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Abstract
Accurate long-term and midterm electricity load forecasting play an essential role in electric power system 
planning. Drawing on the seasonal-trend forecasting capacity of Fourier series and LOESS transformation, this 
paper applies modified Fourier series transformation (MFST) and modified seasonal-trend decomposition using 
LOESS transformation (MSTLT) to electricity load forecasting and compares the performance of two alternative  
models: the ARIMA(p,d,q) SARIMA(P,D,Q) model and the support vector regression (SVR) model. The data 
comprise monthly electricity consumption volumes between 2002 and 2019. The data between 2002 and 2018 
are utilized to construct the forecasting model, while those in 2019 are employed to test the accuracy of the 
predicted values. The results confirm the validity of the proposed model in terms of forecasting accuracy and 
interpretability.

Keywords: Thailand electricity load demand prediction, Fourier series, Seasonal forecasting model, Seasonal-
trend decomposition, LOESS
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1 Introduction

The Thai government strives to turn all metropolises 
into smart cities to enhance its citizens’ quality of life. 
One factor playing a crucial role in the design and  
development of smart cities in the planning of electricity  
capacity. To this end, efforts have been concentrated 
on technological advancement, most notably the  
construction of smart grids that efficiently respond 
to electricity demand and consumption in a real-time 
manner through the incorporation of computerized 
databases and complex analytical mechanisms [1]. 
 Not only will smart grids responsive to ever-
changing electricity demand and consumption  
contribute to electricity capacity planning and  
management efficiency, but they will also ensure  

reliability and safety from the power generation  
process, through transmission, to the distribution stage. 
All of this requires accurate electricityloaddemand  
prediction drawing on meticulously chosen mathematical  
models.
 In electricity load demand prediction, the most 
commonly applied models are the generalized estimating  
equation (GEE) and the linear mixed-effects model 
(LMM) for medium-term prediction [2]; the artificial 
neural network (ANN), for short-term prediction [3]; 
the integration of the generalization capability of the 
ANN into the Monte Carlo simulation method to  
enhance prediction efficiency [4]; and the recurrent 
artificial neural network (RANN), as exemplified in a 
study on short-term residential load forecasting based 
on a Long Short-Term Memory Network (LSTM) 
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recurrent neural network (RNN) [5] and a report 
on medium-term load pattern forecasting applying 
RANN [6]. 
 Theoretically, prediction models need to address  
the data insufficiency and inaccuracy problems  
inherent in long-term prediction by disregarding 
seasonal elements [7]. In practice, however, taking  
seasonal factors into consideration is inevitable since 
electricity consumption is perennial throughout the 
year. A mathematical model basing the future on 
past time-series data that has gained in popularity  
is the autoregressive integrated moving average 
(ARIMA) model. As its name suggests, the ARIMA 
model comprises three types of time series, namely  
autoregressive (AR), integrated (I), and moving  
average (MA). Central to the model are the stationary  
properties, i.e., stationary means and variances of 
the time-series data under investigation, and the 
application of the Box-Jenkins method drawing on 
the autocorrelation function (ACF) and the partial  
autocorrelation function (PACF). The goals of this  
approach are to eliminate noise from the data,  
minimize errors, ensure data reliability, and ultimately 
maximize forecasting efficiency [8]. 
 Further development of the ARIMA model is the 
seasonal autoregressive integrated moving average 
(SARIMA) model [9], attributable to the resemblance 
between seasonal influence and the sine and cosine 
trigonometric function movements. In one of his 
studies, [10] presented an SVR model hybridized with 
empirical mode decomposition (EMD) for electricity  
load forecasting. The principle is to separate the  
components of a time series into a number of intrinsic 
mode functions (IMFs) along with a remainder, where 
EMD forecasting systems considered both the accuracy  
and comprehensibility of the forecasting results. 
This method can be applied to unbalanced data and 
very complex systems and can isolate non-linear and  
stationary signal components. However, this method 
is suitable only for 1-dimensional data, i.e., data in the 
XY plane. [11] proposed a forecasting method called 
PEM & LSSVR-CCPSO, involving dividing data into 
two components: a periodic term and a non-linear 
term. The periodogram estimation method (PEM) 
is implemented to forecast the periodic term, while 
the least squaressupport vector regression (LSSVR) 
model is used to forecast the non-linear term. The 
chaotic cloud particle swarm optimization (CCPSO) 

