequency (df).
The df is the number of documents where the term t
appears. Instead of regarding the inter-relationship
between the query terms with in a document (or bug

report), the BM25 equation is [Equation (6)]:

 (6)

Let SB be a severe bug report and br be a bug report
that may be related to that SB. Therefore, tf(qi,br) is
the term frequency, where it is defined as the number
of occurrences that the terms q-th of SB appear in br.
Indeed, |br| is the length of br in words, while brlavg
is the average bug report length for all the bug reports
in the corpus. For, k and b, they are free parameters.
They are used to control the weighting between tf(qi,br)
and the normalized bug report length. Generally, the
values of k and b should be in the range of 1.2 < k < 2.0
and 0.5 < b < 0.8 [45], [46]. This study uses the values
of k and b at 2.0 and 0.8 respectively. They are the same
values used in [45].
 For idf(qi), it is the inverse document frequency of
the term q-th of SB. It can be calculated by Equation (7).

 (7)

where N is the entire number of bug reports in the
corpus, while df(qi) is the number of bug reports
containing the term q-th of SB.
 In general, the similarity score should be between
0 and 1. However, when using the BM25 technique
to estimate the similarity score, it is possible that this
technique can return a score greater than 1.0. Similarity
scores should be normalized to allow a comparison
of different similarity values using a single scale.
Normalizing similarity scores helps to remove the
mean and scale to the similarity score variance. To
normalize the BM25 similarity scores in the range
[0,1], the function was shown as Equation (8) also
applies in this case.

 (8)

where x is the similarity score generated by BM25.
 In this study, threshold-based text similarity analysis
is also applied, where thresholds are also provided to
determine the similarity score. The thresholds used
in this study are from 0 to 1 with step 0.1. When the

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

8 Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

similarity score of the severe bug report and its related
bug reports is greater than, or equal to the threshold, it
appears that those bug reports should be grouped into
the same cluster because they may be relevant. Yet,
when the similarity score of the severe bug report and
its related bug reports is below the threshold, those bug
reports may be irrelevant. This process is iteratively
performed until that bug report is able to identify its
suitable clusters. It is noted that a bug report can be
in many clusters.
 An example of the expected results of identifying
severe bug reports using the severity classification, and
assembling related bug reports in suitable clusters with
center points as severe bug reports obtained from the
previous task is shown in Figure 5.
 After performing bug report severity classification,
S1 and S2 were identified as severe bug reports (Figure 5).
Then, using S1 and S2 were used to find other related
bug reports by CS or BM25. Results determined that
bug reports a, b, e, and f were related to S1, while bug
reports c, d, and g were related to S2 and bug report a
was related to both S1 and S2.
 Consequently, the best model of assembling
related bug reports to a specific bug report with
blocking severe based on our proposal is selected and
compared with the baseline model proposed by [33].

4 The Experimental Results

4.1 Evaluation measures

True Positive Rate (TPR) is also called Sensitivity or
Recall. It is used to measure the proportion of actual
positives that are correctly identified. True Negative
Rate (TNR) is also called Specificity. It is used to
measure the proportion of actual negatives that are
correctly identified. F1 is the harmonic mean of the

recall and precision. This measure is used to determine
the test accuracy. The best value for F1 is 1 and the
worst value is 0. Accuracy is literally how good our
model is at predicting the correct category (classes or
labels) for the dataset used [47], [48].
 The ROC (Receiver Operating Characteristic)
curve is used to measure how well a related bug report
can be detected from a dataset of bug reports. The ROC
curve is plotted with TPR against the false positive rate
(FPR or 1-TNR), with TPR on the y-axis and FPR on
the x-axis. While AUC (Area Under the Curve) is used
to presents the degree or measure of separability by
considering the area under the ROC curve [47], [48].
The ROC curve and AUC are two of the most important
evaluation metrix for checking the performance of
dependent bug reports assembly. The ROC curve
and AUC can be used to obtain the most appropriate
threshold and models based on our proposed method.
 In addition, this study used feedback, precision and
likelihood measurements [33], [44], [49], which before
presenting the formulas for these three measurements
the following sets should be firstly defined. Let BRq be
the set of related bug reports retrieved by the proposed
method, while BRq(k) is top-k bug reports in BRq
ordered by textual similarity (only defined for |BRq|
≥ k). Rq is the set of related bug reports with their
answers. Meanwhile, Z is the total number of severe
bug reports (queries) in total, and Zk is a subset of
Z that can retrieve the related bug reports at least k.
These definitions help to define feedback, precision,
and likelihood.
 Feedback: It involves measuring the number
of bug reports that are retrieved when using a given
severe bug report as a query. Formally, the feedback of
k, denoted as FB(k), is the percentage of queries with
at least k bug reports retrieved. The feedback equation
can be defined as [Equation (9)]:

