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Stabilized Roe-FDS Scheme for Solving Shock Wave Instabilities Problems

on Triangular Grids
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Abstract

This paper study the numerical instability of Roe's flux-difference splitting scheme on triangular grids. The
scheme may sometimes lead to unphysical flow solutions in certain problems. These problems include the carbuncle
phenomenon that refers to a spurious bump on the bow shock near the flow center line ahead the blunt body or an
unrealistic perturbation that occurs from a moving shock along odd-even grid perturbation in a straight duct. The new idea
of entropy fix for unstructured triangular grids is presented to improve the computed shock wave resolution. The
proposed scheme is further extended to obtain higher-order spatial and temporal solution accuracy. The solution accuracy
is further improved by coupling an error estimation procedure to an adaptive remeshing algorithm. Efficiency of the
combined procedure is evaluated by analyzing supersonic shocks and shock propagation behaviors for both the steady and

unsteady high-speed compressible flows.
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1. Introduction
High-speed compressible flows normally involve
complex flow phenomena, such as strong shock waves,
shock-shock interactions and shear layers. Numerical flux
formulation is an essential part of flux formulation
schemes in order to obtain accurate and robustness
numerical solutions of the Euler equations. Various
numerical inviscid flux formulations have been proposed
to solve an approximate Riemann problem. Among these
formulations, the flux-difference splitting scheme by Roe
[1] is widely used due to its accuracy, quality and
mathematical clarity. However, the scheme may
sometimes lead to unphysical flow solutions in certain
problems. These problems include the carbuncle
phenomenon that refers to a spurious bump on the bow
shock near the flow center line ahead the blunt body; an
unrealistic perturbation [2] that occurs from a moving
shock along odd-even grid perturbation in a straight duct;
and a kinked Mach stem observed when a normal shock
wave reflects on a ramp to form a double-Mach reflection.
The main objectives of this paper are to propose and
evaluate a stabilized Roe-FDS scheme with adaptive
unstructured grids for two-dimensional high-speed
compressible flow analysis. The H-correction entropy fix
[3,4] is modified for unstructured triangular grids and
implemented into the original Roe's scheme. To improve
the analysis solution accuracy, the presented scheme is
further extended to high-order solution accuracy and
combined with an adaptive grid procedure. To enhance
solution accuracy of the numerical analysis, the grid
adaptation is needed to improve the computed solution.
An adaptive grid technique is incorporated with an

appropriated error indicator to dictate a close correlation
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between the size of cells and the behavior of the
corresponding computed solution. The technique is
implemented to capture fast variation of the solution with a
reasonable number of elements. The process of the
adaptive grid is to first generate initial grid of the domain.
The grid is used to compute the corresponding solution by
the finite volume method. Then the regions where
adaptation is vital are determined by an error indicator. A
new grid, which is better adapted for the solution, is
entirely created. The same process is repeated until the
specified convergence criterion is met. The efficiency of
the overall procedure is evaluated using examples in the
field of computational fluid dynamics that include the
supersonic shock waves and shock propagation behaviors.
The efficiency of the combined procedure is evaluated by

analyzing a series of both steady and unsteady high-speed

compressible flows.

2. Stabilized Roe's Flux-Difference Splitting

Scheme

The finite volume formulation of two-dimensional
Euler equations for high-speed compressible flows of an
element with domain €2 may be written in the form,

fE fids = 0 (1)

QJ.JdQ+
ot
Q oQ

>

where Q is a control volume. U is the vector of

conservative variables, and E is the vector of the
convective fluxes. The Roe's approximate Riemann solver
(Roe) is implemented in the framework of the cell-
centered scheme. The numerical flux, passing through a
shared side of the two adjacent left and right elements is

given by [1],
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where ¢, is the wave strength of the K" wave, A 1s the
. T .

eigenvalue LVn -a V, V, V, + aJ , I, is the

corresponding right eigenvector, ¥, is the normal velocity,

and a is the speed of sound at the cell interface.

