
1

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark

Manwika Kittipron* and Chuleerat Jaruskulchai
Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand

* Corresponding author. E-mail: manwika.k@ku.th DOI: 10.14416/j.asep.2022.01.005
Received: 16 July 2021; Revised: 27 September 2021; Accepted: 29 October 2021; Published online: 24 January 2022
© 2022 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
A variety of techniques have been used to improve the performance of an algorithm in finding frequent item sets,
which is one of the important processes to obtain frequent pattern mining. It was found that today’s technology has
resulted in an ever-increasing amount of information, which should be analyzed for various benefits. Therefore,
efforts have been made to improve the aalgoruthm’s efficiency to accommodate the nature of data stored
through the working process of the main internal memory. Efforts have been made to prepare algorithms for the
ever-increasing information. This research provided an appropriate data structure of BitTable to help improve the
functionality of the algorithms. Moreover, the principle of parallel frequent itemset mining algorithm based on
Map-Reduce design was used in this research to assess the performance of algorithms, named as Adaptive Hybrid
Parallel Algorithm (AHP). Additionally, to investigate the performance of the AHP Algorithm Using Apache
Spark Technology with the type of data that was accumulated during the process of the main internal memory.

Keywords: Frequent pattern mining, Frequent itemsets mining, Parallel algorithm, Distributed computing,
Various

Research Article

1 Introduction

Finding frequent itemsets from the database list is a part of
the processes of Frequent Pattern Mining. As the amount
of data increases drastically, algorithms have to deal with
big data accordingly. In the Big Data era, It is important
to improve the performance of algorithms in finding
frequent itemsets with particular types of information.
 The classical frequent itemsets mining algorithm
is mainly divided into two categories: the first is the
discovered frequent itemsets to generate the candidate
itemsets, count the candidate itemsets to find new
frequent itemsets, Typical algorithms include Apriori,
etc. The second is directly generates frequent itemsets
through recursive traversal on data structure, and Typical
algorithms include FP-Growth, etc. The classical
frequent itemsets mining algorithm is executed on a single
machine with data centralization. In A computation-
intensive task, the size of search space is 2n–1 when
there are n items in the dataset that the computing load
is extremely heavy. In the mining process, frequent

itemsets mining needs to store specific data structures
or candidate datasets in memory [1]–[3]. Thereby,
parallel frequent itemsets mining [4], which seamlessly
integrates parallel computing, has been widely used in
various applications.
 In recent years, the Map-Reduce method was
found to be capable of parallel work. Accordingly, the
PFIMD algorithm [4] designed an optimization parallel
frequent itemset mining algorithm based on a Map-
Reducing programming model to find the association
rule on the Apache Hadoop Technology. It is one of the
frameworks that help to distribute big data processing
on a larger scale of networking computers. There is
another model called “Hadoop Distributed File System”
(HDFS) [5], which helps store data in a way that can
be quickly accessible. It reduces storage space, allows
faster processing and automatic backup on disk drives.
By this means, data is not stored on the memory drive
at all. Under this setting, when any nodes on computers
malfunction, other nodes can continue working on the
information on the disk. This method has been utilized

http://dx.doi.org/10.14416/j.asep.2022.01.005

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

2 Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

to help improve the performance of algorithms in the
calculation of frequent itemsets. At present, Apache
Spark is a popular technology capable of both parallel
and distributed computing processes. Accordingly,
the SARSO algorithm [6] investigated the benefits of
Spark’s parallel and distributed computing environment
to futher improve efficiency by reducing the shuffle
overhead caused by RDD operations at each iteration.
HBPFP-DC algorithm [7] on Spark platform to define node
computation workload estimation model and to realize
the balanced grouping of the calculation tasks among
computing nodes, based on the problems presented above.
 Because of of this, we present the design and
implementation of the AHP Algorithm using the
Map-Reduce Principle on Apache Spark technology.
Moreover, data structure of BitTable was adjusted
to boost mining efficiency, by helping to expand the
working pattern and and to increase the efficiency of
the Map-reduce technique by increasing the speed of
the clusters on a computer’s memory, which resulted
in a faster processing time.
 The contributions of this paper are mainly
focused in three aspects. Firstly, discussion about the main
ideas of AHP algorithm design, proposed paradigms
of AHP algorithm, and the paradigms from the aspects
of processing speed and characteristics of the dataset.
Secondly, the implementation of paradigms using
Map-Reduce Principle on Spark technology was
explained and algorithm for direct implementation of
paradigms named Adaptive Hybrid Parallel Algorithm
(AHP) was proposed. Thirdly, the algorithm’s
performance such as processing speed and characteristics
of the dataset were analyzed through experiments.