 (9)

 Precision: It is denoted as P(k) and used to measure
the ratio of related bug reports that are retrieved. The
formula for precision can be expressed as [Equation (10)]:

 (10)

Figure 5: Example of expected results of the proposed
method.

9

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

 Moreover, total precision in our dataset is determined
as the average precision executed for each severe
bug report (or query). The equation can be defined as
[Equation (11)]:

 (11)

 Likelihood: It is denoted as L(k). The likelihood is
a common measure used to estimate the usefulness of
retrieving related bug reports. The likelihood of the top-k
related bug reports can be defined as [Equation (12)]:

 (12)

where Lq(k) is a binary measure. If at least one related
bug report exists among the top-k bug reports that are
retrieved, the answer is returned one; if not, the return
is zero. The total likelihood in our dataset is defined
as the average likelihood measured for each severe
bug report (or query). The equation can be defined as
[Equation (13)]:

 (13)

4.2 The experimental results of identifying severe
bug reports using classification technique

After obtaining the bug reports represented their
features with weights in the VSM format, the training set
will be used to model “bug report severity classifier”.
This classifier is used to identify bug reports with
blocking severe. This study compared two different
techniques for modeling bug report severity classifier.
They are SVM with RBF kernel function and a deep
learning technique that is called CNN.
 Results in Table 3 show that RF, MNB, and SVM
with RBF returned better results than CNN when using
our datasets. However, SVM with RBF returned the

most satisfactory results. CNN returned the poorest
results because this algorithm generally requires a lot
of training data. Unfortunately, all datasets used in this
study were small, and this was the main reason why CNN
gave poor results. By contrast, SVM is the best suited
for extreme case binary classification and outliers have
less impact. Simply speaking, SVM performs well for
smaller datasets. The RF and MNB classifier models
returned poorer results than SVM. The RF classifier
may overfit some datasets with outlier classification,
and also consists of many decision trees, whose
construction may impact irrelevant features. While the
MNB classifier is a simple and easy algorithm for the
text classification. Theoretically, naive Bayes classifiers
have a minimum error rate compared with other
classifiers. However, practically this is not always
true because of the assumption of class conditional
independence.
 In addition, using tf-igm as a term weighting
reinforces the class distinguishing power of each term.
Therefore, this may help to increase the performance
for severity classification, especially when using tf-igm
along with machine learning algorithms.
 Finally, the severity classifiers modelled by SVM
with RBF are selected as the best models and they
are compared with the baseline method proposed by
[15].

4.3 The experimental results of assembling related
bug reports using threshold-based similarity analysis

Table 4 shows that the BM25 algorithm outperformed
CS on the datasets used in this study. One potential
reason for the effectiveness of BM25 is that it can
show the degree of importance of terms appearing in
documents. This allows BM25 to derive the relevance
of a document more accurately by extracting elaborate
information of terms, documents, and document
collection, rather than considering only term appearance
following the CS similarity scheme. BM25 is better
for document length normalization and satisfying the

Table 3: The experimental results of identifying severe bug reports using classification technique

