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Abstract

In high-dimensional regression models, effective variable selection is critical for enhancing model
interpretability and accuracy. This paper introduces a novel method, ICM/M,, which incorporates directed
graphs into the Bayesian variable selection framework to capture directional relationships among variables.
We compare the performance of ICM/M, with Lasso, ICM/M without considering a network, and ICM/M
with undirected graph incorporation methods across various simulation scenarios in a genomic context.
The results demonstrate that ICM/M, achieves significantly lower false positive rates while maintaining
competitive false negative rates, especially in cases where not all genes in the network are related to the
response and the number of predictors is large. This balance of precision and recall ensures more reliable
and interpretable models. The ICM/M, method proves to be a robust and valuable tool for researchers
dealing with complex high-dimensional datasets, particularly in genomics and bioinformatics, by providing

a more accurate representation of underlying biological or network structures.
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1. Introduction

High-dimensional datasets refer to datasets
where the number of variables can far exceed the
number of observations. This scenario is common
in biomedical science research, where researchers
often measure a vast array of variables, such as
genetic markers or protein levels, relative to a smaller
number of samples, like patients or tissue samples.
Variable selection is crucial in high-dimensional data
analysis, especially in biomedical research, as it
enhances model interpretability by identifying the
most relevant predictors. By focusing on the most
informative variables, researchers can gain deeper
insights into the underlying mechanisms of diseases
and improve patient outcomes [1].

When the outcome is a quantitative variable,
a regression model is typically employed to find
associations between predictors and outcomes.
However, the standard regression model with
the Ordinary Least Squares (OLS) method suffers
from several limitations, including potential
multicollinearity among predictors, and reduced
effectiveness in model estimation and interpretation
in high-dimensional settings [2].

Biological pathways, available in many databases,
are series of interactions among molecules within
a cell that lead to specific products or changes,
playing critical roles in processes like metabolism
and signal transduction. Graphs, where nodes
represent genes and edges represent interactions,
are commonly used to represent interconnections
among genes in biological pathways. Gene networks
help in understanding how genes work together to
regulate various cellular processes. Incorporating

these pathways into biomedical research models

can help in understanding complex biological
mechanisms and provide a more holistic view of
biological systems.

Pungpapong et al. [3] proposed a Bayesian
framework that incorporates biological pathways,
represented by an undirected graph, into variable
selection in high-dimensional settings. This could
be done by using an Ising prior. For fast and easy
implementation, the Iterated Conditional Modes/
Median (ICM/M) algorithm was introduced [3].
However, since the interactions among genes in
the network are directional, with one gene product
regulating or influencing another, a directed graph
should be used instead of an undirected graph.

In this paper, we aim to modify the Ising prior
to capture directional relationships among genes
in the network. The performance of our proposed
method is assessed based on its effectiveness in

variable selection.

2. Methods

In this section, we first review an empirical
Bayes variable selection method incorporating
undirected graphs, as proposed by Pungpapong et al.
[3]. Then, we demonstrate how to modify this

method to accommodate directed graphs.

2.1 Incorporating Undirected Graphs for Variable
Selection in High-Dimensional Regression

2.1.1 Bayesian Framework

Consider a high-dimensional regression model

as shown in Equation (1).

Y=XB+¢ (1)
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where Y is a vector of size n of response
variable, X is a n x p matrix of covariates, f is a
p-dimensional vector representing the regression
coefficient, and ¢ is a n-dimensional vector of error
term and assume that e~N(0,6°1,), where I isann x n
identity metrix. In other words, errors are independent
and identically distributed with a constant variance
of &

By further assuming that the response is
centered and the covariates are standardized, it can
be shown that, forj=1,..., p, the sufficient statistic
for f; given known value of all other coefficients

Brs o> Bty Bisrs - B,) is shown in Equation (2).

-1 -

1 o 1
ey~ plo) @

where X, is the j-th column of X and
7= Y- Xp+Xp,

To perform variable selection as well as
integrating undirected graph among predictors, the
mixture prior in Equation (3) is put on each of g,
independently and the Ising prior [4] in Equation (4) is

employed to capture relationships among predictors.
B 5~ (1=5)04(B) + () 3)

P(7) oc exp {az T, +b z Tj‘rk} (4)
j (7eE
where d, (+) is a dirac delta function (i.e., mass
at 0), y(-) is a Laplace density with scale parameter
a, 7= (1, ..., 7, ) where 7; is an indicator variable
defined as 7;= 1{f,# 0}. From (3), when 7,=0, f3; is
equal to 0 and when 7, = 1, the prior of 5, follows
the Laplace distribution. The Laplace density with

scale parameter a is given by Equation (5).

