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Abstract 

This report describes the formulation of a microstructurally-based orthotropic elastic-plastic continuum model 

for paper and paperboard. The model consists of two constitutive components: an elastic component 

developed from the finite deformation theory of elasticity, and a plastic component with a modified Tsai-Wu 

yield criteria and a nonlinear hardening function. Fiber orientation distribution underlying the paper 

structure is captured using a structural tensor. The model is implemented in a user-defined subroutine 

(UMAT) of a finite element software ABAQUS. Structural parameters of the model were measured from a 

selected set of papers using image analysis technique; other parameters were obtained from fitting the 

simulation results to the corresponding experimental data. Good agreements between the model predictions 

and the mechanical response of corrugated paperboard created from the selected set of papers confirm model 

validity.  
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1 Introduction 

Paper and paperboard are the underlying load bearing 

structure for corrugated packages and containers. 

Thus, mechanical response of papers is the 

fundamental knowledge for package designers and 

manufacturers. With the emergence of finite element 

method, the process of designing and evaluating the 

strength of paper packages and containers can be 

efficiently performed using numerical simulations. 

To simulate the mechanics of paperboard structure 

requires part geometry, contact and boundary 

conditions, and most importantly an appropriate 

material model for papers.  

Paper and paperboard exhibit dependence on loading 

direction and rate of deformation; the complex 

behaviour can be attributed to their underlying fiber 

network structure created during manufacturing 

process. Paper sheets are formed by collecting a 

slurry mixture of fibrils and starch on a moving belt. 

The mixture is then pressed and dried by a set of 

rollers creating a thin sheet where the alignment of 

fibers is biased along the direction of the press. 

Hence, the directional dependence of paper can be 

categorized into (1) the direction of machine or roll 

press (MD), (2) cross or perpendicular to the machine 

direction (CD), and (3) out of plane direction (TD). 

Figure 1 shows the material directions in a paper roll.  

 

Figure 1: Directionality in a roll of paper [1] 

Because the dimension of the paper thickness is 

smaller than the dimensions in the other directions, 

the mechanical response of paper sheets are analyzed 

under plane stress condition. In another word, the 

response is dominated by the in-plane stress 

components (MD-CD plane) while the out-of-plane 

stress components (TD direction) are insignificant. A 

representative plot of stress-strain curve of paper 

sheets under uniaxial tensile loading is demonstrated 

in Figure 2. 
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Figure 2: Representative response of paper under 

uniaxial tensile loading 

 

The plot illustrates a behaviour characterized by a 

linear elastic zone representing a recoverable 

deformation due to stretching of fibers and starch 

matrix following by a nonlinear plastic zone 

corresponding to an unrecoverable deformation 

arising from a combination of fiber slip, fiber rupture 

and matrix breakage. Following the experimental 

observation, attempts to model paper sheets have 

focused on characterizing and modelling the complex 

nonlinear behaviour. Gilchrist et al. [2] modelled the 

nonlinear stress strain relation by the equation; 

 321 )tanh( CCC 
,            (1)

 

where  is the stress component in one dimension, 

           is the strain component in one dimension, 

          
321 ,, CCC  are fitting constants. 

Though Equation 1 is phenomenological in nature 

and only captures elastic response, this form of the 

stress-strain relation is accepted as an approximate 

response of paper sheets in one dimension. After the 

Gilchrist model, Makela et al. [3] proposed a 

constitutive model for paper sheets based on the 

classical linear elastic orthotropic model combined 

with Tsai-Wu failure criteria and a nonlinear 

hardening function in the form of Equation 1. Similar 

modelling approach has been employed by Mottola 

[1], Allansson and Sverd [4], Beldie [5], Haj Ali  

et al. [6] with various forms of hardening equations. 

Xia et al. [7] developed a new orthotropic yield 

surface and a hardening function specifically for 

paperboard. These models relied on 

phenomenological based orthotropic models that do 

not consider the effects of underlying fiber network 

structure.  

Harrysson et al. [8] developed a micromechanics-

based elastoplastic constitutive model for papers that 

includes the effect of network structure via a 

structural tensor. Harrysson model has been shown to 

capture the nonlinear responses of papers with 

various degrees of anisotropy. Yet the model requires 

a large set of model parameters for fitting the 

response, and the origin of structural tensor is still 

ambiguous. Thus, the objective of this work is to 

develop a constitutive model that incorporates the 

effects of fiber orientation via a structural tensor that 

is physically measurable from the underlying 

structure of paper sheets.  