Dataset
RF MNB SVM with RBF CNN

ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Core:Layout 0.89 0.89 0.95 0.92 0.92 0.98 0.94 0.94 0.99 0.73 0.73 0.73
Firefox 0.77 0.77 0.83 0.78 0.78 0.86 0.83 0.83 0.89 0.72 0.72 0.72
SeaMonkey 0.77 0.77 0.84 0.77 0.77 0.85 0.81 0.81 0.87 0.72 0.72 0.72

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

10 Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

concavity constraint of the term frequency. Also, BM25
performs well with short document collections [50],
and each bug report used in this study was short. Based
on these reasons, BM25 achieves better performance
compared to CS.
 However, it was not possible to specify the best
threshold for BM25 since the thresholds which had the
best performance for these techniques may be between
0.1 and 0.5. To specify the best threshold for BM25, the
ROC curve and AUC were applied. Figure 6 indicates
that the best BM25 threshold should be 0.5. Then, it
returns the best AUC score of assembling related bug
reports at 0.835. Finally, this model is selected as the
best model for assembling related bug reports.

4.4 The results of comparing to the baseline methods

4.4.1 Comparing the proposed method of identifying
severe bug reports to the baseline method

The baseline method used to compare with our
method is proposed by [15]. They proposed a deep
neural network-based automatic approach to predict
the severity of bug reports. Their method consisted
of four steps. First, NLP techniques were applied for
text pre-processing of bug reports. Second, an emotion
score was computed and assigned for each bug report.
Third, a vector for each pre-processed bug report was
created and, finally, the constructed vector and emotion
score of each bug report was passed to a deep neural
network-based classifier for severity prediction. Three
layers of CNN were used with the following settings:

filter = 128, kernel size = 1, and activation = tanh.
The filter represents the number of neurons, and each
neuron performs a different convolution on the input
to the layer (more precisely, the neurons’ input weights
form convolution kernels). Kernel size represents the
size of the filter, while the activation function represents
the final value of a neuron. The output of CNN was
forwarded to a flattening layer that turned the given
converted numerical vectors into a one-dimensional
vector. (Table 5)
 Results in Table 6 show that our proposed method
improved both the accuracy and F1 over the baseline
method. There are three reasons for this. First, we
considered the used features. Ramay et al. used only
unigram as features, while we used unigram together

Figure 6: The AUC scores of CS and BM25 for
assembling related bug reports.

False Positive Rate (1-True Negative Rate)

AUC of CS = 0.823
AUC of BM25 = 0.835

0.0 0.4 0.80.2 0.6 1.0

0.0

0.4

0.8

0.2

0.6

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Table 5: The results of comparing to the baseline method proposed by Ramay et al.

Dataset
Ramay et al. Proposed Method

ACC R P F1 AUC ACC R P F1 AUC
Core:Layout 0.79 0.79 0.79 0.78 0.79 0.94 0.94 0.94 0.94 0.99
Firefox 0.76 0.76 0.77 0.76 0.76 0.83 0.83 0.83 0.83 0.89
SeaMonkey 0.76 0.76 0.76 0.76 0.76 0.81 0.81 0.81 0.81 0.87

Table 4: The experimental results of assembling related bug reports using threshold-based similarity analysis

Algorithm Evaluation
Metrics

Threshold Used
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CS
TPR 0.688 0.596 0.36 0.28 0.179 0.058 0.029 0.009 0.001 0.001
TNR 0.918 0.979 0.995 0.998 0.999 1.000 1.000 1.000 1.000 1.000

BM25
TPR 0.710 0.710 0.710 0.710 0.709 0.640 0.560 0.379 0.180 0.000
TNR 0.918 0.918 0.918 0.918 0.922 0.960 0.988 0.998 1.000 1.000

