
223

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 223–230, 2017

Requirement-based Selection Model for the Expansion of Regression Test Selection

Adtha Lawanna*
Department of Information Technology, Vincent Mary School of Science and Technology, Assumption
University, Samutprakarn, Thailand

* Corresponding author. E-mail: adtha@scitech.au.edu DOI: 10.14416/j.ijast.2017.08.005
Received: 15 November 2016; Accepted: 16 March 2017; Published online: 15 August 2017
© 2017 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
Issue of maintaining software is to consider which test cases should be kept for the next modification where
the size of test suite gets bigger. This makes performance of software development pull out. The objective
of proposing requirement-based test case selection model is to improve ability of regression test selection,
in particular, to moderate the size of test suite of the modified program, which gets larger after modification
regarding the need of specific requirements, including preparing higher ability of removing faults. It comprises
five main algorithms, which are finding reused test case, classifying, revising, deleting, and selecting the
appropriate test cases. This paper uses six programs run on different four comparative studies, which are select-
all, random, and regression test selection. It gives smaller size than the traditional techniques about 49.78% in
average. Besides, it offers percent fixing faults that is higher than select-all, random, and regression test selection
algorithm as around 0.06–1.32%.

Keywords: Test case, Test suite, Selection, Regression test, Requirement

Please cite this article as: A. Lawanna, “Requirement-based selection model for the expansion of regression
test selection,” KMUTNB Int J Appl Sci Technol, vol. 10, no. 3, pp. 223–230, Jul.–Sep. 2017.

Research Article

1 Introduction

This article presents problem of maintaining software
in terms of reducing numbers of selected test cases that
are used as the representative of the modified program
and avoiding faults that could be produced during the
processes are running [1]. Also, there are some solutions
provided for solving these issues, including the proposed
model that is developed for the reason of improving the
traditional methods particularly, the use of regression
test selection to offer the better results [2]. In the past,
using retest-all technique is the first method to evaluate
the modified program by retesting all test cases, which
gives no problem when dealing with small test suite [3].
In fact, when modifying software for several time can
make size of test suite gets bigger until execution time
becomes one of the problem of the whole processes
of software maintenance [4]. Besides, random technique

is available for the bigger size [5]. But the precision of
this cannot be ensured after selection [6]. Regression
testing is method for executing a set of test cases
on a program, which guarantees its modification
doesn’t produce programming errors and preserve the
efficiency of the system not less than it has been in
the past [7], [8]. The principle of this concept is to
build modified program from previously by generating
suitable test suites [9]. It’s happen when changing
request is involved. This means adding new test cases into
the previous test suites [10]. Accordingly, deleting the
obsolete test cases become the first priority. Therefore,
test suite maintenance will be the objective of
regression testing [11]. Irrelevant test cases, e.g., obsolete,
uncontrollable, and redundant test cases are removed
regardless this reason. The problem of this technique
is that it affects the cost-effective of regression testing,
which involves its algorithms. This makes time consuming

http://dx.doi.org/10.14416/j.ijast.2017.08.005
http://dx.doi.org/10.14416/j.ijast.2017.08.005

224

A. Lawanna, “Requirement-based Selection Model for the Expansion of Regression Test Selection.”

to execute the test cases. Moreover, considering
detecting faults and factors that affect ability of test
selection techniques are realized [12]. Therefore, the
experimental design will concern independent variable
such as seven subject programs, regression test technique,
and test suite generation criteria, including dependent
variable, e.g., the ability of size reduction and fault
detection are involved. The proposed model is given
for increasing efficiency and effectiveness of using
retest-all, random, and regression test selection by
three evaluations, which are reducing the amounts
of the selected test cases, fault detection, and percent
fixing bugs or programming errors.

2 Materials and Methods

2.1 Subject programs

GZIP, GREP, FLEX, MAKE, BASH, VIM, and SED
used in this paper can be downloaded from Software-
artifact Infrastructure Repository (http://sir.unl.edu/
php/previewfiles.php) as shown in Table 1. The
amounts of the test suite are around 5,680–122,169. The
first four programs are unix utilities provided by Gnu
site that pass several-release versions. They involve
treatment of smokers who want to quit smoking from
different sources. Each program is created to find
factors that can help them from that problem. Providers
conclude that these programs cannot increase code
coverage because of the measurement at statement
level is poor. This is the reason why this paper uses
them as a part of studies. For BASH, VIM, and SED,
they written by C-Language and test type is ad-hoc that
are served as regression suites for subsequent version.