 

2 Experimental Investigation of In-plane 

response of Kraft Papers 

2.1 Uniaxial tensile test 

A selected grade of kraft paper provided by a local 

manufacturer is used as a representative material. To 

investigate the mechanical response of paper, a series 

of tensile tests was conducted on dogbone paper 

specimens along MD, CD, and 45 degree to the MD 

directions. A video extensometer was employed to 

measure paper elongation. The test was performed at 

a deformation rate of 2mm per minute until failure.  

 

Figure 3: Stress-strain relation of the representative 

paper under uniaxial tension 

 

The results in Figure 3 show that the test along the 

MD direction exhibits a stiffer response but a smaller 

elongation at break compared to that along the CD 

direction. The response along 45 degree to the MD 

direction falls between the CD and the MD with 

moderate stiffness and elongation at break. These 

results are consistent with the behaviour of paper 

sheets observed by other researchers.  
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2.2 Characterization of paper microstructure 

An image of the representative paper sheets in  

Figure 4 was obtained using an optical microscope at 

10 times magnification. 

  

 

Figure 4: Microstructure of paper under an optical 

microscope 

 

The image shows a network of fibers evenly 

distributed throughout the area of interest. The fibers 

are mostly straight with preferential alignment along 

the MD direction. The observations on paper 

microstructure coupled with the results of uniaxial 

tensile tests suggest that the material anisotropy in 

paper sheets is dominated by the orientation 

distribution of the constituent fibers. To quantify the 

fiber orientation distribution from the paper 

micrograph, an image analysis code following local 

orientation in image neighborhoods algorithm [9] 

was applied to the image in Figure 4 and additional 

19 images taken from arbitrary locations of the same 

sheet. The averaged fiber orientation distribution of 

all images is shown in Figure 5.  

Measured

Curve Fitting

Measured

Curve Fitting

 

Figure 5: Fiber orientation distribution of the 

representative paper sheet 

 

Following Gasser et al. [10], the fiber orientation 

distribution  p  is a probability density function 

indicating the likelihood of fiber alignment in 

direction . Hence,  p  must be normalized to 1; 

1sin)(
2

1

0

 


d
.            (2) 

A structural tensor G  for a general two dimensional 

network structure is constructed from 

  00

2212

1211
21 aahIh

gg

gg
G 








                 (3) 

where 
221211 ,, ggg  are the components of the 

structural tensor, 
0a  is the unit vector indicating the 

preferential direction of fibers, I  is a 2 by 2 identity 

matrix, and   


dh 3

0

sin
2

1
 . The fiber orientation 

is assumed to be distributed according to a -periodic 

von Mises distribution given by; 

)2(

]1)2cos(exp[

2
4)(

berfi

bb 





 ,           (4) 

where b  denotes the concentration parameter of the 

fiber orientation and )()( ixerfixerfi   is an 

imaginary error function. Thus, the structural tensor 

can be determined by fitting the parameter b  to the 

experimentally measured fiber orientation 

distribution. The value of b  in Figure 5 is 1.5.  

 

3 Continuum mechanics framework 

3.1 Kinematics 

A continuum body 
0B  in the reference configuration 

is filled with infinitesimal volume elements whose 

position of each element is denoted by a vector X . 

The motion of the element is described by a one-to-

one, generally nonlinear, mapping function 

 tXxx , , where x  denotes the position of element 

X  at time t of the body 
tB  in the current 

configuration. The deformation of such body can be 

determined from a linear map known as a 

deformation gradient F  ; 

Xd

xd
F  ,             (5)  

 

which describes the transformation of a material line 

Xd  in the reference configuration into its 

counterpart xd  in the deformed configuration. For a 
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unique deformation, the Jacobian of the linear map 

must be positive; 

  0det  FJ .             (6) 

Time derivative of the deformation gradient is related 

to a spatial velocity gradient L via  

FLF  .             (7) 

The spatial velocity gradient may be split into a 

symmetric part D  and a skew-symmetric part W  

according to 

WDL  ,             (8) 

where  T
LLD 

2

1  is a stretch rate tensor and 

 T
LLW 

2

1  is a spin tensor.  