11

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

with CamelCase. Using unigram alone was not
sufficient because unigram was unable to indicate the
specificity of the software. Thus, using CamelCase
together with unigram as features improved this
problem.
 Second, we considered the predefined class
weight of each bug report before the classification
task. Ramay et al. utilized Senti4SD to assign class
weight to each bug report and used this to determine
other attributes in the deep neural network for severity
prediction of bug reports. Although this application
is interesting, errors can occur during performance.
Senti4SD was not developed using bug report datasets.
Hence, many words in Senti4SD might not relate to
bug reports and using Senti4SD might be appropriate
for some datasets but lead to poor results in others.
 By contrast, our proposed method did not use
Senti4SD to predefine class weight. We used tf-igm,
as an STW scheme to increase the class distinguishing
power of each term found in our dataset. This helped
to competently identify and distinguish between the
characteristics of each class. For these reasons, our
method generated better results than Ramay et al.
 Word2Vec was also used by Ramay et al. to
generate word vectors, however, this technique might
be ineffective as it was not able to separate some
opposite word pairs. For example, “good” and “bad”
are sometimes located very close to each other in the
vector space and this may limit the performance of
word vectors when undertaking NLP tasks, such as
severe bug report analyses.
 In addition, the main mechanism used by Ramay
et al. for classification was deep learning. In general, this
technique requires a large dataset. Unfortunately, all our
datasets were small. Therefore, this technique proved
to be poor for all datasets used in this study. Moreover,
deep learning techniques require extra computational
resources than machine learning algorithms. Therefore,
our method performs faster than the method proposed
by Ramay et al.

4.4.2 Comparing the result of assembling related bug
reports to the baseline method

Our proposed method was compared with the baseline
method proposed by [33]. The tool developed by using
the baseline method is called “NextBug”, which is
implemented as a plug-in for Bugzilla. Then, Rocha et al.
used only the summary component of bug reports and
they also used unigram features with tf-idf. The main
mechanism for identifying similar bug reports was
cosine similarity with a threshold set as 0.1. Interestingly,
Rocha et al. retrieved only the first five recommended
bug reports and they used feedback, precision, and
likelihood for their evaluation. Table 6 shows a
comparison of the results.
 After testing with three tested sets of bug reports –
namely Core:Layout, Firefox, and SeaMonkey, the
average score of feedback, precision, and likelihood
are presented in Table 6. Results in Table 6 show that
our proposed method returned better results than the
baseline method proposed by [33], with improved
average scores of precision and likelihood at 15.76%
and 9.14%, respectively. There are two points that
can help to improve the performance of assembling
dependent bug reports. First, the use of CamelCase as
features can indicate the specificity of a problem domain
in software, since different problem domains of a software
may use different CamelCase terms. Meanwhile,
BM25 is the appropriate similarity technique for
this work. A potential reason for the effectiveness of
BM25 is that it can show the degree of importance of
terms appearing in documents, and thus to derive the
relevance of a document to a given more accurately by
taking more elaborate information of terms, documents,
and document collection into consideration, rather than
only term appearance in the traditional similarity scheme
(e.g. cosine similarity). For example, the weighting
model of BM25 incorporates document length, the
average length of all documents in the collection,
as well as the term frequency normalization effect.

Table 6: The results of comparing to the baseline method proposed by Rocha et al.

Metrics
Core:Layout Firefox SeaMonkey

Rocha et al. Proposed
Method Rocha et al. Proposed

Method Rocha et al. Proposed
Method

Feedback 0.999 0.999 0.999 0.999 0.999 0.999
Precision 0.393 0.458 0.390 0.450 0.390 0.450
Likelihood 0.607 0.678 0.598 0.645 0.598 0.645

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

12 Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

This technique is subsequently able to return better
performance than the CS technique.