algorithm is used to optimize the parameters of the 
LSSVR model. However, LSSVR techniques often 
encounter problems related to the selection of kernel 
functions to transform non-linear data into linear data. 
[12] developed a hybrid chaotic cloud quantum bats  
algorithm (CCQBA) to optimize non-linear dynamic 
algorithms. It is shown to be more effective than 
other methods in solving complex problems. [13] 
incorporated sine and cosine waves in demonstrating 
the movement of one cycle of the time-series Yt at the 
highest or the lowest value k, where k represents the k 
harmonic of ω. Evidently, such a regression analysis  
depends on trigonometric wave functions rather than 
researcher discretion in giving accounts of seasonal  
movements provided that the time-series data in  
question feature movements resulting from seasonal 
influences. However, a caveat is in order: over-reliance 
on trigonometric variables and parametric estimation 
with the least-squares method attaching an equal weight 
to each observed value may produce unsatisfactory  
prediction outcomes. Subsequently, [14] constructed 
seasonal and trend decomposition (STL) using locally 
estimated scatterplot smoothing (LOESS). STL is a  
versatile and robust method for decomposing time-series  
data, while LOESS is a nonparametric regression 
that uses a weighting function with the effect that the 
influence of a neighboring value on the smoothed 
value at a certain position decreases with its distance 
to that position.
 Concerning the assumptions underlying the 
development of a prediction model, [15] postulates 
that the data must feature a normal distribution,  
homoskedasticity, and non-autocorrelation. To convert 
data from one format to another that better fulfills 
these requirements, several data transformations, 
such as logarithmic, square, square-root, and inverse, 
are commonly performed. Other approaches involve 
deriving the square of the value of the existing data or 
obtaining a square value based on the criterion set from 
the relationships between the variances proportional 
to the population mean [16]. 
 The objective of this research is to present two 
methods for forecasting electricity load demand time-
series data. The first is the modified Fourier series 
transformation (MFST) model. To ensure model  
construction rigor, seasonal elements are tightly 
regulated by restricting the number of trigonometric 
variables. The second is the modified seasonal and 
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trend decomposition using LOESS  transformation 
(MSTLT). This method can create a regression line 
along a particular area of data that can change angles 
or directions according to a non-linear data pattern. 
 The rest of this paper is organized as follows: 
In Section 2, the materials and method, the MFSL 
forecasting model, the MSTLT forecasting model,  
and the assumptions relating to data and forecasting  
evaluation methods are detailed. In section 3, the 
results and a comparison of the performance of the 
proposed model and other forecasting methods are 
presented.  The conclusion is provided in Section 4.

2 Materials and Methods

The present study focuses on the development of a 
forecasting model for time-series data comprising  
trend and seasonal elements using transformation  
methods to ensure a normal distribution and  
homoskedasticity of the data. Also, decomposition 
methods are adopted to decompose the time-series 
data into the trend, seasonal, and irregular elements 
in additive and multiplicative forms. After that, MFST 
and MSTLT are applied. Additionally, the primary 
assumptions relating to the data and the criteria for 
evaluating the efficiency of the model are established.
 
2.1  Modified Fourier Series Transformation (MFST) 

Modeling with the MFST method comprises four  
components: Fourier series for seasonal time series; the 
determination of k for Fourier series with a periodogram;  
the determination of additive and multiplicative seasonal  
trend models, and the MFST algorithm.
         