1.1 Reduced-Apriori: R-Apriori

The R-Apriori algorithm utilizes an intersection principle
[8] to reduce the redundancy features with a data
frequency greater than or equal to the minimum
support value. This reduction lowers the database
needed for the creation of candidate datasets. The
R-Apriori algorithm was developed from the YAFIM
algorithm [9], further developed from the Parallel
Apriori. It has two main operational processes. The
first step involves creating a dataset with an item length
at a value of one (1-frequent itemset), also known as
Singleton Frequent Items. The Minimum Support
value is used for the selection of frequent itemsets. The

Map-Reduction method explains the working process
of algorithms (a)–(c) as shown in Figure 1. In the
second step, the Singleton Frequent data obtained in
the first step, including data sets; S, R, G, P as shown
in Figure 1(a), is intersected with the entries in the
database. This process reduces the number of database
entries needed to create the candidate dataset as shown
in Figure 1(b) and (c). Based on the data transitions
T1, items S, R, and M are included. When these items
are intersected with the items in Singleton Frequent
data (items, S, R, G, P), only items S, R, remain in T1
transitions. When this intersection system is applied
with the Apache Spark technology, in which data is
stored during the computing process within the main
memory units, the algorithm's performance can be
raised with a faster operation time.

1.2 Distributed frequent itemset mining algorithm:
DFIMA

Another algorithm used for the mining of frequent
itemset is the matrix-based pruning method. It is
found to reduce the time required for calculating
candidate datasets and the re-reading of information
within the database. The distributed frequent itemset
mining algorithm (DFIMA) [10] is used in the
mining of the frequently accumulated datasets. The
method is used for the improvement of the fundamental
apriori algorithm. The implementation of the DFIMA
algorithm begins by creating a Singleton frequent
item (1-frequent itemset) based on the principle of
the Map-Reduce process as shown in Figure 1(a). The
frequent singleton itemsets obtained in this process are
S, R, G, P. Figure 2 shows Singleton Frequent Itemsets
to create vector Boolean from the database in each
transaction. Particularly in this process, the entries in
each transaction with the Singleton frequent itemset
are represented by 1, and those without the Singleton
frequent itemset are represented with 0. This is to
reduces the amount of data before calculating the
candidate dataset, as shown in Figure 2. The next step
is to transform the data in Boolean vectors to a matrix
(2-itemset matrix) to generate a candidate dataset.

1.3 Map-reduce operation on apache spark technology

Apache Spark technology is an open-source technology
capable of handling big data [11]. It has two operational

3

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

parts. The first one is called resilient distributed datasets
(RDD), which store data in the main memory unit. The
second is the Map-Reduce portion for data processing.
The map-reduce in Apache Spark Technology has two
functions: Flat Map Function and Map Function, as
shown in Figure 3, which help to convert data into a

form of <Key, Value>. The converted data is sent to
the groupByKey function, which works similarly to
the Reduce function, to combine data values with the
same key together. The filter function is processed to
obtain the desired results [5], [6]. These processes are
operated on the main memory.

(c) Third map-reduce operation
Figure 1: Map-Reduce system of the R-Apriori algorithm, in which; (a) shows a process for the making of
Singleton frequent items at a length of 1-frequent itemsets, (b) shows a process for the making of Singleton
frequent items at a length of 2-frequent itemsets using intersection technique, and (c) shows a process for the
making of Singleton Frequent Items at a length of k (k-1frequent itemsets) in the creation of dataset (k + 1)
frequent itemsets (L3) [8].

(a) First map-reduce operation

(b) Second map-reduce operation

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

4 Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

1.4 BitTable representation of data

Data structures related to frequent itemsets are stored
in sparse matrices, and vector multiplications are used
to calculate the support of the potential k+1 itemsets.
BitTable structure is used compresses the datasets
horizontally and vertically for quick candidate itemsets
generation and support count, which bitwise operations
are used in place of the item position during the information
gathering process. The key idea is to store the data
related to a given itemset in a binary vector. The bitmaps
of frequent itemsets are generated based on the binary
vector’s elementwise products corresponding to the
building k-1 frequent itemsets [12]. The processing
time was minimized when the mining of the frequent
itemsets was implemented via the matrix method.