Table 1: Subject program
Program Item T

GZIP β1 5,680
GREP β2 10,068
FLEX β3 10,459
MAKE β4 35,545
BASH β5 59,846
VIM β6 122,169
SED β7 14,427

2.2 Test case selection

Before, starting to explain the concept of test case
selection, it is necessary to understand two definitions

listed as follows;
 Definition 1: Test Suite
 Test suite (T) or test pool is a set of test cases
created for each program (P). After the modification,
T will be denoted as T' and P is changed to P'.
 Definition 2: Test Case
 Test cases are member of T, which says T =
{t1, t2, t3,...tn}, while T' = {t'1, t'2, t'3,...t'n}. Therefore,
P gives T and P' offers T'. Under the concept of test
case selection, T' can be generated by specific tools
such as test case generator. In this paper, T' is created
by using classification tree generator. However, this
paper doesn’t show the details of generating T' because
we focus on selection technique, which concerns
different algorithms. Test case selection is technique
that can reduce the size of T'. It implies determining
∃t' from large T'. Example of test case selection are
integer programming, slicing technique, graph walking
control, program dependence graphs, system dependence
graph, control flow graphs, code-based, coverage-based,
model-based, and others. Accordingly, It is the concept
of finding some of test case (∀t') instead of using all
of test cases (∃t'). The principle of dividing types of
test case selection characteristics of program, e.g.,
programming language and test case template, which
generated by properties of code and specification
under the concept of defining test case specification
and execution. After this, three traditional algorithms
will be described as comparative studies in this paper
[9], [11], [12].

2.3 Select-all (α1)

α1 is the prior method that is developed for selecting
∀t', which gives good result when dealing with small T'
as shown in Figure 1, whereas the left axis is number of
T' and the right axis represent % accuracy. As we can
see on the left hand side of Figure 1, if T' is smaller,
the percent accuracy is higher. The value of percent
accuracy is dropping when the size of T' is growing.
This makes the minimum T' that gives the maximum %
accuracy. Therefore, α1 may not guarantee the selection
will be good at high level. This motivates researchers
to study and develop different technique for handling
this issue [13]–[15]. Algorithm of α1 is shown below;
 If T' = ∀t' then
 Select ∀t'
 End,

225

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 223–230, 2017

 However, it cannot be used well enough as he
reason explained above. This is why random technique
becomes an important methods for the next development.

2.4 Random (α2)

α2 is technique for choosing t' from T' of P' randomly
to solve the problem that α1 cannot do. It is a good
technique for dealing with T', which is large. It doesn’t
suitable for a small T' when compared with α1 [16]–
[18]. Algorithm of α2 is explained as;
 Input: T'
 Output: ∃t'
 Process:
 If T' = {t'1, t'2, t'3,...t'n}
 then select ∃t' from T' randomly
 End,
 Whereas ∃t' is the numbers of selected test case
and T' is a test suite. However, the main problem of α2
is not about how the algorithm works but it concerns
the percent accuracy of selecting a good set of ∃t'.
Allowing to the process, α2 is used to represent the method
of selecting ∃t' which can displays altered outcomes
for defining ∃t' based on the number of selection.

2.5 Regression test (α3)

α3 is method for selecting ∃t' from ∀t' existed in T'
of the modified program by using algorithm below
[19]–[21];
 Algorithm
 Input: T'
 Output: ∃t'
 Process:
 If T = {t1, t2, t3,...tn} then
 T' = {t'1, t'2, t'3,...t'n}

 ElseIf necessary, generate T'' to get a set of t''
then Select ∃t''
 ElseIf necessary, generate T''' to get a set of t'''
then Select ∃t'''
 ElseIf necessary, generate T(n) to get a set of t(n)
then Select ∃t'(n)

 EndIf,
 End,

2.6 The proposed model (α4)

α4 is the alternative test case selection based on classifying
different requirements under the concept of software
engineering that focusses on maintenance.

2.6.1 Concept of the proposed model

The total picture of the proposed model follows nine
main processes as shown in Figure 2. The process starts
with requirement gathering from stakeholders who
get involve the entire project. After this, classifying
requirements is necessary before coding or modifying
program. After getting a new version software, T'

Figure 1: Test suite increases, Accuracy decreases.

Figure 2: Conceptual model.