2.1.1 Fouries series  for seasonal time series

Use of the Fourier series model for time-series data as 
a tool to explain the seasonal movement in the form of 
sine and cosine waves dates back to the introduction 
of the preliminary equation for Fourier series by [13] 
as follows:

 (1)

Where	λ	 represents	the	time-series	data	average
 A represents the amplitude of the data  
with ω representing the Fourier frequency

 t represents the independent time variables and 
equals 1,2, …, n
 θ represents the phase
 i represents the number of cycles and equals  
1,2, …, k
 k represents the highest or lowest number of cycles  
in the time series n with the highest value of   
when n is an even number and the highest value of 

 when n is an odd number.
 ε represents the errors and ɛ~NIID(0,σ2).
 In terms of the regression model, the Equation (1)  
can be rewritten as:

 (2)

 Both sides of Equation (2) are multiplied by A to 
derive:

 (3)

 λ is added to both sides of Equation (3) to obtain:

 
 (4)

 
  are assigned to Equation (4) to 
derive:

 (5)

 Accounting for the i term, Equation (5) is  
transformed into [Equation (6)]:

 (6)

or

 (7)

2.1.2 Periodogram

The seasonal component is defined using Equation (7),  
while a periodogram is a tool to determine the  
appropriate k values. A periodogram is a function of fi 
in the form of , where i equals 1,2, …, k.  
In the event that the f value is between 0 and 0.5,  
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the  function will take the form of 
a spectrum. To determine the periodic value of a  
season, the spectral density or Fourier transformation 
of autocorrelation can be estimated with the following 
Equation (8):

 (8)

where . 

2.1.3 Determination of additive and multiplicative 
seasonal trend models

Modified seasonal-trend decomposition using Fourier 
as a time-series is made up of seasonal, trend, cyclical, 
and irregular components while other elements are 
eliminated. With regard to a forecasting model with 
data comprising seasonal and trend elements, the linear 
trend is determined as Equation (9):

 (9)

Where Yt represents the observed values in the time 
series
 t represents time and equals 1,2,…, n
 β and β1 represent the parameters of the linear 
trend model
 et represents the errors
 In the event that a time series is in the form of 
an additive seasonal trend, the trend-adjusted time 
series derived will be . As 
for a multiplicative seasonal trend, the trend-adjusted  

time series obtained will be  with yt  

being employed to develop the seasonal components 
of the model through a Fourier series transform. In 
[17], the highest i value is determined as L, where 
L represents the number of seasons. Therefore, 
the seasonal adjustment of (7) above results in the  
following equation:
 

 (10)

 However, the formation of Equation (10) with 
i = L = 12 can lead to an excessively smooth model 
that does not fit the time-series data in cases where 

they are collected over a long period of time with 
seasonal movements, such as monthly for 20 years. 
To overcome this problem and sufficiently account 
for seasonal influences, the model is constructed from 
the time-series yt and the number of cycles i, where  
i = 1,2,..., q and q represents the appropriate number  
of cycles that maximizes the spectral density in  
determining the seasonal periodic value L, and hence  
i = Max(q,L) in Equation (10). In this study, the  
seasonal models from Equation (7) are Equations (11) 
and (12):

 (11)

and

 
 (12)

 As for a Fourier series model for time-series 
decomposition, [18] determined the additive and 
multiplicative seasonal trends as  and 

, respectively.
 Therefore, additive models accounting for the 
seasonal trend can be obtained using Equations (13) 
and (14): 

 (13)

and

 (14)

 Also, multiplicative models taking into account 
the seasonal trend can be derived using Equations (15) 
and (16): 

 (15)

and

 (16)
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2.1.4 MFST algorithm

The MFST modeling process involves transforming 
time-series data, estimating the trend component using 
a linear trend, adjusting the trend from the time series, 
determining the appropriate k values for the Fourier 
series, constructing the seasonal model, and creating 
the final model by combining the trend and seasonal 
components in additive and multiplication forms. 
The details of the MFST algorithm are displayed in 
Figure 1.

2.2  Modified Seasonal-Trend Decomposition Using 
LOESS Transformation (MSTLT) 
 
This section applies the LOESS regression function  
in estimating the trend component. The trend  
decomposition applies the STL method. After that, 
the trend component from the STL method is used to 
create a model using the MSTLT method, as presented 
in Section 2.2.3.