(3]

multidimensional dissipation, the so called H-correction

Sanders et al. introduced an idea of a

entropy fix method. This method is then modified for
unstructured triangular grid as shown by Fig. 1(a) and it
has shown to eliminate the unrealistic carbuncle
phenomenon of the flow over a blunt body in the
structured uniform grid [4]. The advantages of the method
are the simplicity in the implementation into the existing

scheme and the parameter-free characteristics. For the two

triangular cells shown in Fig. 1(b), the stabilized
eigenvalues have been proposed by,
sP_
n> = maX(17,,775, 77, 775) 3)
where 7.,i=2t0 5 are,
4)

i :O-SmkaX(MkR _ﬂw_‘)

Then the eigenvalues are modified according to Harten [5]

yielding,

(a)

Fig. 1. Control volume topology of (a) structured uniform

(b)

grid, and (b) unstructured triangular grid.
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It has been found that the above method performs well
on certain problems but may fail for the others. Thus, this
paper proposes a stabilized Roe-FDS method (RoeSP) that
combines the entropy fix method of Van Leer et al. [6] and
the modified multidimensional dissipation method by
Pandolfi and D'Ambrosio [7], the modified H-correction,

together by replacing the original eigenvalues as follows,

44| ||z 20"
2
A N
max(‘/lzv3 ,nsp)

where 77V" = max(ﬂ,R —AL, 0).

To illustrate an unphysical expansion shock, a Mach 6
moving shock along odd-even grid perturbation in a
straight duct [2]. The computational domain consists of a
uniform triangular grid with 800 and 20 equal intervals
respectively along the axial and the transverse directions of
the duct. The grids along the duct centerline are perturbed
in the transverse direction with magnitude of +10°. The
RoeSP can provide accurate shock resolution whereas the
Roe suffers from the numerical instabilities as depicted in
figures 2(a)-(h), respectively. As explained by Gressier and
Moschetta [8], the exact capture of contact discontinuity
and strict stability cannot be simultaneously satisfied in
any upwind scheme. The solution suggests that additional
dissipation injection to the entropy and shear waves is thus

needed to stabilize the Roe's scheme as done by RoeSP.
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Fig. 2. Density contours of a Mach 6 moving shock along
odd-even grid perturbation problem: (a)-(d) Roe;
and (e)-(h) RoeSP.

The second unrealistic flow solution, the so-called
carbuncle phenomenon, of a steady-state flow over a blunt
body from the original Roe's scheme was first reported by
Perry and Imlay [9]. Such phenomenon refers to a spurious
bump on the bow shock near the flow center line ahead the
blunt body. The phenomenon is highly grid-dependent [7]
but does not require a large number of grid points to
[8].

phenomenon, the methods are employed with three meshes

appear To demonstrate this grid-dependent
of different element aspect ratios. An enlarged view of the
elements near the flow centerline of the grid and the
corresponding density contours are shown in Figs. 3(a)-(c).
The carbuncle phenomenon can be clearly seen in a more
refined grid with higher element aspect ratio as shown in
Fig. 3(a). While the RoeSP provides reasonable flow
solutions, the carbuncle phenomena are easily observed in

the Fig. 3(c).
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(a)

(¢)

Fig. 3. Mach 15 flow over a blunt body problem: (a)

enlarged view of the mesh; (b) Roe; and (c) RoeSP.

3. Higher-Order Formulation

Solution accuracy from the first-order formulation
described in the preceding sections can be improved by
implementing a high-order formulation for both the space
and time. A high-order spatial discretization is achieved
by applying the Taylor' series expansion to the cell-
centered solution for each cell face [10]. For instance, the

solutions at the midpoint of an element edge between node

1 and 2, can be reconstructed from,

b +
A, =0c + ;[(% . %) qg} ™
where Q= [p u v p]T consists the primitive

variables of the density, the velocity components, and the
pressure, respectively; . is the solution at the element
centroid; q, , 7 = 1, 2, 3 are the solutions at nodes. In this

paper, the inverse-distance weighting from the centroid to

the nodes that preserves the principle of positivity is used,

qc i / (8)

= \r
are the surrounding cell-centered values of

where e
node n. ‘F.‘ is the distance from the centroid to node #,
and N is the number of the surrounding cells.

The ¥, in Eq. (7) represents the limiter, preventing

spurious oscillation that may occur in the region of high
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gradients. In this study, Vekatakrishnan's limiter function

[11] is selected,

¢ A+,maX A > 0
A T
Y. = mini:lm ¢ A+,min LA <0
A _
1 , A =0
©)
where A4 =q.—0> A, rox =0Opex —CG;»  and

A, in = Oin —0; - The g, and q; ~ are respectively
the maximum and minimum values of all distance-one

neighboring cells. The function ¢ is similar to the Van

Albada limiter [12], which is expressed in the form,

y? +2y
yi+y+2

#(y) = (10)

The second-order temporal accuracy is achieved by
implementing the second-order accurate Runge-Kutta time

stepping method [13],

_ﬂi[:”.nj

U =up
-Qi =1

(11)

uri=Yuesu - Ay E
2 Q=
where At is the time step.