 An illustrative example for D transactional
database is shown in Figure 4(a). The transactional
database can be transformed into a bitmaps matrix as
shown in Figure 4(b) representation, where if an item
i = 1,…, m appears in transaction Tj , j = 1,…,N , the
bit i of the j-th row of the binary incidence matrix
will be marked as one. As the support of an itemset
is a percentage of the total number of transactions,
the Summary of the columns of the B0

Nxn matrix
represents the support of the j = 1,…,n items is shown
in Figure 4(c). Therefore, if b0

j represent j-th column
of B0

Nxn, which is related to the occurrence of the ij-th
item, then the support of the ij item can be calculated
as Equation (1)

Sup(X = ij) = (b0
j)T b0

j / N (1)

Figure 2: The functionality of the DFIMA algorithm and the use of the Singleton frequent itemset to create
Boolean vectors for candidate datasets creation [10].

Figure 3: Main functioning of Map-reduce algorithm [11].

Figure 4: Illustrative example for a transactional dataset and the binary matrix representation.

5

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

 Similarly, the support of an Xi,j = {ii, ij} itemset
can be easily calculated by a simple vector product of
the two related bit vectors, since when both ii and ij
items appear in a given transaction, the product of the
two related bits can represent the AND connection of
the two items [Equation (2)]:

Sup(Xi,j = {ii, ij}) = (b0
j)T b0

j / N (2)

 The matrix representation allows the effective
calculation of all of the itemsets [Equation (3)]:

S2 = (B0)T B0 (3)

Where the i,j-th element of S2 matrix represents
the support of the Xi,j = {ii, ij} 2-itemset. The upper
triangular element of this symmetrical matrix has to
be checked, whether the Xi,j = {ii, ij} 2-itemsets are
frequent or not.

1.5 Proposed method: Adaptive hybrid parallel
algorithm

This research study proposed an approach for improving
the efficiency of algorithms based on frequency pattern
mining. The techniques used for enhancing the
algorithm performance included reducing the creation
of the candidate datasets and the number of re-reading
cycles. The data structure is presented in BitTable
based on the processes in Figure 5.

1.6 Design of adaptive hybrid parallel algorithm
based on Map-Reduce method

The adaptive hybrid parallel algorithm based on applying

the Map-Reduce method on Apache Spark technology
has two main functions. Part 1 (Phase 1): This phase,
as exemplified in Algorithm 1 in Figure 6, involves
finding Singleton frequent 1- Itemset. In this step,
Map-Reduce processes one cycle of work and uses
the minimum support value to select a Singleton
frequent itemset. The results are stored in the RDD
with the construction of MinHashingFI data to be used
for the creation of a candidate dataset and the support
information of the candidate dataset.
 Part 2 (Phase 2): In this step, candidate dataset is
created from a Frequent k–1 itemset, which is similar to
algorithm Apriori that creates a candidate dataset with
the item lengths of k and Ck from the frequent itemsets
with the item lengths of k–1, and Lk–1. However,
the method for creating and counting support values for
the candidate datasets is different (Modified approach).

2 Materials and Methods

2.1 Singleton frequent items algorithm (Frequent
1-itemsets) on spark

The adaptive hybrid parallel algorithm searches for
a frequent singleton dataset from the entries in the
transaction lists from an extensive database using a
Map-Reduce method. It was found in many search
studies that the Map-Reduce method had been used
effectively to search for singleton frequent items in
large databases.
 Transactions stored at HDFS are loaded into the
Spark RDD as input for the singleton frequent item
search, as shown in Algorithm 1 in Figure 6. The
input data is broken down and distributed to every
working node. The flatMap function is used for every

Figure 5: Adaptive hybrid parallel algorithm with the application of Map-Reduce method on the RDD architecture.

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

6 Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

transaction (Algorithm 1, Line 2). Each transaction is
executed and put in a <key, value> dyad format where
the value equals integer 1 (Algorithm 1, Lines 4–6).
Data is stored at RDD in the working memory section.
Then, the reduceByKey function combines values with
the same keys and discards the impediment that does
not pass the specified minimum support (Algorithm 1,
Line 8–9). The results from this operation are more
minor size data that is later stored in the RDD. Figure 6
shows the functioning of the program in finding the
Singleton frequent itemset (Frequent 1- itemsets).