2.2.1 LOESS regression

LOESS is a method developed to solve outlier  
problems that may impact the construction of a trend 
equation, by locally smoothing the data in a regression  
function through weighting. Thus, the patterns and 
features of the data govern the regression curve with 
the weighted function addressing the distance between 
an observed value Yt and a neighboring point Yk, where 
k = 1,2,…,m. As a result, the weighted function is 
represented as:

 with k = 1,2,…,m
 

Where ti represents the time variable at time i,  
i = 1,2,…,n, which is an independent variable
 tk represents the point under consideration   
m in proximity to ti 
 di represents the distance between ti and m, 
with the greatest distance being equal to Yt and the 
smallest distance being equal to 0
 A linear regression derived by the LOESS method 
is in the form of a quadratic function that estimates 
parametric values using the least squares method. As 

it is possible that regression function estimation may 
be affected by an outlier, the LOESS method assigns 
a robust weight to such an outlier with: 

 In applying a robust weight, G(tk) is set at 0 if the 
outlier is equal to or greater than 6 times the median 
of the outlier, with G(tk) being multiplied by w(tk). The 

Figure 1: Modified Fourier series transformation 
(MFST)  algorithm flowchart.
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estimation of each range of a linear regression function  
takes the form of , which can 
be iterated as many times as deemed appropriate to 
enhance the accuracy of the curve adjustment. 

2.2.2 Seasonal and trend decomposition using LOESS (STL)

Seasonal-trend decomposition using LOESS (STL) is 
a robust method of time series decomposition often 
used in economic and environmental analyses. The 
STL method uses a locally fitted regression model 
to decompose a time-series into trend, seasonal, and 
remainder components. This non-parametric statistic 
is based on the principle of estimating each component  
of a time series through an iterative process and is 
thus applicable to any form of time-series data, be it 
daily, weekly, monthly, or yearly. In addition, the STL 
algorithm performs smoothing on a time series using 
LOESS in two loops: the inner loop for seasonal and 
trend component smoothing, and the outer loop to  
minimize the effects of an outlier. The three components  
of STL analysis relating to the raw time series for an 
additive model is as follows:

Yt = Tt + St + St

 The three components of STL analysis relating to the 
raw time series for a multiplicative model are as follows:

where: Yt represents the value of the time series at 
time t
 Tt represents the value of the trend component 
at time t
 St represents the value of the seasonal  
component at time t.
 St is the value of the remainder component at 
time t.

2.2.3 MSTLT algorithm

This study develops a modified seasonal-trend  
decomposition method using LOESS transformation 
(MSTLT), applying STL in decomposing time series 
by extracting the trend component from the time series. 
However, the trend component obtained from the process  
(Tt(STL)) needs to be smoother, a further calculation 
is conducted with the MSTLT method to construct a 
trend-restricted time series, as shown in Equation (17):  

 (17)

where Y(adj Tt(STL)) represents a trend-restricted time 
series 
 Yt represents time-series data 
 Tt(STL) represents the trend component from the 
STL method. 
 From the trend-restricted time series in  
Equation (17), it is possible to determine the average 
of the time-series in each quarter  and the 
total average of the time-series , where  

 and n represents the size  

of the time series. 
 The determination of the effect size of a season   
Si for an additive seasonal model can be done by  
identifying the difference between the average of the 
time series in each quarter and the total average of the 
time series, as shown in Equation (18): 

 (18)
 
 Also, the seasonal index Si of a multiplicative 
seasonal model can be determined using Equation (19):

 (19)

 The determination of the final trend component 
Tt for an additive seasonal model can be done by  
identifying a seasonally adjusted time-series value, as 
shown in Equation (20):  

Tt = Yt – Si (20)

Where Si represents the effect size of the season  
derived from Equation (18).
 Additionally, the seasonal index Tt of an additive 
seasonal model can be determined using Equation (21):  

 (21)

Where Si represents the effect size of the season  
derived from Equation (19).
 The components derived from Equations (20) 
and (21) are further utilized to analyze the graphically  
represented trend movement and construct a trend 
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equation fitting the data. The final step in constructing  
the forecasting model involves integrating the components  
of the trend equation and the effect size of the season 
in both the multiplicative and additive seasonal forms. 