5 Conclusions

A software bug (or defect) can cause a program to crash,
or produce invalid, or unexpected results. In general,
end users can help development teams find bugs in
software. Feedback or reports related to bugs from
end-users are called “bug reports”. Bug reports are
essential for developer teams to improve and maintain
software quality. However, collecting bug reports from
users around the world is difficult. A better collection
method for large bug reports involving an increased
numbers of users requires bug tracking systems (BTS).
These systems allow end-users to report, describe,
track, classify, and comment on bug reports, including
feature requests. At present, systems like Bugzilla,
Jira, Mantis, or Trac are widely used for bug reporting.
In the early BTS usage, when a new bug report
was submitted to a bug report repository, a special
person called a bug triager screened and prioritized
the report before assigning the suitable developers
to address a particular bug. All processes in BTS
are time-consuming because they are performed
manually. Therefore, copious research has investigated
methods to automatically identify the necessary
information from bug reports to allow software bug
fixing. Unfortunately, most studies of bug reports
focused only on one issue, whereas more complete and
comprehensive software bug fixing requires assessing
multiple issues concurrently. This becomes a challenge
in our study, which presents a method of identifying bug
reports at a severe level from a bug report repository,
together with finding their related bug reports to visualize
the overall picture of a software problem domain. This
method is called “mining bug report repositories”
and consists of two main processing steps. The first
step is the classification process, called “bug severity
classification”. Classification technique involves
experimenting with various supervised machine
learning algorithms to model bug severity classifiers.
Classifier models are used to automatically identify
severe bug reports. The second step applies unsupervised
learning to automatically assemble bug reports related
to server bug reports with respect to a similarity
measure. This process is called “threshold-based
similarity analysis”. Then, these two processing steps

are investigated using various algorithms to obtain the
most suitable models of bug severity classification
and threshold-based similarity analysis. Our study
experimented on three open data sources as SeaMonkey,
Firefox, and Core:Layout downloaded from Bugzilla.
The most suitable models were compared with baseline
methods. Result in this study showed that our method
improved the performance of bug severity classification
and assembly of related bug reports over the baseline
methods and increased the chances of fixing bugs in
the software.

Acknowledgments

This research was supported by Division of Research
Facilitation and Dissemination, Mahasarakham
University (Grant No. 6303001/2563).

References

[1] P. Runeson, M. Alexandersson, and O. Nyholm,
“Detection of duplicate defect reports using
natural language processing,” in Proceedings of
the 29th International Conference on Software
Engineering, 2007, pp. 499–510.

[2] R. J. Sandusky, L. Gasser, and G. Ripoche, “Bug
report networks: Varieties, strategies, and impacts
in af/oss development community,” in Proceedings
of 1st Int’l Workshop on Mining Software
Repositories, 2004, pp. 80–84.

[3] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang,
and H. Mei, “A survey on bug-report analysis,”
Science China Information Sciences, vol. 58,
no. 2, pp. 1–24, 2015.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R.
Premraj, and T. Zimmermann, “What makes a
good bug report?,” in Proceedings of the 16th
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2008,
pp. 308–318.

[5] S. Davies and M. Roper, “What's in a bug report?,”
in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering
and Measurement, 2014, p. 26.

[6] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh,
and Y.-G. Guéhéneuc, “Is it a bug or an
enhancement?: A text-based approach to classify
change requests,” in CASCON, 2008, vol. 8,

13

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

pp. 304–318.
[7] K. Herzig, S. Just, and A. Zeller, “It's not a bug,

it's a feature: How misclassification impacts
bug prediction,” in Proceedings of the 2013
International Conference on Software Engineering,
2013, pp. 392–401.

[8] N. Limsettho, H. Hata, A. Monden, and K.
Matsumoto, “Automatic unsupervised bug
report categorization,” in 2014 6th International
Workshop on Empirical Software Engineering in
Practice, 2014, pp. 7–12.

[9] H. Qin and X. Sun, “Classifying bug reports into
bugs and non-bugs using LSTM,” in Proceedings of
the Tenth Asia-Pacific Symposium on Internetware,
2018, p. 20.

[10] P. Terdchanakul, H. Hata, P. Phannachitta, and K.
Matsumoto, “Bug or not? bug report classification
using n-gram idf,” in 2017 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), 2017, pp. 534–538.

[11] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa,
S. Mendu, L. Barnes, and D. Brown, “Text
classification algorithms: A survey,” Information,
vol. 10, no. 4, p. 150, 2019.

[12] A. Lamkanfi, S. Demeyer, E. Giger, and B.
Goethals, “Predicting the severity of a reported
bug,” in 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), 2010,
pp. 1–10.