Figure 1 Example of an undirected graph.

aln-1
& f|} (5)

The Ising prior in Equation (4) has two

)= el

hyperparameters a and b where a influences the
overall tendency of nodes to be in particular state
(ie, z;=1o0r;=0) and b represents the interaction
strength when nodes in undirected graphs are
connected. The latter summation in Equation (4)
indicates that we sum all over all edges in
undirected graphs. The edge set £ contains all edges
in undirected graphs. For example, the edge set is
E={(1,2),(2,1),(1,5),(5,1),(3,4),{4,3)} in Figure 1. For
o, the Jeffreys’ prior [5] is used, meaning it does not
favor any particular values of . The Jeffreys’ prior
takes the form P(c) < 1/0.

2.1.2 The iterative Conditional Modes/Median
Algorithm

Pungpapong et al. [3] introduced the iterated
conditional modes/medians (ICM/M) algorithm for
efficient empirical Bayes variable selection. This
method determines optimal hyperparameters and
auxiliary parameters as the modes of their full
conditional distributions, while each regression
coefficient is derived as the median of its full
conditional distribution. The Bayesian framework
allows simultaneous variable selection and

estimation using conditional medians.
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With initial estimates of all parameters denoted
as fand 67, the ICM/M algorithm can be summarized
as follows.

1) Compute indicator variable 7 = (4,...,7,)
where 7 = l{ﬁ, #0}.

2) Obtain the estimate of hyperparameters
(d,6) as the mode of its pseudo-likelihood function

as shown in Equation (6).
(ab) = mode{Hf:I P % ).k eE)} (6)

3)Forj=1, ..., p, update [?/. as the posterior

median as shown in Equation (7).
B;= median{P(B,|Y, X. % d, b, B )} (7

where ,BA’T,. is (p—1)-dimensional vector of current
estimates of the regression coefficients except g,
4) Update 6 as the mode of its full conditional

function as shown in Equation (8).
6" =mode{P(@|Y, X, .d. b, p)} ®

5) lterate steps 1-4 until convergence in 4 That

is, in the k-th iteration, the algorithm stops when

~k)  ~x-D\*
Zfﬂ(ﬂj -8 ) P
T 0T <10
E:jﬂ[ﬂf }

2.2 Incorporating Directed Graphs for Variable

Selection in High-Dimensional Regression

We can see that the Ising prior in Equation (4)
can be used to capture the interactions among
nodes in undirected graphs. In undirected graphs,

the edge set is symmetrical, meaning if there is

Figure 2 Example of a directed graph.

an edge between nodes i and j, it is represented
equally from i to j and from j to i. In contrast, in
directed graphs, the edge set is not symmetrical
because the direction of the edges matters. The
edge set of a directed graph is a collection of
ordered pairs of vertices, where each pair represents
a directed edge. Consider an example in Figure 2,
the edge set is E = {(1,2),(1,5),(4,3)}. We further
define pa; to be the set of parents of node j. For
example, in Figure 2, pas= {1} since node 1 is the
parent of node 5 (i.e, there exists a directed edge
1—5) and pa, is an empty set.

In order to incorporate directed graphs into
the model, we propose modifying the Ising prior in

Equation (4) as shown in Equation (9).

P(t) exp{aZz’j +b Z Tka}

7 kikepa, 9)

The ICM/M algorithm can still be employed for

implementation. The only modification is in Step 2,

where the hyperparameters (d,b) are estimated

using the mode of their pseudo-likelihood function,
as described in Equation (10).

(@.h) = mode{Hj:]P(‘?j 17, - kepaj)} (10)
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2.3 Model Evaluation Metrics

To assess the effectiveness of our proposed
method for variable selection, we employ the
following evaluation metrics.

2.3.1 Precision

Precision is the proportion of selected variables

that are truly relevant defined as in Equation (11).

Z;Qgiqﬁiq
z;qaiq

Precision =

(11)

2.3.2 Recall (or Sensitivity)
Recall is the proportion of truly relevant
variables that are correctly selected defined in

Equation (12).

ZLQ@iqﬁiq
Z;Qm¢@

Recall =

(12)

2.3.3 Specificity
Specificity is the proportion of truly irrelevant
variables that are correctly not selected as shown

in Equation (13).

Z;l{ﬂj :Ong = 0}

Specificity =
(13)

2.3.4 False Positive Rate
False Positive Rate (FPR), defined in Equation (14),
is the proportion of truly irrelevant variables that

are incorrectly selected.