2.3  Assumptions regarding the data and forecasting  
evaluation methods

To fulfill assumptions relating to a normal distribution 
and homoskedasticity and to ensure the accuracy of  
the predicted value, this study applies the principles  
relating to the relationships between the natural  
logarithms of standard deviations and means constituting  
the data in each year proposed by [19] as follows: 

 (22)

Where j represents the number of years in the time-
series data and equals 1,2, …, p
  represents the standard deviation estimate 
of the jth year 
  represents the mean estimate of the jth year
  and  represents the parameter estimates 
of the regression model
 The absence of statistically significant relationships  
between the independent and dependent variables in 
Equation (22) is an indicator of normally distributed 
data. The most popular transformation for this is the 
Box-Cox transformation, which is in the form of: 

 The appropriate λ is the value that maximizes the 
logarithm of likelihood function, as shown in:

where    [20]. 

 The Bartlett’s test  for constant variance 
assumption in the transformed data also needs to be 
considered, as in:

Where  is the estimate of the variance for the jth 
year 
  i s  t h e  e s t i m a t e  p o o l  v a r i a n c e  

, p is the number of year, nj is the sample  

size of time series for the jth year, and   
approximately follows a Chi-square distribution with 
p – 1 degree of freedom [21]. Once the model is  
derived, its predictive power is tested with the Theil’s 
coefficient. The coefficient is obtained by: 

Where Ai and Pi are the ith actual and predicted values 
of the series, respectively. The coefficient U ranges  
between 0 and 1 with 0 indicating a perfect prediction, 
a value approaching 0 indicating a high degree of 
predictive accuracy, a value approaching 1 indicating 
a low degree of predictive accuracy, and 1 indicating 
a perfect inequality between the predicted values and 
the actual data [22].

3 Results and Discussion

The data comprise monthly electricity consumption 
volumes between 2002 and 2019 [23], with those 
between 2002 and 2018 being utilized to develop the 
forecasting model and those in 2019 being employed 
to test the predictive power of the model. 
 Figure 2(a) displays the time-series movements 
comprising seasonal and trend elements. The test to 
verify a normal distribution demonstrates that the 
data are not normally distributed at the significance 
level of 0.05 with the K-S test statistic value equaling 
0.062 (p-value = 0.044), as illustrated in Figure 2(b). 
The	λ	value	stands	at	–0.31	with	 the	rounded	value	
being –0.50, as shown in Figure 2(c). Since the data 
need to be converted into the form of  [20], seven  

transformations such as , , ,  

,  ,  ,  and  are  

conducted, as shown in Table 1 below. 
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 Table 1 presents the types of data transformation  
contributing to a normal distribution proposed by [19] 
that involves the determination of the relationships  
between the natural logarithms of the estimated standard  
deviation for jth year data ( ) and the average of 
the year jth of the different variables in a simple linear 

regression. The present research applies the original 
time-series data Yt and 7 forms of data transformation,  
namely At, Bt, Ct, Dt, Et, Ft, and Gt. Subsequently,  
hypothesis testing is carried out using the t-test  
statistic. Similar to testing whether a slope value equals 
0, the simple linear regressions resulting in statistical 
insignificance demonstrate that the corresponding 
data transformations achieve a normal distribution. 
The findings from Table 1 suggest that when the data  
distribution is viewed in terms of the relationships  
between the natural logarithms of the estimated 
standard deviations for the jth year data and the means 
constituting the data in each year in the form of a 
simple linear regression, the transformations Dt = ln Yi  
(t = 0.68, p-value = 0.51), Ft =  (t = 1.65, p-value 
= 0.12), Gt =  and t = 1.08, p-value = 0.28) yield 
statistically insignificant relationships between the 
independent and dependent variables. Thus, such forms 
of data transformation lead to a normal distribution. 
As for Bartlett’s test used to test the homoskedasticity  
of the transformed data, statistical insignificance  
indicates fulfillment of such a requirement [16], [24], [25].  
According to Table 1, the values obtained from  
Bartlett’s test range between 0.20 and 22.10 with the 
p-value falling between 1.00 and 0.18, suggesting  
statistical insignificance and thus the homoskedasticity 
of the data in the form of Yt and the data transformed 
into At, Bt, Ct, Dt, Et, Ft, and Gt. However, when the data 
take the form of the observed value of the original time 
series Yt , the p-value was the lowest at 0.18. 