2.2 The processes for searching of Singleton
frequent items (Frequent 1-itemsets) on spark

Figure 7 portrays a process of Singleton Frequent
Itemset searching using the minimum support rate
of 33% (with at least two cases of minimum support

found in transactions in the database). Transactions
stored in HDFS are loaded as inputs to SparkRDD
before the flatMap divides and subsections them to all
mappers nodes. As exemplified in Figure 7, MAP-1
receives transaction data T1 and T2 within each node.
The flatMap function is used for every transaction,
and each transaction is paired (RDD.split) in the <key,
value> format, where the value is equal to integer 1.
As shown in Figure 7, the T1 transaction consists of
(S, R, M). These data are matched as <S, 1>, <R, 1>
and <M, 1>, and stored in RDD in the main memory.
All working processes are performed on the RDD.
 The next working process involves the reduce
byKey function in combining the values with the same
key (RDD.reduceByKey) and discarding the results
that fail to meet the required minimum support, resulting
in smaller sizes of data to be stored it in the RDD.

2.3 The algorithm for generated MinHashingFI
table by Singleton frequent items

The processes for creating the MinHashingFI table
in Algorithm 2 (Figure 8) are implemented to help
improve the operation of the algorithm (Modified
approach). The process starts from assigning each of
the singleton frequent items in each of the transactions
in the database with a bit value of 1. Any transaction
without the singleton frequent items is represented
with a value of 0. For this instance, the MinHashingFI
value is the numerical figure obtained from the
representation of the item's number in bit value. Each
MinHashingFI is then stored in SparkRDD in the main
memory unit.
 The working process of an adaptive hybrid
parallel algorithm starts with importing the input that
will be used to create a candidate dataset. The imported

Figure 6: Singleton frequent itemset generating algorithm.

Figure 7: Processes for the searching of Singleton frequent itemsets.

Algorithm 1: Phase I – Singleton Frequent items
Input: Load the transactional Dataset D from Input file into
a cached RDD
OutPut: Singleton Frequent item L1

1. Procedure SINGLETON -GEN
2. For each Transaction T ∈ D do
3. flatMap (line offset, T)
4. For each item I ∈ T do
5. Yield (I, 1)
6. End flatMap
7. storeAtRDD1
8. RDD2 = RDD1.reduceByKey
9. For each tuple t ∈ RDD2 do
10. flatMap (I, count)
11. If (count < minSup) then
12. Yield (I, 1)
13. End flatMap
14. StoreAtRDD3

7

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

input is represented by bit values derived from the
representation of the item position with the number
in the MinHashingFI table. For example, L1 consists
of 4 items {S, R, G, P}. Therefore 4 positions of bits
are used to replace each of these four items. Item S
is represented in the first-bit position with values of
1 and 3. Other remaining positions are equal 0 items.
Next is R, the first bit's position is placed with 0, the
second bit with 1, and the other 2 remaining positions
with 0. This pattern of practice is applied with all of
the remaining candidate datasets. The MinHashingFI
table, used for collecting candidate data, will collect
the following information: items information, support
value (Count) and bitset position. Support value of the
data set is counted to show which dataset is frequent
itemsets. Item support counting can be done at the bit
operation level using the data in the MinHashingFI
table. More specifically, there is an intersection of the
positions with a bit value of 1. The working process
for counting support values in the MinHashingFI table
is shown in Figure 9.

2.4 The processes for MinHashingFI generation by
Singleton frequent items

In order to gain comprehension about the flow in the

making of MinHashingFI, data, and singleton frequent
itemset in Figure 10 are used to exemplify the making
process of MinHashngFI. The sample set of data
consists of <a, 3>, <c, 3>, <d, 4> and <e, 3>, the
minimum support value is set at 75% (this rate must
be found in at least 3 transactions in the database).
 Step 1 begins with assigning each of the singleton
frequent items containing <a, 3>, <c, 3>, <d, 4> and
<e, 3> that appear in each transaction in the database

Figure 8: BitTable algorithm and the creation of
BitTable and a candidate dataset. Figure 9: Procedures for the counting of support

information of candidate data in MinHashingFI table.