> =08, %0
218, =)

FPR =

(14)

2.3.5 False Negative Rate
False Negative Rate (FNR) is the proportion
of truly relevant variables that are incorrectly not

selected as shown in Equation (15).

> B #0.8,=0f
218,70}

FNR =

(15)

3. Results

Simulation studies were conducted to mimic
real microarray data using gene expression data
from Schmidt et al. [6] as covariates X. This dataset
includes 22,283 genes from 200 samples. Genes
were sampled in scenarios with p = 2,000 and
p = 5,000 genes while keeping the sample size at
n =200. From the list of selected genes, directed
gene pathways were extracted from the BioGrid
database [7]. True coefficients f were generated
with most being zero, except for nonzero
coefficients in 10 networks. The scenarios included
all genes in 10 networks with nonzero coefficients
and 50% of genes in each of 10 networks with
nonzero coefficients. For nonzero coefficients, f
were drawn from a uniform distribution from 0.5
and 2 (U(0.5,2)). This choice of nonzero coefficients
reflects both relatively small and larger effect sizes
while evenly balancing the proportion between
small and large effect sizes. The response variable
is generated under the model in Equation (1) with
two levels of Signal-to-noise Ratio (SNR), 1 and 3,
corresponding to cases where the noise is strong and
moderate relative to the signal, respectively. Table 1
summarizesthe 8 simulation cases. All simulations
were run 100 times for each scenario using the

R programming environment [8].
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Table 1 Summary of simulation scenarios.

Case , Nonzero g in SNR
10 Networks
1 2,000 All 1
2 2,000 All 3
3 2,000 Some 1
4 2,000 Some 3
5 5,000 All 1
6 5,000 All 3
7 5,000 Some 1
8 5,000 Some 3

To evaluate the performance of our proposed
method, we compared it with three existing
methods. Therefore, we ran 4 algorithms as follows:

1) Lasso [9]

2) ICM/M without prior network information
(ICM/M)

3) ICM/M incorporating undirected graphs
(ICM/M)

4) ICM/M incorporating directed graphs (ICM/M,) -
our proposed method.

AWLICM/M algorithms required initial regression
coefficient values, for which we used Lasso
estimates with ten-fold cross-validation to select
regularized parameter computed via the glmnet
R package [10], [11]. For the ICM/M algorithm,
we utilized the icmm R package [12], using a fixed
scaled parameter value a = 0.5 in the Laplace
density as recommended by Johnstone and
Silverman [13].

Table 2 shows the average precision, recall, and
specificity among 100 simulations in 8 scenarios. All
ICM/M algorithms outperformed Lasso in terms of
precision and specificity. However, Lasso performed

the best in terms of recall.

Table 2 Average precision, recall, and specificity
among 100 simulations in 8 scenarios.

Values in bold represent the best method.

Precision

Case Lasso ICM/M ICM/M,; | ICM/M,
1 0.1346 0.5263 0.5554 0.5289
2 0.1611 0.5476 0.6245 0.5803
3 0.1413 0.7086 0.6871 0.7005
4 0.1492 0.7355 0.7498 0.7535
5 0.0932 0.1036 0.3475 0.2898
6 0.1120 0.1144 0.4786 0.3161
7 0.1021 0.0417 0.0520 0.1307
8 0.1013 0.0745 0.0691 0.1375

Recall

Case Lasso ICM/M ICM/M, | ICM/M,
1 0.1669 0.0546 0.0656 0.0544
2 0.2905 0.1126 0.1587 0.1274
3 0.2771 0.1233 0.1357 0.1248
a4 0.4110 0.2495 0.2857 0.2557
5 0.0831 0.0053 0.0323 0.0224
6 0.1924 0.0153 0.0669 0.0313
7 0.1645 0.0061 0.0100 0.0224
8 0.2527 0.0200 0.0145 0.0264

Specificity

Case Lasso ICM/M ICM/M, ICM/M,,
1 0.9754 0.9989 0.9989 0.9989
2 0.9670 0.9980 0.9981 0.9981
3 0.9783 0.9993 0.9992 0.9993
a4 0.9718 0.9990 0.9989 0.9991
5 0.9891 0.9993 0.9994 0.9993
6 0.9797 0.9983 0.9993 0.9992
7 0.9886 0.9992 0.9991 0.9991
8 0.9839 0.9984 0.9990 0.9990

In model variable selection, precision reflects
the proportion of true positives among selected
variables. Lasso generally showed lower precision,

indicating a higher chance of selecting irrelevant

Aaaa
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variables. ICM/M improved precision significantly,
while ICM/M,, consistently achieved the highest
precision, effectively selecting relevant variables.
ICM/M, also performed well, with precision comparable
to ICM/M,,. When not all genes in the network were
related to the response, thus mimicking a more
realistic scenario than assuming all genes in the
network were relevant, it became evident that
ICM/M,, achieved significantly higher precision than
ICM/M,,, particularly when dealing with a large
number of predictors (case 7 and 8). Hence, ICM/M,,
and ICM/M,, are superior in precise variable selection,
making them preferable for applications requiring
accurate identification of relevant variables such as
in biomedical field.