Table 1: Transformations to determine the relationships  
between the natural logarithms of the standard  
deviations and means constituting the data in each  
year 

Model Regression t-test P Bartlett’s 
test P

8.26 0.00 22.10 0.18

 4.36 0.00 10.25 0.89

3.03 0.01 8.27 0.96

2.44 0.03 7.33 0.98

0.68 0.51 0.20 1.00

2.78 0.01 8.08 0.97

1.65 0.12 6.13 0.99

1.08 0.28 5.60 0.99

(c)
Figure 2: (a) Time-series movements, (b) Verification of 
the normal distribution of the data, and (c) Determination  
of the appropriate λ value with the Box-Cox transformation  
method.

(a)

(b)
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 Iwok [17], determines the appropriate number 
of cycles for the seasonal elements in the form of a 
Fourier series as L, where the number of years from 
which the data are collected is lower than the number 
of seasons. In the present study, this is generalized 
with the appropriate number of cycles being the  
maximum value between q and L, where q represents 
the appropriate number of cycles that maximizes 
the spectral density and L represents the number of 
seasons. After that, the fi value contributing to the  
highest spectral density is determined.
 From Figure 3, the fi value yielding the highest  
spectral density is 0.0833 ( ),  
q = 17, and L = 12 ( ). Since q > L, the 
additive and multiplicative seasonal time series can be 
determined using Equations (23) and (24), respectively. 

 (23)

 (24)

 The seasonal-trend decomposition using Fourier 
series transformations is shown in Table 2. For all 

the transformations employed to convert the trend 
equations constructed in the form of a linear trend, 
the dependent variables vary according to time with 
the p-value equaling 0.0000 and the R2 value ranging 
between 0.89 and 0.91. Additionally, the determination 
of the additive seasonal trend and the multiplicative 
seasonal trend results in the trend-adjusted time-series    

 and , respectively. Then yt  

is utilized to identify the seasonal components of the  
model using the Fourier series method, as in Equation (12).  
After that, the trend and seasonal elements of the model 
are integrated into the additive seasonal trend and the 
multiplicative seasonal trend, as in Equations (23) and 
(24), respectively. 

Table 2: Trend equations from various transformations,  
R2, and slope testing 

Transformations Trend Equations R2 
t-test for Slope

t p

0.91 45.37 0.00

 0.91 45.25 0.00

0.90 44.90 0.00

0.90 44.68 0.00

0.90 43.79 0.00

0.89 –41.25 0.00

0.89 –42.19 0.00

0.89 –42.63 0.00

 The data transformations with the resultant  
additive models and Theil’s coefficients are as follows: 
 1) Yt transformation

 
 
with Theil’s coefficient being 0.0312.
 2)  transformation

 
 
 
with Theil’s coefficient being 0.0278.
 3)  transformation

(a)

(b)
Figure 3: (a) Periodogram plot of Yt, and (b) Spectral 
Density of Yt.
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with Theil’s coefficient being 0.0274.
 4)  transformation

 
 
 
with Theil’s coefficient being 0.0275.
 5)  transformation

 
 
 
with Theil’s coefficient being 0.0260.

 6)  transformation

 
 
 
 
with Theil’s coefficient being 0.0299.

 7)  transformation

 
 
 
 
with Theil’s coefficient being 0.0290.

 8)  transformation

 
 
 
 
with Theil’s coefficient being 0.0279.
 The data transformations with the resultant 
multiplicative models and Theil’s coefficients are as 
follows: 
 1) Yt transformation

 –0.0099 sin 3 ωt – 0.0130 sin 6 ωt + 0.0092 sin 7 ωt  
 –0.0115 sin 8 ωt – 742.600 cos 17 ωt
 –145.600 sin 17 ωt)
with Theil’s coefficient being 0.0275.
 2)  transformation

 
 
 
with Theil’s coefficient being 0.0268.
 3)  transformation

 
 
 
 
with Theil’s coefficient being 0.0268.
 4)  transformation

 
 
 
 
with Theil’s coefficient being 0.0269.
 5)  transformation

 
 
 
with Theil’s coefficient being 0.0258.

