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Abstract 
Discrete Kirchhoff Triangle (DKT) which provides high solution accuracy for plate bending analysis 
combined with adaptive meshing technique is presented. The DKT plate bending finite element formulation 
with detailed finite element matrices are derived. Performance of the DKT element is evaluated by comparing 
with the exact solution. An adaptive meshing technique is applied to generate small elements in the regions of 
high stress gradient to improve the computed solutions. Larger elements are generated in the other regions to 
reduce the problem unknowns and thus the computational time. The effectiveness of the combined method is 
evaluated by several problems. Results show that the combined method can improve the solution accuracy and 
reduce the computational effort.  
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1 Introduction

The finite element method has been widely used for 
the analysis of plate bending problems. Different 
types of plate bending elements have been developed 
during the past decades to improve the sufficiency 
and solution accuracy [1]. One of the element types 
which provide high solution accuracy for the analysis 
of plate bending problem is the Discrete Kirchhoff 
Triangle (DKT) [2]. With the advantages of the three-
node triangular element that can provide high 
flexibility in the construction of finite models for 
complex geometry and can easily be combined with 
an adaptive meshing technique [3-5] to provide high 
solution accuracy at reduced computational effort, the 
three-node triangular DKT element is studied in this 
paper in order to combine with an adaptive meshing 
technique to improve the overall analysis solution 
accuracy. 
In this paper, detailed formulation and the 
corresponding finite element matrices of the DKT 
element are presented. The performance of the DKT 
element will be evaluated by problems that have 
exact or analytical solutions. The adaptive meshing 
technique presented herein generates small elements 

in the regions of high stress gradients to provide 
higher solution accuracy. Meanwhile, larger elements 
are generated in the other regions to reduce the total 
number of unknowns and the computational time. 
Because the technique generates appropriate element 
sizes automatically, it is thus suitable for complex 
problems where a priori knowledge of the solutions 
does not exist. 
The governing differential equations for the 
transverse deflection of plate will be presented first. 
Then, the corresponding finite element equations and 
element matrices will be derived and presented. The 
basic concepts of the adaptive meshing technique and 
the selection of the meshing parameters used for 
constructing new meshes will be explained. Finally, 
the performance of the DKT element and the adaptive 
meshing technique are evaluated by analyzing several 
examples. 
 
2 Governing Equations 

The equation for the transverse deflection, w, in the z-
direction normal to the x-y plane of a thin plate, with 
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a constant thickness of t whose middle plane is 
coincident with the x-y plane, is given by the 
equilibrium equation in the form [6], 

( )
4 4 4

4 2 2 4 ,w w wD p x y
x x y y

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ ∂ 

 (1) 

where ( )yxp ,  is the applied lateral load normal to 
the plate and D  is the bending rigidity which is 
defined by, 

3

212(1 )
EtD

ν
=

−
 (2) 

where E  is the modulus of elasticity, t  is the 
thickness of the plate and ν  is the Poisson’s ratio. 
 
3 Finite Element Equations 

The derivation of the three-node DKT element 
equations is based on the following assumptions [2]: 
1) both the x- and y-twist angles vary quadratically 
over the element, 2) the transverse shears are zero at 
the tip nodes, 3) the transverse deflection is in form 
of a cubic function over the element, and 4) the twist 
angles normal to the element sides vary linearly. The 
finite element equations are derived by applying the 
method of weighted residuals to the plate bending 
equation Eq. (1) leading to the finite element 
equations in the form, 

[ ] { } { }K Fδ =  (3) 

where the vector { }δ  contains the element nodal 
unknowns of the transverse deflections and the 
rotations. The unknowns of each node are a 
transverse deflection in the element local z-coordinate 
direction and two rotations about the element local x-
y coordinate directions. Thus there are nine degrees 
of freedom per element. The element stiffness matrix, 
[ ]K , and the nodal force vector due to the applied 

loads, { }F , are defined by, 

[ ] [ ] [ ] [ ]T

A

K B D B dA= ∫  (4) 

{ } [ ] T

A

F N p dA= ∫  (5) 

 
 

where the strain-displacement interpolation matrix, 
[ ]B , is defined by,  
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The coefficients kP , kq , kr  and kt , k = 4, 5, 6 
depend on the element shape and are given by, 
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where the coefficients ijx  and ijy , =ji, 1, 2, 3 are 
defined in terms of element nodal coordinates by, 

jiij xxx −=  (16) 

jiij yyy −=  (17) 

The matrix [ ]D  in Eq. (4) is the plate material 
stiffness matrix defined by, 
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The above finite element matrices are in closed-form 
so that they can be implemented in the computer 
program directly [7]. 
 