0

20

40

60

80

100

120

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9
T' Accuracy

Get requirements

Classify requirements

Modify progam

Generate test case

Classify test case

Test

Revise test case

Select test case

use

fail

no

yes

Delete test caseunuse

pass

226

A. Lawanna, “Requirement-based Selection Model for the Expansion of Regression Test Selection.”

will be generated to get a set of t'. Accordingly, types
of t' will be classified before testing them to know that
the results of the tests are pass or fail regarding test
case specification, which show detail of t'. In case, t'
that pass the test will be proceeded for the selection. If
fail, then it is necessary to they will be revised before
the selection process has done otherwise some of t' will
be back to be generated and redo the processes again.
If it cannot be revise, it becomes unused t' and will be
removed from the whole processes.

2.6.2 Algorithms

Process 1: Get requirement
Requirements (θ) are gathered depending on different
requirements for the next software modification.

Process 2: Classify requirement
Requirements are mainly divided to five types, which
are business (θ1), user (θ2), system (θ3), functional (θ4),
and non-functional (θ5) requirements by using Table 2,
including reused t' (θ7), which is always selected. It
is designed for typify each requirement by checking
them regarding retrieval resources.

Table 2: Requirement metric
Item B U S F F'
θ1  - - - -
θ2 -  - - -
θ3 - -  - -
θ4 - - -  -
θ5 - - - - 

*Types of Requirement: Business (B), User (U), System (S),
Functional (F), and Non-functional (F')

Process 3: Modify program
After the process 2 has done, modifying the previous
software starts in order to delete, add or change the
code relying on all of clear θ.

Process 4: Generate test case
This process creates T' from P' by using algorithm
below;
Input: P, P' and T
Output: T' = {t'1, t'2, t'3,...t'n}
If P ⇒ T then
 P' ⇒ T'
End,

Whereas T = {t1, t2, t3,...tn} and T' = {t'1, t'2, t'3,...t'n}

Process 5: Classify test case
Classifying gives seven different test cases, which are
listed as follows;
θ1 = {θ1,1, θ1,2, θ1,3,..., θ1,n}
θ2 = {θ2,1, θ2,2, θ2,3,..., θ2,n}
θ3 = {θ3,1, θ3,2, θ3,3,..., θ3,n}
θ4 = {θ4,1, θ4,2, θ4,3,..., θ4,n}
θ5 = {θ5,1, θ5,2, θ5,3,..., θ5,n}
θ6, {x, y, z}see details in process 6.
θ7 = {θ7,1, θ7,2, θ7,3,..., θ7,n} or reused test cases
Input: T' = {t'1, t'2, t'3,...t'n}
Output: θ1, θ2, θ3, θ4, θ5, θ6, and θ7

Process:
If t' = θ7 then get a set of θ7

ElseIf t' = B then get a set of θ1
ElseIf t' = U then get a set of θ2
ElseIf t' = S then get a set of θ3
ElseIf t' = F then get a set of θ4

ElseIf t' = F' then get a set of θ5
Else Get θ6

End,
Process 6: Delete unused test case
Input: θ6

Output: ϕ
Process:
If t' = θ6 then
Remove θ6

End,
	 θ6 can be classified to three types, which are
obsolete t'(x), redundant t'(y), and unrevised t'(z),
whereas x = t' ∩ T' = ϕ, y = t' ∩ T' ≠ ϕ, and z = t' ∪ T' = T'

Therefore, deleted t' or θ6 = ∑(x + y + z)

Process 7: Test
After doing process 5, what we will get is; θ = ∑(θ1 +
θ2 + θ3 + θ4 + θ5). However, they will be tested to find
test cases that give the result “pass (θ = 1)” or “fail
(θ = 0)”. Accordingly, test cases that pass the tests will
be selected during some that fail the test move to the
next process for revising or fixing problems.

227

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 223–230, 2017

Process 8: Revise test case
If some θ that can be revised will be brought back to
process 7 and tested again for the selection process. If
they cannot be revised because of weak design, then
they will go back to process 4 and move throughout
the process 5 to 7 again until they are deleted or chosen
regarding the reason explained in process 7.
Algorithm of revising θ is explained as;
If θ1 = 0 then revise θ1

ElseIf θ2 = 0 then revise θ2

ElseIf θ3 = 0 then revise θ3

ElseIf θ4 = 0 revise θ4

ElseIf θ5 = 0 then revise θ5

End,
Whereas, the condition of revising test case is shown
below;

Therefore, θ that cannot be revised or θ' equals

Process 9: Select test case
The algorithm of selection is described as follows;
Input: θ and θ'
Output: θ	=	∑(θ	−	θ')
Process:
If θ1 = 0 and then group 1=
ElseIf θ2 = 0 and then group 2=
ElseIf θ3 = 0 and then group 3=
ElseIf θ4 = 0 and then group 4=
ElseIf θ5 = 0 and then group 5=
End,
Therefore, the total number of selected test case () equals