 6)  transformation

 
 
 
 
with Theil’s coefficient being 0.0298.

 7)  transformation

 
 
 
 
with Theil’s coefficient being 0.0300.
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 8)  transformation

 
 
 
 
with Theil’s coefficient being 0.0284.
 In [17], the model for time-series data comprising  
seasonal elements is developed with the seasonal  
elements being determined as a linear equation without 
data transformation, i.e., the original time-series data 
Yt. In contrast, this research transforms the time-series 
data Yt into seven forms, namely , ,  

, , , , and .  
 
It is found that the time series undergoing no data 
transformation will result in the highest Theil’s  
coefficients for both the additive and multiplicative 
forms, demonstrating the lowest model efficiency. In 
other words, data transformation is vital to enhancing the 
efficiency of a forecasting model. Thiel’s coefficients  
for the additive and multiplicative models are shown 
in Figure 4(a). As for the additive models, Theil’s 
coefficient ranges between 0.0260 and 0.0312,  
demonstrating a high level of predictive power. Higher 
model efficiency at the lower Theil’s coefficient of 
0.0260 is achieved with a logarithmic transformation.  
Regarding the multiplicative models, Theil’s  
coefficients range between 0.0258 and 0.0275,  
indicating again a high level of predictive power. In 
line with expectations, a logarithmic transformation 
leads to higher model efficiency at the lower Theil’s 
coefficient of 0.0258. Figure 4(b) shows the actual data 
and fitted values when using the Fourier series with the 
multiplicative model and logarithmic transformations.  
This plot shows that all the plot estimates have a  
reasonably good value because they follow actual data 
pattern data. Figure 4(c) shows the autocorrelation of 
the residual. Further exploration of the autocorrelation 
of rk(et) converted into the form of  shows that 
the errors are independent, suggesting once again that 
the model fares excellently in terms of its predictive 
power. 
  The result from the Fourier series demonstrates 
that the additive and multiplicative models from the 

logarithmic transformations differ very slightly. So, the 
logarithmic transformations and the additive model are 
used to construct the MSTLT forecasting model. In the 
present research, the strength of the LOESS regression 
proposed by [26] is applied to estimate the seasonal 

(c)
Figure 4: (a) Thiel’s coefficients for the additive and 
multiplicative models, (b) the actual data and fitted  
values when using Fourier series with the multiplicative  
model and logarithmic transformations, and (c)  
autocorrelation of the residual  rk(et) when using the 
multiplicative model and logarithmic transformation.  

(a)

(b)
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elements, while the STL method postulated by [27] 
is used to decompose seasonally, trend, and irregular 
elements. Also, the data are exposed to logarithmic  
transformations to ensure a normal distribution and 
homoskedasticity before the trend elements are  
utilized to construct the model in the form of a quadratic  
trend. The final components of trends, seasons, and  
irregularities of the modified seasonal-trend  
decomposition using LOESS transformation and the 
forecasting model are displayed in Figure 5. 

 From Figure 5(a), it can be seen that the trends 
component graph obtained by the STL method (Tt(STL)) 
is not as smooth. Therefore, the components of trends 
using STL were used to calculate the following:
 1) Determine the time series adjusted trend 
Y(adj Tt(STL) ) from Y(adj Tt(STL)) = Yt – Tt(STL). 
 2) Determine the total mean,

.
 3) Determine the time series adjusted trend in 
each seasonal, ,

 Determine the seasonal influence from 
,   , 

 1) Determine a new trend or de-seasonalised 
time series Tt = Yt – Si., from the trend movement pattern  
in Figure 5(b); the quadratic trend equation can be 
created as : 

or   

for i = 1,2,…,12 , 
 The components of trends, seasons, and  
irregularities in the last step are shown in Figure 5(c). 
The forecasting model is determined as:

or   

for i = 1,2,…,12 , 
where, 1 = –0.0817, 2 = –0.0887, 3 = 0.0541, 

4 = 0.0085, 5 = 0.0766, 6 = 0.0383, 7 = 0.0363, 
8 = 0.0332, 9 = 0.0079, 10 = 0.0145, 11 = –0.0242, 
12 =  –0.074. 