[13] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T.
Verdonck, “Comparing mining algorithms for
predicting the severity of a reported bug,” in 15th
European Conference on Software Maintenance
and Reengineering, 2011, pp. 249–258.

[14] T. Menzies and A. Marcus, “Automated severity
assessment of software defect reports,” in 2008
IEEE International Conference on Software
Maintenance, 2008, pp. 346–355.

[15] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and
I. Illahi, “Deep neural network-based severity
prediction of bug reports,” IEEE Access, vol. 7,
pp. 46846–46857, 2019.

[16] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus,
“Reformulating queries for duplicate bug report
detection,” in 2019 IEEE 26th International
Conference on Software Analysis, Evolution and
Reengineering (SANER), 2019, pp. 218–229.

[17] N. Jalbert and W. Weimer, “Automated duplicate

detection for bug tracking systems,” in 2008
IEEE International Conference on Dependable
Systems and Networks with FTCS and DCC
(DSN), 2008, pp. 52–61.

[18] C.-Y. Lee, D.-D. Hu, Z.-Y. Feng, and C.-Z.
Yang, “Mining temporal information to improve
duplication detection on bug reports,” in 2015
IIAI 4th International Congress on Advanced
Applied Informatics, 2015, pp. 551–555.

[19] Q. Xie, Z. Wen, J. Zhu, C. Gao, and Z. Zheng,
“Detecting duplicate bug reports with convolutional
neural networks,” in 2018 25th Asia-Pacific
Software Engineering Conference (APSEC),
2018, pp. 416–425.

[20] J. Kanwal and O. Maqbool, “Bug prioritization to
facilitate bug report triage,” Journal of Computer
Science and Technology, vol. 27, no. 2, pp. 397–
412, 2012.

[21] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem,
and H. Shah, “A survey on bug prioritization,”
Artificial Intelligence Review, vol. 47, no. 2,
pp. 145–180, 2017.

[22] Q. Umer, H. Liu, and Y. Sultan, “Emotion based
automated priority prediction for bug reports,”
IEEE Access, vol. 6, pp. 35743–35752, 2018.

[23] Q. Umer, H. Liu, and I. Illahi, “CNN-based
automatic prioritization of bug reports,” IEEE
Transactions on Reliability, 2019.

[24] P. Bhattacharya and I. Neamtiu, “Fine-grained
incremental learning and multi-feature tossing
graphs to improve bug triaging,” in 2010 IEEE
International Conference on Software Maintenance,
2010, pp. 1–10.

[25] J. Lee, D. Kim, and W. Jung, “Cost-aware clustering
of bug reports by using a genetic algorithm,”
Journal of Information Science and Engineering,
vol. 35, no. 1, pp. 175–200, 2019.

[26] R. Almhana, W. Mkaouer, M. Kessentini, and
A. Ouni, “Recommending relevant classes for
bug reports using multi-objective search,” in
Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering,
2016, pp. 286–295.

[27] X. Ye, R. Bunescu, and C. Liu, “Mapping bug
reports to relevant files: A ranking model, a
fine-grained benchmark, and feature evaluation,”
IEEE Transactions on Software Engineering,
vol. 42, no. 4, pp. 379–402, 2015.

B. Luaphol et al., “Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing.”

14 Applied Science and Engineering Progress, Vol. 15, No. 3, 2022, 4615

[28] J. Zhou, H. Zhang, and D. Lo, “Where should
the bugs be fixed?-more accurate information
retrieval-based bug localization based on bug
reports,” in Proceedings of the 34th International
Conference on Software Engineering, 2012,
pp. 14–24.

[29] J. Śliwerski, T. Zimmermann, and A. Zeller, “When
do changes induce fixes?,” ACM Sigsoft Software
Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.

[30] Y. Sun, Q. Wang, and Y. Yang, “Frlink: Improving
the recovery of missing issue-commit links by
revisiting file relevance,” Information and Software
Technology, vol. 84, pp. 33–47, 2017.

