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Abstract 

Complex control algorithms are applied to manufacturing systems for certain process requirements, according 

to product specifications. When implementing specific complex control algorithms, primary and secondary 

conditions affect each other, affecting the measuring and control processes. While complex control algorithms 

result in several benefits, problems associated with mathematical reasoning and time delays need to be 

considered for an intelligent decision-making control technique to optimise control of the manufacturing 

process. The research will derive a suitable control technique by means of an adaptive neuro-fuzzy inference 

system, to optimise the manufacturing process. The paper will discuss technical aspects, the experimental set-

up and the design process. Completed research on industrial Siemens FuzzyControl++ design tool and 

current research on MatLab Fuzzy Logic Toolbox will form part of the discussion on the design process. The 

paper will conclude with a comparison of various analysis results in MatLab Fuzzy Logic Toolbox.  
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1 Introduction

Conventional control systems express control 

solutions by means of control expressions, usually 

mathematically based. In order to completely express 

the control solution, a vast amount of data is required. 

This is either difficult or virtually impossible to 

obtain. In contrast, intelligent decision making 

solutions require far less plant data and mathematical 

expression. This reduces development time 

proportionally. The research is based on a multi-

variable manufacturing plant, within which a fuzzy 

logic controller is used to maintain the blend chest 

level. The control algorithm is tested in a simulated 

environment. In the Fuzzy Control framework two 

types of human knowledge are specified: [16,21,23] 

 Plant knowledge: Fuzzy IF-THEN rules that 

describe the behaviour of the plant, e.g. “IF the 

flow control valve opens, THEN the temperature 

of the process medium will increase”, where 

„open‟ and „increase‟ are characterized by Fuzzy 

sets. 

 Control knowledge: Fuzzy Control rules that state 

in which situations what control actions should be 

taken, e.g. “IF the process medium temperature 

decreases, THEN the output of the controller 

should increase”, where „decrease‟ and „increase‟ 

are characterized by Fuzzy sets.  

The control algorithm in this multi variable plant is 

based on the combined indirect/direct adaptive  

neuro-fuzzy inference system. 

 

2 Experimental Setup 

The main problem in maintaining a consistent blend 

chest level and supply pressure is nullifying the effect 

of outside influences. Both the variables depend 

primarily on the amount of fluid entering the blend 

chest and the demand required by the manufacturing 

plant [4,5]. The research is based on the regulation of 

correct amount of supply through PV1a operating 

from 0% to 50% of the control signal and PV1b 

operating from 50% to 100% of the control signal. 

When the supply and demand conditions vary the 

desired blend chest level and supply pressure can be 

greatly affected, and it becomes necessary to quickly 

readjust them to meet process conditions to maintain 

quality and logistical requirements. The level in the 

Blend Chest is measured by LT1 (level-transmitter 1) 

and the pressure on the delivery side of the pump is 
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measured by PT1 (pressure-transmitter). The supply 

to the manufacturing plant is regulated at two points 

via PV1a (pressure-valve a) and PV1b (pressure-

valve b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Process plant layout configured in combined split-range and fuzzy control 

 

Split-range control benefits this manufacturing 

process by integrating the two final correcting 

elements, to maintain a consistent supply to the 

manufacturing plant as per process requirements [4]. 

However, there are limitations in any mathematically 

based control system due to the algorithm relying on 

mathematical calculations on deviations from the 

desired value. A 2-input, 2-output fuzzy controller is 

tested as indicated in Figure 1. 

 

3 FuzzyControl++ Design Tool 

Two inputs, process pressure and blend chest level, 

and two outputs applied to pressure valves were 

defined. After naming the inputs and outputs the 

membership functions had to be defined, for each 

input and output. The trapezoid form was used for the 

inputs, in order to increase the number of corner 

points, for clear distinction of one function from the 

other. The outputs were inserted as singletons. The 

rules were then edited in the inference engine, in 

either the rule table or rule matrix form [15,19,24].  

In order for the desired process pressure to be 

maintained, it was dependent on certain plant and 

control variables. These variables had to be analysed 

at different values, within a specified band, in order 

to maintain the process pressure at the desired value. 