Following Kroner-Lee decomposition, the 

deformation gradient of an elastoplastic body may be 

decomposed into an elastic deformation gradient e
F   

and a plastic deformation gradient p
F  according to 

pe
FFF  .             (9) 

The mapping of the Jacobian is also decomposed into 

an elastic part and a plastic part according to  

   ppeepe FJFJJJJ det;det;          (10) 

 

The decomposition map in Equation 10 is shown in 

Figure 6. 
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Figure 6: Deformation map of a continuum body 

 

where z denotes the position of element X in the 

relaxed configuration 
B . The relaxed configuration 

is non-physical but serve as an idealization of relaxed 

state of the body after being unloaded from the 

elastic deformation. The elastic velocity gradient and 

the plastic velocity gradient are defined by 
pppeee

FLFFLF   ; .          (11) 

The spatial velocity gradient can be decomposed into 

an elastic velocity gradient 
e

L , and a plastic velocity 

gradient 
p

L ;  

1


epee

FLFLL .          (12) 

The elastic velocity gradient is defined in the current 

configuration, while the plastic velocity gradient is 

defined in the relaxed configuration. 

 

3.2 Thermodynamics 

Constitutive models describing the material 

behaviour must comply with the laws of 

Thermodynamics. Specifically, the 1st
 
and 2nd laws 

of thermodynamics are written in a combined form as 

the reduced dissipation inequality, which for 

isothermal conditions is given by,  

0:
2

1
CS ,           (13) 

where S  is the second Piola-Kirchhoff stress tensor, 

FFC
T

  is the right Cauchy Green tensor,   is the 

Helmholtz free energy. For the proposed model, the 

change in Helmholtz free energy of the system is due 

to the contribution of the elastic deformation of the 

body 

 e
C  ,           (14) 

where eee
FFC

T

  is the elastic right Cauchy green 

tensor. Substituting Equation (14) into (13) yields 

   
0:2:

2

1 1


























 pe

e

e
Tp

e

e
p

LC
C

C
CF

C

C
FS

   

            (15) 

From separation hypothesis, Equation 15 may be split 

into elastic contribution; 

  Tp

e

e
pp F

C

C
FJS








1

2 ,         (16) 

and dissipative contribution; 

0: 
p

L .           (17) 

where   e

e

e

C
C

C






  is the Mendel stress tensor.  

An elasto-plastic model is completed by specifying 

the Helmholtz free energy and an evolution law for 

plastic velocity gradient. One possibility of the 

evolution laws (among many others) is to define a 

convex potential function  f  such that  






f
L

p
            (18) 

where   is a positive multiplier. The evolution law 

in Equation 18 is referred to as associative plasticity 

theory, in conjunction with the maximum plastic 

dissipation postulate. The Cauchy stress tensor is 
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then given by a push-forward operation of Equation 

16. 

  Te

e

e
e

e

T
F

C

C
F

J
FSF

J 







21          (19) 

 

3.3 Application to paper and paperboard  

Paper and paperboard are thin sheet structures, and 

their mechanical responses can be modelled by plane 

stress. Further, their out-of-plane response is 

considered decoupled from the in-plane response, 

and the out-of-plane deformation is described by a 

simple linear elastic model. Hence, this work focuses 

on the modelling of the in-plane mechanics of paper 

and paperboard. 

We assume that the directionality of the in-plane 

response of this material is solely governed by the 

effect of biased fiber orientation, and that the 

material is sufficiently thin that the in-plane fiber 

orientation distribution of the structure is represented 

by the fiber orientation distribution on its surface. 

Therefore, the structural tensor representing fiber 

orientation distribution described in Section 2.2 can 

be used for capturing the directionality of the 

mechanical response of paper and paperboard. 

Further, the underlying structure of the material is not 

damaged; and therefore, the structural tensor remains 

unchanged with the deformation. 

Following the continuum mechanics framework, the 

free energy is formulated based on the theory of 

invariant with the structural tensor served as material 

parameters. In this model, the following form of 

Helmholtz free energy is proposed: 

      3323

2

1211 ln111 JJJkJkJk     (20) 

where 
1J , 

2J , and 
3J  are invariants of e

C  and G  

defined by 

 
 

 e

e

e

CJ

GCtraceJ

GCtraceJ

det

,

,

3

1

2

1







            (21) 

and 
1k , 

2k , 
3k  and   are material parameters. 