Algorithm 2 : MinHashing FI
Input: k : MinHashing parameter minSup : min support e: tolerance
error
Output: all the frequent L

1. Freq_set = build_invert_list(dataset)

2.
3. Matrix = build_signature_matrix(fre_set,k)
4. L = L U fre_set
5. L = L U HashingAdapTive Hybrid(L, matrix)
6. HashingAdapTive Hybrid(L)
7. Lk = ∅
8. For X𝑖𝑖 𝜖𝜖 L do
9. For Xj 𝜖𝜖 L do
10. |TIDset(R)|= Calculate(TIDset(Xi), TIDset(Xj))
11. If |TIDset(R)| >=minSup do
12. L = L U R, Lk = Lk U R
13. End if
14. End for
15. End for
16. If (Lk ≠ ∅) then
17. L = L U HashingAdapTive Hybrid(Lk);
18. Else return L
19. End if
20. End HashingAdapTive Hybrid

Adds Intersect Operation on BitTableFI
of each item in element

Count the bit 1 of the result as the
support of element

Adds Element to BitTble Lk if the
support is greater than MinSup

Output: Frequent Itemsets
BitTable Lk

Input: Candidate Itemsets BitTable Ck

Any element in
Ck

No

Yes

Figure 10: Creating MinHashingFI with singleton
frequent itemset.

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

8 Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

with a bit value of 1. On the other hand, any of the
transactions in the database without a singleton
frequent item will be represented as 0. For this instance,
the MinHashingFI value is the numerical value
obtained from the set of bits representing each item
in the database. The MinHashingFI is later stored in
Spark RDD for processing in the core memory.
 Step 2 involves importing the singleton frequent
items from RDD to be used as data to create of a
candidate dataset, using a Map-Reduce method.
Figure 10 shows the creation of a candidate dataset by
means of frequent itemsets combination.
 Step 3 is the counting of support of the candidate
dataset to verify which candidate dataset is a
frequent itemset information. A bitwise operation or
the intersection of the bits with the value of 1 in the
MinHashingFI table are performed. The counting
processes of support value in the MinHashingFI table
is represented in Figure 11, while Figure 12 shows
an example of the counting the support value of the
candidate dataset in the MinHashingFI table that the
support counting in demo information.

2.5 The frequent itemsets generation (Frequent
k-itemsets)

In Part 2 (Phase II) in Algorithm 3 (Figure 14), a candidate

dataset is created from the Frequent k–1 itemsets.
The result of this creation is a candidate dataset with
the lengths of Item k and Item Ck, which are the item
lengths in Item k–1 (Lk–1). However, the counting
of the supporting value to verify which dataset is a
frequent itemset is not obtained from repeated reading
from the database but the MinHashingFI table. This can
be done by using bitwise operations. More specifically,
the items with a bit-value of 1 are intersected. Figure 13
shows an example of the counting of support values
of candidate datasets in the MinHashingFI table. An
approach was proposed to improve the algorithm's
functionality.
 Algorithms are designed to choose to use an
Apriori algorithm for an assessment, using either the
data from the imported input or the size of the frequent
item Lk–1. The Apriori algorithm is capable of
processing small size data and fewer item sets. This
type of algorithm stores information with a HashTree's
system, which can increase work flexibility.

3 Results and Discussion

3.1 Experimental setup

The algorithm runs on the Apache Spark technology
version 2.1.0 consists of 3 node clusters. It is installed
in the Centos 7.0, with a memory size of 8 GB and a
1TB hard disk. Three groups of datasets from UCI

Figure 11: Assigning bitsets position to items.

Figure 13: Creating of candidate data for each round
by combining the free itemsets.

Figure 12: Example of the counting the support value
of the candidate dataset in MinHashingFI table.

9

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

and IBM were used. An appropriate minimum support
value counting for each dataset [13] is as show in
Table 1.

3.2 Processing speed results

The processing time of Three algorithms on six
datasets with various minimum support is presented
in Figures 15–17. The experimental results show in
Figures 15(a), 16(a), and 17(a) that AHP Algorithm

was found to have had the best processing time per
each round of performance in the sparse dataset. This
is because AHP Algorithm exploits the bit table for its
data structure, at which Bit values are used in place
of the item position during the information gathering
process. Using intersect two-bit vector for counting the
support and Bittable is used to store data in memory.
On the other hand, DFIMA Algorithm [10] has to build
large matrices using FP-tree for generating frequent
itemsets. It then joins pairs of bit-vectors using AND
operation and computes the support. At the same time,
its processing unit is located separately in the main
memory unit. This results in a significant difference
in the data processing time. Even though the AHP
algorithm has a relatively similar working process
to that of the DFIMA Algorithm, the AHP algorithm
uses a bittable where a bit value is used in place of
the item location during the data collecting process,
it was found that the application of bit value was able
to reduce the number of data readings from several
times of reading to only one time reading. It also
helped reduce the amount of memory required for data
entry during processing. Moreover, the intersection
process helped reduce the amount of duplicated data
in frequentitemsets findings. The processing time was
minimized when the mining of the frequent itemsets
was implemented via the matrix method.