The membership functions (procedural knowledge) 

for both, the inputs and outputs were derived from the 

following plant variables, for the specified band: 

 Process pressure  

 Blend chest level 

 Position of pressure control valves a and b, 

configured in split-range 

 

Figure 2: Overview of Intelligent Strategy 
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The rules (declarative knowledge) for the rule-based 

system were derived from the following control 

variables, for the specified band: 

 Data communication signals from the process 

pressure and blend chest level transmitters 

 Data communication signals to pressure control 

valves a and b 

Figure 2 represents the knowledge engineering 

process in a generic form [9,16,19]. 

Figure 3 represents the edited input membership 

functions in trapezoid form, for only process pressure 

(PT100) as configured in Siemens FuzzyControl++ 

design tool. Table 1 represents the actual corner 

points of each membership functions. This facilitates 

fuzzification of a crisp value by scaling and mapping 

the input‟s domain, a linguistic variable, into an 

internal computer code. The second input, blend 

chest level (LT100) was configured in the same way 

as discussed above [13,18,22].    

 

 

Figure 3: Edited Pressure (Graphical) 

 

Table 1: Edited Pressure (Actual values) 

 

Figure 4 represents the edited output membership 

functions in singleton form, for only process pressure 

valve a (PV100a), as configured in Siemens 

FuzzyControl++ design tool. Table 2 represents the 

actual values of each membership function. This 

facilitates de-fuzzification of the internal computer 

code to a crisp value by scaling and mapping the 

output‟s domain. The second output, process pressure 

valve b (PV100b), was configured in the same way as 

discussed above. It will be noted that valve a, as 

indicated, operates between 0.00% to 50.00% and 

valve b operates between 50% and 100%, due to the 

split-range principle. In the absence of a firing rule 

the output is maintained at the last value [6,17,25]. 

 

 

Figure 4: Edited Pressure Valve a (Graphical) 

 

Table 2: Edited Pressure Valve a (Actual Values) 

 

 

 

 

 

 

 

Figure 5 represents the rules that govern pressure 

valve a in the knowledge engineering process of the 

inference stage. The facts and rules (declarative 

knowledge) are represented separately from decision-

making algorithms (procedural knowledge). From 

figure 5 the rule numbers are read from left to right in 

ascending order, e.g. rule 5 states that IF 

PT100=PT_vhi and LT100=LT_lo, THEN 

PV100a=a_sclsd.  

 

 

Figure 5: 25 Rules for Valve a 

MF PT 1 PT 2 PT 3 PT 4 

PT_vlo 0.0 0.0 15.0 20.0 

PT_lo 15.0 20.0 35.0 40.0 

PT_med 35.0 40.0 60.0 65.0 

PT_hi 60.0 65.0 80.0 85.0 

PT_vhi 80.0 85.0 100.0 100.0 

MF VALUE 

a_clsd 0.00 

a_sclsd 15.00 

a_half 25.00 

a_sopn 35.00 

a_opn 50.00 
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4 MatLab Design Tool 

The combined indirect/direct ANFIS (Adaptive 

Neuro-Fuzzy Inference System) is derived from plant 

and control knowledge by a Sugeno, or Takagi-

Sugeno-Kang method. The Sugeno is used instead of 

the Mamdani, as it generates either linear or constant, 

in keeping with on-line system design as shown in 

Figure 6 [1,12,14].  

 

Figure 6: Sugeno Fuzzy Model 

 

A typical rule in a Sugeno fuzzy model is as follows:- 

If Input 1 = x and Input 2 = y, then Output is: z = ax 

+ by + c 

For a zero-order Sugeno model, the output level z is a 

constant (a=b=0). 

The output level zi of each rule is weighted by the 

firing strength wi of the rule, e.g. for an AND rule 

with Input 1 = x and Input 2 = y, the firing strength 

is: 

 Wi = AndMethod {F1(x), F2(y)}  

where F1,2 are the membership functions for Inputs 1 

and 2. The final output of the system is the weighted 

average of all rule outputs, computed as : 

 

 

 

 

Final Output =      

 

 

 

 

 

The membership function parameters are tuned using 

a back-propagation algorithm alone or combined least 

squares method, allowing the FIS to learn from the 

modelled data. The ANFIS model structure, as shown 

in Figure 7, represents the desired configured system. 