Using Equation 19, 20 and 21, the Cauchy stress of 

the proposed model is given by 

 
    





















1ln1

2

12

1

1

ee
Tee

eTeTee

e

JJFGFJk

FGFFGFk

J 


        (22) 

Note that for equilibrium consideration, 

  01 
e

C  and therefore, 
31 kk  . 

To model plasticity, an evolution law of the plastic 

velocity gradient must be defined via a potential 

function. Tsai-Wu model [11] used an anisotropic 

yield function that is a generalization of Hill criteria 

for isotropic material. In this work, a modification of 

Tsai-Wu yield criteria will be adopted for the in-

plane plasticity of paperboard. The potential function 

is given by 

  


















2

122211

2211221112

2

22

2

2222

2

11

2

1111 21

ggb

ggagaga

S
f

      (23) 

where 
ij are the in-plane components of the Mendel 

stress tensor, 
ijg are the in-plane components of the 

structural tensor, S  is a strength-like parameter, 

122211 ,, aaa  and d  are model parameters. The yield 

function represents the onset of plastic deformation. 

To capture the non-linear response post-yielding, a 

hardening function is introduced to the parameter S . 

We assume that the resistance of the structure to 

plastic yielding S  evolves with the level of effective 

plastic strain rate defined by 

ppp

eff DD :            (24) 

The hardening function is chosen as 

  p

eff

p

eff cccSS  
3210 tanh           (25) 

where 0S  is the initial strength, 
321 ,, ccc  are fitting 

parameters. The model requires 14 parameters 

032112221122121121 ,,,,,,,,,,,,, Sbcccaaagggkk   

to completely describe the elastoplastic response of 

paper and paperboard under in-plane loads.  

 

4 Results and Discussions 

The proposed model was implemented in a 

commercially available finite element software 

ABAQUS via user material subroutine (UMAT). To 

validate the model, a set of finite element simulations 

with the same geometry and loading conditions as the 

uniaxial tensile tests were generated using 1st order 

reduced integration shell (S4R) elements.  

The material parameters of the model were obtained 

using the following procedure. The components of 

the structural tensor 
221211 ,, ggg  were measured from 

the paper structure using the image analysis 

technique described in Section 2.2. The parameters 

corresponding to the elastic components of the model 

,, 21 kk  were fitted to the linear zone of the tensile 

test result in the CD direction, while the initial 
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strength 0S  and model parameters 
122211 ,, aaa  and b  

are obtained by calibrating the onset of plastic 

deformation of both the MD and the CD directions. 

Lastly, the plastic hardening parameters are fitted to 

the nonlinear portion of the test result in the CD 

direction only. Table 2 shows the model parameters 

used in the simulation.  

Table 2: Model parameters for the representative 

paper 

 

GPak 0.11   GPak 6.52   kPa0.1  

729.011 g  012 g  271.022 g  

03.011 a  1.012 a  122 a  

037.0b  MPaS 36.130   MPac 14.71   
1

2 sec150 c    1

3 sec67.216


 MPac  

 

 

Figure 7: Model predictions compared  

to experimental results 

 

Stress-strain curves along the MD, CD and 45 degree 

to MD directions predicted by the simulations are 

compared to the corresponding experimental results 

in Figure 7. The model is shown to capture the linear 

elastic response, the onset of plastic deformation, and 

the plastic hardening behaviour of all three material 

directions. Slight discrepancies are observed in the 

prediction along the MD direction as the MD 

response is predicted from fitted parameters in the 

CD direction. In summary, good agreements between 

the experimental results and the predictions by the 

simulations confirm the validity of the proposed 

constitutive model formulation. 

 

 

 

 

5 Conclusions 

An elastoplastic constitutive model for the in-plane 

response of paper sheets has been proposed. The 

proposed model requires 14 parameters to capture the 

nonlinear and directional dependent response of this 

material. The underlying network structure of paper 

is captured in the model via a physically measurable 

structural tensor. The model is shown to capture the 

complex nonlinear elastoplastic behaviour of paper 

and paperboard under in-plane loading conditions.  
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