2.7 Evaluation

This paper takes three kinds of formulation as the criteria
of measuring the performances of the traditional
methods including the proposed model explained as
follows;

2.7.1 Percent Reduction (%R)

In order to evaluate the performance of alternative
studies can be carried on by using Equation (1);

 (1)

2.7.2 Percent fault Detection

One of the most important evaluation is to avoid bugs
found in the selected test cases, which need to use
Equation (2) calculated as % bugs removal (%E) as;

 (2)

Whereas, is the selected test case that has bugs or
programming errors.

2.7.3 Ability of fixing bugs

This is another important evaluation to measure the
performance of the comparative studies in terms of
the percent ability of fixing bugs (%FB) by using
Equation (3) as;

 (3)

Whereas, is a set of the selected test case that has
bugs, which can be solved by programmers.
 The different between 2.7.2 and 2.7.3 is avoiding
and fixing bugs, which depend upon the characteristics
of the test suite and the ability of programmers.

2.8 Scopes and limitations

The scopes of preparing this research is using the
large size of the test suite, which should greater than
5,000 but not higher than 130,000 cases. The subject
programs used in the experiment are already provided
and written by C-Language. Besides, all comparative
studies follow the concept of test case selection. The
reason is control the properties and constraints, which
must be the same.

3 Results and Discussions

It is important that types of test cases need to be
classified regarding change request to perform clear

228

A. Lawanna, “Requirement-based Selection Model for the Expansion of Regression Test Selection.”

requirements before testing and retaining software.
Regarding seven subject programs used in experiment’s
part, Table 3 shows three main things, which are
the amount of θ1 to θ5 for each program (β1 to β7),
including T' and θ7. Accordingly, number of the specific
requirements are in range 53 to 146 requests, while
the reused test case are found and countable in 57 to
271 cases. However, the report is concluded only on
these seven programs. In some situation, if changing
the related programs used in different experiments
are added in the future, we will get different results
depending on characteristics of software, e.g., software
requirements, including system, hardware, and other
requests. After this, the set of unrevised test case
(−) are determined as shown in Table 4. We
can find them by revising cases from θ1 to θ5 that
cannot pass the test. Relevant to this, percent of fixing
these cases are found from 8.51%−35.19% as given
from Table 4. This means some of θ cannot be fixed,
then they will be removed from the system and leave
relevant θ for the proper selection throughout the
algorithms. This makes the advantage over the old
methods, while they focus on testing and picking the
representatives. However, the proposed model may
concern how to find the effect of different cases, which
may hidden in a whole test suite. This is because it
may produce some faults that drop the performance
of using software. After that, Table 5 computes the
difference between θ and θ' of each β to examine the
amount of the selected test case. For example; Group 1,
β1 : θ1 − = 54 − 17 = 37 cases. The same procedure
is applied for the rest and recorded. However, the total
number of the chosen t' is the summation of ∆θ +
θ7, which is shown in Table 6 at the last column (α4),
while the picked t' of α1, α2, and α3 are also reported.
From reading this table, the amounts of selected t' by
the proposed method are smallest, while α1 is biggest
because it chooses all of t', which affect the whole
system when the size gets larger, in particular, the
value of β6 cannot run software quickly but for β1 that
the size may not cause any problem. Including, Table 6
also prepare the results of finding percent reduction
(%R) by all studies, which can be computed by using
Equation (1);
Example of finding %R;

β1 for α4 : %R = × 100% = 92.10%

Table 3: Amounts of T' and θ
β T' θ1 θ2 θ3 θ4 θ5 θ6

β1 5,680 54 96 56 110 128 99
β2 10,068 94 53 109 78 77 57
β3 10,459 63 50 146 83 127 82
β4 35,545 87 77 90 75 103 113
β5 59,846 72 106 112 55 81 85
β6 122,169 121 127 75 114 141 271
β7 14,427 54 102 139 72 132 99

Table 4: Amounts of θ'
β
β1 17 22 20 21 14
β2 13 13 14 11 21
β3 21 12 16 18 19
β4 17 20 12 21 17
β5 21 18 18 16 13
β6 17 12 13 13 12
β7 19 12 12 15 14