The first output functions from 0% to 50% (not 

indicated) and the second output from 50% to 100% 

[2,8,20]. 

 

 

Figure 7: ANFIS Structure 

 

It comprises the following: 

 Two inputs, Level and Pressure, each with five 

membership functions were derived 

 The derived rule base comprises 21rules that are 

applied to 21 output membership functions in an 

AND logic operation; 

 The output membership functions are aggregated 

to connect to a single output.   

 

 

Figure 8: Membership Functions for Input 1 
 

Figure 8 represents the membership functions of 

input 1, Process Pressure. The assigned membership 

functions, in trapezoid format, in MatLab Fuzzy 

Logic Toolbox are the same as designed in Siemens 

FuzzyControl++, indicated in Table 1. For analysis 

purposes the four corner points for “PTvlo” can be 

seen as 0.0, 0.0, 15.0 and 20. The remaining four 

membership functions can be analysed in the same 

way [3,9,11].  

 

Figure 9: Membership Functions for Input 1 
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Figure 9 represents the membership functions of 

output 1, Pressure Valve A. The assigned 

membership functions, as singletons, in MatLab 

Fuzzy Logic Toolbox are the same as designed in 

Siemens FuzzyControl++, indicated in Table 2. For 

analysis purposes the first membership function 

“Aclsed” can be seen as 0.0. Since PV100a functions 

from 0% to 50% of the control signal, the remaining 

membership functions were Asclsd (15.0), Ahalf 

(25.0), Asopn (35.0) and Aopn (50.0) respectively.  

 

Figure 10: Surface View Plot  

Figures 10 represent the surface view of the designed 

model to examine the response of the output, 

“PV100a”, versus the two inputs of the FIS. Both 

inputs “PT100” on the X-axis and “LT100” on the Y-

axis appear against “PV100a” on the Z-axis. By 

analysing one of the response points of the output, it 

can be seen that if “PT100” is 50.0 and “LT100” is 

50.0, then “PV100a” is 50.0. These values can be 

verified against Figures 11, Rule Editor, and 12, Rule 

Viewer, where Rule 13 states that IF PT100 = PTmed 

(any value between the trapezoid points of 35.0-40.0-

60.0-65.0) AND LT100 = LTmed (any value between 

the trapezoid points of 35.0-40.0-60.0-65.0) THEN 

PV100a = Ahalf (singleton value of 25.0 that is 50% 

of its range value), PV100b = Bhalf (singleton value 

of 75.0 that is 50% of its range value). The analysis 

for PV100b can be verified in the same way [7,10]. 

 

Figure 11: Rule Editor  

 

Figure 12: Rule Viewer  

 

5 Conclusions 

There are various soft computing techniques 

available to solve the research problem. The author 

has chosen specific hardware and software in view of 

progression in the research. The MatLab model will 

be interfaced to the plant via Advantech, for real-time 

analysis. Siemens technology is used as all field 

components are based on the same technology, to 

avoid interface conflict.  

From Figures 10, 11, 12 the configured input and 

output membership functions can be verified as 

correct, for real-time implementation, in Siemens 

FuzzyControl++. In Figure 11, Fuzzy Rule 13 states 

that IF PT100=PTmed AND LT100=LTmed, THEN 

PV100a=Ahalf AND PV100b=Bhalf. Analysing 

Figure 12, Fuzzy Rule 13 indicates in two-

dimensional analysis that IF PT100=50% AND 

LT100=50%, THEN PV100a=25% AND 

PV100b=75%. At this point the graphical and 

numerical values verified that the assigned rules are 

valid, for these process conditions. Analysing Figure 

10, 50% PT100 versus 50% LT100 indicates clearly 

that PV100a is 50%. The scale of PV100a is 

calibrated for 0% to 50%, as indicated in Figure 10, 

and PV100b operates between 50% to 100%, as 

discussed in Section 2, in split-range configuration, to 

meet process requirements. A cross-reference to 

Figures 8 and 9 verifies the input membership 

functions as trapezoids and output membership 

functions according to the design process. This final 

analysis verifies that the fuzzification-to-fuzzy rules-

to-defuzzification algorithm of the intelligent control 

strategy in a simulation environment can be tested in 

real-time.  
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