The high-order extension of the RoePA presented in
the preceding section is evaluated by solving several
problems. The modified scheme is also combined with an
adaptive grid technique that generates unstructured
triangular grids for more complex problems. These
selected test cases are: (1) Sod shock tube, (2) Supersonic
flow over a bump, and (3) Steady-state Mach 15.3 flow

past a cylinder.
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4. Results and Discussions
4.1 Sod Shock Tube

The one-dimensional shock tube test case, the so
called Sod shock tube [14], is solved by using a two-
dimensional domain. The initial conditions of the fluids on
the left and right sides are given by (p,i, p), =(1.0,0.0,1.0)
The

and  (p,i, p)g =(0.1250.00.1) - 1.0 x 0.1

computational domain is discretized with uniform
triangular elements into 400 and 40 equal intervals in the x
and y directions, respectively. Figures 4(a)-(b) show the
predicted density and pressure both first and second-order
accurate distributions along the tube length and are
compared with the exact solutions at time ¢ = 0.15. The
figures show that the second-order extension of RoeSP
provides more accurate solutions than the first-order

solutions.

Exact
Y . First erder

second orde

(a) Density {b) Pressure
Fig. 4. Comparison of numerical and exact solutions

attime ¢ = 0.15.

4.2 Supersonic flow over a bump

The second-order RoeSP is further evaluated for
adaptive unstructured grids using a problem with more
complex flow phenomena. Figure 5 shows the problem
statement of a supersonic flow over a 4% bump with a
Mach 1.4 flows from the left side of domain which results

in complex flow behavior. The initial grid and the
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corresponding density contours computed by using the

6(a)-(b),

respectively. The adaptive technique [15-17] is then used

second-order RoeSP are shown in Figs.
to capture solution discontinuities in order to enhance the
solution accuracy. The final adaptive grid and the
corresponding density contours computed by using the

6(c)-(d),
respectively. The figures highlight the use of the second-

second-order RoeSP are shown in Figs.
order accurate scheme on adaptive grids to effectively

obtain detailed flow solution.

T

1.0

-1—10—»%—10%4—10_.

Fig. 5. Problem statement of a supersonic flow over a

bump.

(a) Initial grid (b) Density contours

R

(¢) Final adaptive grid

(d) Density contours

Fig. 6. A supersonic flow over a bump problem.

4.3 Steady-state Mach 15.3 flow past a cylinder

The last problem that used to demonstrate the solution
accuracy improvement by coupling a RoeSP to a
remeshing algorithm is a steady-state Mach 15.3 flow past
a cylinder is described in Fig. 7. Figures 8(a)-(d) show the
adaptive grid consisting of 36,986 cells, as well as the

resulting density, pressure and Mach number contours. The
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figures show that the second-order extension of RoeSP

provides more accurate solutions without spurious bump

ahead of a blunt body.

Computational demain

Bow shock {
32

M=153 {
o> L
44 1.2 ‘*154

Fig. 7. A supersonic flow over a bump problem.

Y

L

g
~
f

(a) Adaptive grid  (b) Density (¢) Pressure  (d) Mach number

Fig. 8. A supersonic flow over a bump problem.

5. Conclusions

The modified H-correction entropy fix (RoeSP) for
unstructured triangular grids is proposed to improve
numerical stability of the Roe's flux-difference splitting
scheme. The method was then evaluated by several well-
known test cases and found to eliminate unphysical
solutions that may arise from the use of the original Roe's
scheme. These unphysical solutions include the expansion
shock generated from the flow over a forward facing step
and numerical instability from the odd-even decoupling
problem. To further improve solution accuracy, the
second-order and second-order

spatial Runge-Kutta

temporal discretization were also implemented. The

method was also combined with an adaptive grid
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generation technique to demonstrate its applicability for
arbitrary unstructured grids. The entire process was found
to provide more accurate solutions for both the steady-state

and transient flow test cases.
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