3.3 Characteristics of the dataset results

The characteristics of the dataset are diversified
because of various factors such as the characteristics
ranging from very sparse to very dense, the size and
number of items, the average number of items, the
number of transitions, the data density, and the similarity
of information. For the sparse datasets, low-density, and

Figure 14: Algorithm for the creation of the singleton
frequent items.

Algorithm 3: Phase II – Frequent k –itemset generation
Input: Load the transactional Dataset D from Input file into a cached
RDD, Frequent k-1 itemset Lk-1
OutPut: Frequent k-itemsets Lk

1. Procedure FREQUENT –GEN
2. If (Lk-1.size is large) then
3. Lk-1.storeInBitTable
4. for each Frequent k-1 itemset Lk-1 ∈ T do
5. flatMap (line offset, T)
6. BT = Intersaction (Ck, Lk-1)
7. Countk = Pair (BT)
8. end flatMap
9. storeAtRDD1
10. Else if (Lk-1.size is less) then
11. Ck = CANDIDATE –GEN (Lk-1)
12. for each Transaction T ∈ D do
13. flatMap (line offset, T)
14. CT = subset (Ck, T)
15. for each item c ∈ CT do
16. Yield (c, 1)
17. end flatMap
18. storeAtRDD1
19. RDD2 = RDD1.reduceByKey
20. For each tuple t ∈ RDD2 do
21. flatMap (c, count)
22. If (count < minSup) then
23. Yield (c, count)
24. End flatMap
25. StoreAtRDD3

Table 1: Details of datasets used in the experiment
Dataset Items Items per Transection Transection Density (%) Similarity

Small Dataset
Chess 75 37 3196 49.33 0.3148
Food mart 1559 4.4 4141 0.28 0.292
Average Dataset
Connect 129 43 67555 33.33 0.1626
Retail 16470 9.8 88163 0.06 0.0094
Large Dataset
T10I4D100K 870 10 100000 1.15 0.0137
Accidents 468 33.8 340183 7.22 0.0248
* Density (%) = (Average Transaction Length / Number of Items) × 100

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

10 Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

a large amount of data, the AHP algorithm is a better
choice because the AHP algorithm approach does
not require generating a large number of infrequent
candidate itemset, as shown in Figures 15(a), 16(a)
and 17(a). Similarly, under this context, for the
dense datasets, the AHP algorithm is approximately
processing time with DFIMA Algorithm [10], as shown

results in Figures 15(b), 16(b), and 17(b). Even though
that the AHP algorithm has a relatively similar working
process to the DFIMA Algorithm, the AHP algorithm
uses a bittable where a bit value is used in place of
the item location during the data collecting process. It
was found that the application of bit value was able to
reduce the number of data readings from several times

 The results of Comparing the performances of algorithms (Experiment summary)

Figure 15: Performance of algorithm in LARGE DATASET group, in which; (a) shows T10I4D100k in sparse
dataset. (b) shows ACCIDENTS in dense dataset.

Figure 16: Performance of algorithm in Average Dataset group in which; (a) shows RETAIL in sparse dataset.
(b) shows CONNECT in dense dataset.

Figure 17: Performance of algorithm in dataset Chess, Small Dataset group in which; (a) shows FOODMART
in sparse dataset. (b) shows CHESS in dense dataset.

(a)

(a)

(a)

(b)

(b)

(b)

11

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

of reading to only one time reading. It also helped
reduce the amount of memory required for data entry
during processing. Moreover, the intersection process
helped reduce the amount of duplicated data in frequent
itemsets findings. The algorithms take a different time
to process for each cycle of the dataset with low density.
This is because when the number of items is large,
but the average of items per transaction is small, the
possibility of having singleton frequent items is rare.
Under this circumstance, however, it takes a longer
time to intersect each dataset, resulting in a longer
processing time for R-Apriori Algorithm [8].