In terms of recall, Lasso was a clear winner,
indicating it was most effective at capturing the
majority of relevant variables and demonstrating
superior performance in identifying true positive
variables compared to the other methods. However,
this came with a trade-off with precision; Lasso
tended to select too many variables, resulting in a
higher number of false positives.

Specificity measures the proportion of
irrelevant variables correctly identified as irrelevant
by the model. Both ICM/M,; and ICM/M consistently
achieved the highest specificity, effectively minimizing
the selection of irrelevant variables.

The results in Table 3, showing the average
false positive rate (FPR) and false negative rate
(FNR) among 100 simulations in 8 scenarios, were
consistent with those from Table 2. Specifically, it
was evident that Lasso consistently exhibited the
highest FPR, indicating it often selected irrelevant

variables. In contrast, ICM/M, ICM/M,,, and ICM/M,

methods showed significantly lower FPRs, indicating
a strong ability to exclude irrelevant variables.
Among these, ICM/M,, and ICM/M, demonstrated
competitive FNRs, balancing the precision of selecting
relevant variables with minimal false positives.
ICM/M showed a slightly higher FNR compared
to ICM/M,; and ICM/M,,, indicating it missed more
relevant variables. Overall, ICM/M, and ICM/M,
outperformed Lasso by minimizing FPR and
maintaining competitive FNR, making them more
reliable for precise and comprehensive variable

selection.

Table 3 Average false positive rate and false
negative rate among 100 simulations in
8 scenarios. Values in bold represent the

best method.

FPR
Case Lasso ICM/M ICM/M | ICM/M,
1 0.0246 0.0011 0.0011 0.0011
2 0.0330 0.0020 0.0019 0.0019
3 0.0217 0.0007 0.0008 0.0007
4 0.0282 0.0010 0.0011 0.0009
5 0.0109 0.0007 0.0006 0.0007
6 0.0203 0.0017 0.0007 0.0008
7 0.0114 0.0008 0.0009 0.0009
8 0.0161 0.0016 0.0010 0.0010
FNR
Case Lasso ICM/M ICM/M | ICM/M,
1 0.8331 0.9454 0.9344 0.9456
2 0.7095 0.8874 0.8413 0.8726
3 0.7299 0.8767 0.8643 0.8752
4 0.5890 0.7505 0.7143 0.7443
5 0.9169 0.9947 0.9677 0.9776
6 0.8076 0.9847 0.9331 0.9687
7 0.8355 0.9939 0.9900 0.9776
8 0.7473 0.9800 0.9855 0.9736
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4. Discussion and Conclusion

In this paper, we demonstrate the effectiveness
of the proposed ICM/M, method which incorporates
directed graph for variable selection in high-
dimensional regression models. Compared to the
traditional Lasso method, ICM/M, shows significantly
lower FPR, indicating higher precision in excluding
irrelevant variables. This improvement is crucial for
high-dimensional datasets, where the inclusion of
irrelevant variables can obscure meaningful results
and reduce model interpretability. Furthermore,
while Lasso has lower FNR, indicating its effectiveness
in capturing relevant variables, it does so at the cost
of much higher false positives.

ICM/M and ICM/M,; methods also show strong
performance, particularly in reducing FPR, but
ICM/M,, consistently balances both FPR and FNR
more effectively, especially in cases where not all
genes in the network are related to the response
and the number of predictors is large. This balance
is essential for ensuring both precision and recall in
variable selection, leading to more reliable and
interpretable models. Our results indicate that ICM/M,
can effectively incorporate directional relationships
among variables, providing a more accurate
representation of underlying biological or network
structures.

In conclusion, the ICM/M, method offers a robust
approach to variable selection in high-dimensional
settings, outperforming traditional methods by
minimizing false positives while maintaining
competitive false negative rates. Although the
overall performance of ICM/M;, and ICM/M, is
comparable, we observe some scenarios where

ICM/M,, is superior to ICM/M,,. This makes ICM/M,

a valuable tool for researchers working with
complex genomics and bioinformatics datasets,
where understanding the intricate relationships
between variables is crucial. Future work could
explore the application of ICM/M,in other domains
and further refine the method to enhance its

performance and applicability.
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