Table 5: Amounts of θ'
β Group 1 Group 2 Group 3 Group 4 Group 5 θ7

β1 37 74 36 89 114 99
β2 81 40 95 67 56 57
β3 42 38 130 65 108 82
β4 70 57 78 54 86 113
β5 51 88 94 39 68 85
β6 104 115 62 101 129 271
β7 35 90 127 57 118 721

Table 6: Selected test case and percent reduction by
four algorithms

β Item α1 α2 α3 α4

β1
5,680 843 620 449

%R 0.00 85.16 89.08 92.10

β2
10,068 1,550 710 396

%R 0.00 84.60 92.95 96.07

β3
10,459 1,156 742 465

%R 0.00 88.95 92.91 95.55

β4
35,545 1,079 786 458

%R 0.00 96.96 97.79 98.71

β5
59,846 1,468 743 425

%R 0.00 97.55 98.76 99.29

β6
122,169 1,066 1.025 782

%R 0.00 99.13 99.16 99.36

β7
14,427 1,815 1,459 1,148

%R 0.00 87.42 89.89 92.04

229

KMUTNB Int J Appl Sci Technol, Vol. 10, No. 3, pp. 223–230, 2017

 The interpretation of this activity says that there
is impossible for α1 to decreases the size, while α4 can
prepare the minimum. However, the problem is to use
α2 because it cannot guarantee reducing the size will
give competency to the system as in range 85–99%,
which is too big. On the other hand, α3 gives 89–99%.
This means that some program can be carried on by
using α2, which is no need to spend harder algorithm
like α3. Moreover, Table 7 offers the amount of fault (f)
and percent avoiding fault (%F), which will be taken
by using Equation (2).
Example of defining %F;

β1 for α4 : %F = × 100% = 99.86%

Table 7: Selected test case and percent reduction by
four algorithms

β Item α1 α2 α3 α4

β1
f1 24 16 15 8

%F 99.58 98.10 99.74 99.86

β2
f2 24 20 15 7

%F 99.76 98.71 99.85 99.93

β3
f3 30 15 13 4

%F 99.71 98.70 99.88 99.96

β4
f4 23 15 12 3

%F 99.94 98.61 99.97 99.99

β5
f5 25 15 15 1

%F 99.96 98.98 99.97 100.00

β6
f6 28 19 13 7

%F 99.98 98.22 99.99 99.99

β7
f7 29 16 13 6

%F 99.80 99.12 99.91 99.96

 The rest computations will be hold by the same
procedure and presented in Table 7 as well. From
the observation, this issue doesn’t significant for all
methods because all results of ability to avoid fault
are in high range (almost 100%). The reason is that
before selecting test cases, avoiding errors or faults
is necessary when modifying software. Therefore,
this point may not give much different output. As we
can see all results reported, the ability of using the
proposed model is better than previous studies. This
is alternative way when dealing with change request
and different types of requirement are concerned when
modifying software becomes the focus of the whole
software development.

4 Conclusions

Regression test selection is one of the most essential
method for handling the process of software maintenance
when new requirements are involved. The development
team need to find the appropriate test case generator for
designing good test suite that avoids new faults as well.
The complexity of using this technique in particular,
designing test cases becomes a new problem, which
is the cost-effective. Therefore, to fix this problem
and to keep the ability of the selection model turns a
necessary job. The proposed model focuses on selecting
the reused test cases from the previous test suite of
each program first to guarantee that the competency
of the program will be preserved, while the traditional
methods skip this issue. According to the experiments,
retest-all gives lowest performance of reducing the
test suite’ size while random technique gives better
outcomes but when look at the whole picture of the
selection is still not good enough, which the regression
test selection can offer good yields. However, due to
the objective of present this paper is to develop better
algorithm for controlling total of selected test cases are
still large regarding using the old methods. Moreover,
numbers of fault after selection is bigger the proposed
model because they cannot avoid those errors, which
can be found in the set of chosen test cases. From doing
the experiment, the ability of reducing test suite size by
using the proposed model is better than the traditional
methods as around 0.32%–99.36%. Besides, it also gives
percent of avoiding fault as about 99.86%–100.00%.
For the future work, the algorithms of deletion should
be considered before the selection process to the
reason of removing all irrelevant test cases. This can
reduce execution time of testing the selected test cases,
including preparing well cost-effective, which the
regression test selection techniques cannot avoid.

Acknowledgements

The research project was funded by Assumption
University.

References

[1] P. Bhatt, G. Shroff, and A. K. Misa, “Dynamics of
software maintenance,” ACM SIGSOFT Software
Engineering Notes, vol. 29, no. 5, pp. 1–5, 2004.