 The Theil’ s coefficient of this method is 0.0248. 
 Figure 6  shows The actual data and fitted values 
when using MSTLT with logarithmic transformations 

(c)
Figure 5: (a) Components of trends, seasons and  
irregularities when using MSTLT. (b) A new trend or de-
seasonalised time series Tt = Yt – Si. (c) The components  
of trends, seasons, and irregularities in last step. 

(a)

(b)
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and the quadratic trend. This plot shows that all the 
plot estimates have a reasonably good value because 
they follow actual data pattern data.
 The proposed MFST and MSTLT models are 
compared with two alternative models, namely 1) the 
ARIMA(p,d,q) × SARIMA(P,D,Q) model proposed by 
[8] and [9], classical works widely applied to construct 
forecasting models for time-series data, and 2) the SVR 
model developed by [28], and further described in 
terms of efficiency by [29]. It is found that the MSTLT 
and MFST models outperform all other alternatives 
on all the evaluation criteria, and the proposed model 
tends to fit more closely to the actual values with a 
smaller forecasting error. The findings are displayed 
in Table 3.

Table 3: Results of the forecasting models
Methods MAE RMSE MAPE

MSTL 13.965 78.298 3.064
MFS 16.060 83.593 3.189
AR* 20.573 111.439 3.273
SVR 30.924 145.780 4.400

AR* = ARIMA(p,d,q) × SARIMA(P,D,Q) model

 Furthermore, to verify the significance of the  
accuracy improvement of the MFST and MSTLT  
models, a comparison between the original 
ARIMA(p,d,q) × SARIMA(P,D,Q) and the SVR 
models is conducted with the Wilcoxon signed-rank 
test at 0.05 significance level [30]. The test results 
are shown in Table 4. Clearly, the proposed MSTLT 
model yields a statistically significant result when 

compared to that obtained from the alternative models, 
particularly the original SVR and the ARIMA(p,d,q) 
× SARIMA(P,D,Q) models. The MFST model derives 
a statistically significant result when compared to the 
original  SVR. In addition, the MFST model did not 
differ statistically from the MSTLT model.

Table 4: Wilcoxon signed-rank test
Comparisons of 

Models Rank N Z Sig.

MSTLT-SVR MSTLT < SVR 11a –2.432 0.015*
MSTLT > SVR 1b

MSTLT-MFST MSTLT < MFST 10a –1.883 0.060
MSTLT > MFST 2b

MSTLT-AR* MSTLT < AR* 11a –2.197 0.028*
MSTLT > AR* 1b

MFST-SVR MFST < SVR 11a –2.197 0.028*
MFST > SVR 1b  

MFST-AR* MFST < AR* 7a –0.941 0.347
MFST > AR* 5b

AR*-SVR AR* < SVR 9a –1.490 0.136
AR* > SVR 3b  

AR* = ARIMA(p,d,q) × SARIMA(P,D,Q) model

4 Conclusions

This study developed two models for forecasting 
time-series data, namely Fourier series transformation 
(MFST) and modified seasonal-trend decomposition 
using LOESS transformation (MSTLT). Based on 
the findings, it can be concluded that the MFST and 
the MSTLT models are efficient alternatives in the  
construction of a seasonal model, and possibly a  
cyclical one, for predicting the electricity load demand  
of Thailand and hence planning and managing the 
country’s long-term electricity capacity. The results 
confirm the validity of the proposed models as  
forecasting methods with a high level of accuracy and 
interpretability. For further studies along similar lines, 
problems relating to the number of Fourier series and 
high dimensionality may be solved by parametric 
estimation with a penalized regression integrating 
a penalty function in order to achieve better model 
efficiency.
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