[31] S. Akbarinasaji, B. Caglayan, and A. Bener,
“Predicting bug-fixing time: A replication study
using an open source software project,” Journal
of Systems and Software, vol. 136, pp. 173–186,
2018.

[32] P. Bhattacharya and I. Neamtiu, “Bug-fix time
prediction models: Can we do better?,” in
Proceedings of the 8th Working Conference on
Mining Software Repositories, 2011, pp. 207–210.

[33] H. Rocha, G. De Oliveira, H. Marques-Neto, and
M. T. Valente, “NextBug: A Bugzilla extension for
recommending similar bugs,” Journal of Software
Engineering Research and Development, vol. 3,
no. 1, p. 3, 2015.

[34] N. Pandey, A. Hudait, D. K. Sanyal, and A. Sen,
“Automated classification of issue reports from a
software issue tracker,” in Progress in Intelligent
Computing Techniques: Theory, Practice, and
Applications, 2018, pp. 423–430.

[35] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining
text mining and data mining for bug report
classification,” Journal of Software: Evolution
and Process, vol. 28, no. 3, pp. 150–176, 2016.

[36] B. Luaphol, B. Srikudkao, T. Kachai, N.
Srikanjanapert, J. Polpinij, and P. Bheganan,
“Feature comparison for automatic bug report
classification,” in International Conference on
Computing and Information Technology, 2019,
pp. 69–78.

[37] K. Chen, Z. Zhang, J. Long, and H. Zhang, “Turning
from TF-IDF to TF-IGM for term weighting
in text classification,” Expert Systems with
Applications, vol. 66, pp. 245–260, 2016.

[38] B. Luaphol, J. Polpinij, and M. Kaneampornpun,

“Automatic bug report severity prediction by
binary text classification techniques,” in The 25th
International Symposium on Artificial Life and
Robotics 2020, 2020, pp. 206–211.

[39] K. P. Murphy, Machine Learning: A Probabilistic
Perspective. Massachusetts: MIT press, 2012.

[40] K. Soman, R. Loganathan, and V. Ajay, Machine
Learning with SVM and Other Kernel Methods.
Delhi, India: PHI Learning Pvt. Ltd., 2009.

[41] N. Cristianini and J. Shawe-Taylor, An Introduction
to Support Vector Machines and Other Kernel-
based Learning Methods. Cambridge, UK:
Cambridge University Press, 2000.

[42] Y. Tian, N. Ali, D. Lo, and A. E. Hassan, “On
the unreliability of bug severity data,” Empirical
Software Engineering, vol. 21, no. 6, pp. 2298–
2323, 2016.

[43] L. Breiman, “Random forests,” Machine Learning,
vol. 45, no. 1, pp. 5–32, 2001.

[44] H. Rocha, G. Oliveira, H. Maques-Neto, and M.
Valente, “Nextbug: A tool for recommending
similar bugs in open-source systems,” in V
Brazilian Conference on Software: Theory and
Practice–Tools Track (CBSoft Tools), 2014, vol. 2,
pp. 53–60.

[45] C.-Z. Yang, H.-H. Du, S.-S. Wu, and X. Chen,
“Duplication detection for software bug reports
based on bm25 term weighting,” in 2012 Conference
on Technologies and Applications of Artificial
Intelligence, 2012, pp. 33–38.

[46] R. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval. New York: ACM Press,
1999.

[47] G. Forman, “An extensive empirical study of
feature selection metrics for text classification,”
Journal of Machine Learning Research, vol. 3,
no. 3, pp. 1289–1305, 2003.

[48] N. Japkowicz and M. Shah, Evaluating Learning
Algorithms: A Classification Perspective.
Cambridge, UK: Cambridge University Press, 2011.

[49] T. Zimmermann, A. Zeller, P. Weissgerber, and S.
Diehl, “Mining version histories to guide software
changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[50] S. Robertson and H. Zaragoza, The Probabilistic
Relevance Framework: BM25 and Beyond.
Massachusetts: Now Publishers Inc, 2009.