230

A. Lawanna, “Requirement-based Selection Model for the Expansion of Regression Test Selection.”

[2] D. I. K. Sjoberg, B. Anda, and A. Mockus,
“Questioning software maintenance metrics: A
comparative case study,” in Proceedings of the ACM-
IEEE International Symposium on Empirical
Software Engineering and Measurement, 2012,
pp. 107–110.

[3] O. Denninger, “Recommending relevant code
artifacts for change requests using multiple
predictors,” in Proceedings of the 3rd International
Workshop on Recommendation Systems for
Software Engineering, 2012, pp. 78–79.

[4] A. Lawanna, “Filtering test case selection for
increasing the performance of regression testing,”
KMUTNB Int J Appl Sci Technol, vol. 9, no. 1,
pp. 19–25, 2016.

[5] A. Magalhaes, F. Barros, A. Mota, and E. Maia,
“Automatic selection of test cases for regression
testing,” in Proceedings of the 1st Brazilian
Symposium on Systematic and Automated Software
Testing, 2016, pp. 19–20.

[6] L. Mariani, O. Riganelli, M. Santoro, and M. Ali,
“G-RankTest: Regression testing of controller
applications,” in Proceedings of the 7th
International Workshop on Automation of
Software Test, 2012, pp. 131–137.

[7] L. Gong, D. Lo, L. Jiang, H. Zhang, “Diversity
maximization speedup for fault localization,” in
Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering,
pp. 30–39, 2012.

[8] A. Lawanna, “Test case based selection for the
process of software maintenance,” Silapakorn
University of Science and Technology Journal,
vol. 7, no. 2, pp. 36–45, 2013.

[9] A. Lawanna, “Technique for test case selection
in software maintenance,” Walailak Journal of
Science and Technology, vol. 11, no. 2, pp. 69–77,
2014.

[10] H. Do, S. G. Elbaum, and G. Rothermel,
“Supporting controlled experimentation with
testing techniques: An infrastructure and its
potential impact,” Empirical Software Engineering,
vol. 10, no. 4, pp. 405–435, 2005.

[11] H. Do, G. Rothermel, “An empirical study of
regression testing techniaues incorporating

context and lifetime factors improved cost benefit
models,” in Proceedings of the 14th ACM SIG-
SOFT International Symposium on Foundations
of Software Engineering, 2006, pp. 141–151.

[12] G. Rothermel and M. J. Harrold, “Analyzing
regression test selection techniques,” IEEE
Transactions on Software. Engineering, vol. 22,
no. 8, pp. 529–551, 1996.

[13] G. Rothermel and M. J. Harrold, “A safe, efficient
regression test selection technique,” ACM
Transactions on Software Engineering and
Methodology, vol. 6, no. 2, pp. 173–210, 1997.

[14] M. Grindal, B. Lindstrom, J. Offutt, and S.F.
Andler, “An evaluation of combination strategies
for test case selection,” Empirical Software
Engineering, vol. 11, no. 4, pp. 1–31, 1977.

[15] P. Hsia, X. Li, D. Kung, C-T. Hsu, L. Li, Y.
Toyoshima, and C. Chen, “A technique for the
selective revalidation of OO software,” Software
Maintenance: Research and Practice, vol. 9,
pp. 217–233, 1997.

[16] D. L. Bird and C. U. Munoz, “Automatic generation
of random self-checking test cases,” IBM System
Journal, vol. 22, no. 3, pp. 299–245, 1983.

[17] T. Y. Chen, F. C. Kue, R. G. Merkel, and T. H.
Tse, “Adaptive random testing: The ART of test
case diversity,” Journal of Systems and Software,
vol. 83, no. 1, pp. 60–66, 2010.

[18] Z. Zhou, “Using coverage information guide test
case selection in adaptive random testing,” in
Proceedings of Computer Software and Application
Conference Workshops, pp. 1–8, 2010.

[19] E. Engström, P. Runeson, and M. Skoglund,
“A systematic review on regression test selection
techniques,” Information and Software Technology,
vol. 52, no. 1, pp. 14–30, 2010.

[20] A. Hooda and S. Panwar, “A roadmap for effective
regression testing,” International Journal of
Scientific and Engineering Research, vol. 7, no. 5,
pp. 214–220, 2016.

[21] A. Ansari, A. Khan, A. Khan, and K. Mukadam,
“Optimized regression test using test case
prioritization,” in Proceedings of the 7th International
Conference on Communication, Computing and
Virtualization, pp. 152–160, 2016.