4 Conclusions

This article investigates the performances of the
three types of the R-Apriori Algorithm [8], DFIMA
Algorithm [10], and AHP Algorithm on low-density
databases with data similarity. The development of
an algorithm was implemented using Map-reduce
Principle on Apache Spark technology. It was observed
that the AHP algorithm could work more efficiently
than its counterparts on all types of information settings.
This is because the AHP Algorithm does not re-read
the data in the database, resulting from the singleton
frequent items in each of the 1-Frequent itemsets
being converted into bittable where the item position
is replaced with a bit value during the data procession.
The application of bitTable system has been found to
be able to; reduce the number of data readings to just
one time, reduce the memory space required during
data processing to generate candidate data prior to
using this candidate data to search for the next level
of the dataset (k + 1 frequent itemsets).
 DFIMA Algorithm was found to have had a
similar speed to AHP Algorithm when working on
a low-density database. R-Apriori Algorithm was
found to have a low level of performance because it
required multiple database readings for the creation of
a candidate dataset, which is another step in finding
the frequent items in each round. This research study
was based on Apache Spark technology, which is
now a prevailing technique for the development of an
algorithm’s performance. It is important for this kind
of study to be conducted with a larger database context
to validate the efficiency of the RDD architecture and
find an add-up on the performance development of
the DFIMA Algorithm. It is important to stay open

to a new data structure for the enhancement of an
algorithm capacity.

References

[1] S. Moens, E. Aksehirli, and B. Goethals, “Frequent
itemset mining for big data,” in 2013 IEEE
International Conference on Big Data, 2013,
pp. 111–118.

[2] D. C. Anastasiu, J. Iverson, S. Smith, and G.
Karypis, “Big data frequent pattern mining,” in
Frequent Pattern Mining. Switzerland: Springer,
2014, pp. 225–259.

[3] W. Xiao and J. Hu. “Paradigm and performance
analysis of distributed frequent itemset mining
algorithms based on Mapreduce,” Microprocessors
and Microsystems, vol. 82, p. 103817, 2021.

[4] M. Yimin, G. Junhao, D. S. Mwakapesa, Y. A.
Nanehkaran, Z. Chi, D. Xiaoheng, and C. Zhigang,
“PFIMD: A parallel MapReduce-based algorithm
for frequent itemset mining,” Multimedia Systems,
vol. 27, pp. 709–722, 2021.

[5] Apache Hadoop, “Open-source software for
reliable, scalable, distributed computing,” 2021.
[Online]. Available: http://hadoop.apache.org/
docs/

[6] S. Raj, D. Ramesh, and K. K. Sethi, “A Spark-based
Apriori algorithm with reduced shuffle overhead,”
The Journal of Supercomputing, vol. 77, pp. 133–
151, 2021.

[7] Y. Xun, J. Zhang, H. Yang, and X. Qin, “HBPFP-DC:
A parallel frequent itemset mining using spark,”
Parallel Computing, vol. 101, p. 102738, 2021.

[8] S. Rathee, M. Kaul, and A. Kashyap, “R-Apriori:
An efficient apriori based algorithm on spark,”
in Proceedings of the 8th Workshop on Ph.D.
Workshop in Information and Knowledge
Management, 2015, pp. 27–34.

[9] H. Qiu, R. Gu, C. Yuan, and Y. Huang, “YAFIM:
A parallel frequent itemset mining algorithm
with spark,” in 2014 IEEE 28th International
Parallel & Distributed Processing Symposium
Workshops, 2014, Art. no. 13872289.

[10] F. Zhang, M. Liu, F. Giu, W. Shen, A. Shami, and
Y. Ma, “A distributed frequent itemset mining
algorithm using Spark for big data analytics,”
Cluster Computing, vol. 18, no. 4, pp. 1493–
1501, 2015.

M. Kittipron and C. Jaruskulchai, “An Efficient Parallel Algorithm for Frequent Itemsets Mining Using BitTable on Spark.”

12 Applied Science and Engineering Progress, Vol. 16, No. 1, 2023, 5572

[11] T. S. and R. Nagarajan, “Spark based distributed
frequent itemset mining technique for big data,”
International Journal of Advanced Research in
Engineering and Technology, vol. 11, no. 10,
pp. 1800–1814, 2020.

[12] J. Abonyi, “A novel bitmap-based algorithm for

frequent itemsets mining,” in Computational
Intelligence in Engineering. Germany: Springer,
2010, pp. 171–180.

[13] FIMI, “Frequent itemset mining dataset repository,”
2021. [Online]. Available: http://fimi.ua.ac.be/
data