4 Adaptive Meshing Technique  

4.1 Adaptive Meshing concept 

The basic idea of adaptive meshing [4] is to construct 
a completely new mesh based on the solution 
obtained from the previous calculation. The new 
mesh will have small elements in regions of large 
changes in solution gradients and large elements in 
regions where the gradient changes are small. 
Suitable nodal spacings used for constructing a new 
mesh are determined by using the solid mechanics 
concept of finding the principal stresses, 1σ  and 2σ , 
from a given state of stresses, yx σσ , and xyτ , i.e., 


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At a typical node in the previous mesh, the second 
derivatives of the key parameter for meshing, φ , 
(analogous to the stress components in Eq. (19)) are 
computed and the two eigenvalues (analogous to the 
principal stresses) are then determined, 
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The larger eigenvalue, ( )21,max λλλ = , is then 
selected for that node and the same process is 
repeated for all the other nodes. Proper nodal 
spacings, denoted by h , used for constructing a new 
mesh are then determined from the condition required 
to procedure an optimal mesh; 

=2hλ  constant 2
minmaxhλ=  (21) 

where maxλ  is the largest eigenvalue of all nodes in 
the previous mesh and minh  is the specified minimum 
nodal spacing for the new mesh. 
  
4.2 Meshing Parameters 

The adaptive meshing technique requires a selection 
of proper key parameters (φ  in Eq. (20)). For plate 
bending analysis, the Von Mises stress is used as a 
key parameter which is defined by, 

( )2 2 2 21 6
2Von Mises x y x y xyσ σ σ σ σ τ= − + + +  (22) 



 

Bhothikhun P. and Dechaumphai P. / AIJSTPME (2013) 6(3): 83-90 

 
86 

5 Applications 

Three example problems are presented in this section. 
The first example is chosen to evaluate the 
performance of the DKT plate bending element. The 
other two examples demonstrate the effectiveness of 
the adaptive meshing technique combining with the 
DKT element as presented below. 
 
5.1 Partially loaded simply supported square plate 

A square 2×2 m simply supported plate with a 
thickness of 0.01 m, subjected to a partially 
distributed load of 1 kN/m2, is shown in Figure 1. 
The plate is assumed to have the modulus of 
elasticity of 7.2×1010 N/m2 and the Poisson’s ratio of 
0.25. The exact transverse deflection can be derived 
[8] and is given by,  
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Due to symmetry, a quarter of the plate is analyzed. 
The result of the transverse deflection obtained from 
the DKT element is shown in Figure 2. Figure 3 
shows the predicted transverse deflections along the 
x-direction obtained from the DKT element as 
compared to the exact solution. The figure shows 
good comparison of the two solutions. 

 
Figure 1: Problem statement of a simply supported 
square plate subjected to a partially distributed load. 

 

 
Figure 2: Predicted deflection of the plate using DKT 

plate bending element. 

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0.000
0.0 0.2 0.4 0.6 0.8 1.0

x

w(x,0)

Exact
DKT elements

 
Figure 3: Comparative transverse deflections along 

x-direction from DKT finite element model with  
the exact solution. 

 
5.2 Simply supported square plate with circular hole 

A square 2b×2b (3×3 m) simply supported plate 
which has a circular hole, radius of R, at the center 
and the thickness of 0.01 m is subjected to a uniform 
distributed load of 1,000 N/m2 as shown in Figure 4. 
The plate is assumed to have the modulus of 
elasticity of 1.9×1011 N/m2 and the Poisson’s ratio of 
0.3. The sizes of the circular hole of R/b = 1/6, 2/6, 
3/6 and 4/6 are studied herein. 
Firstly, the plate with the hole size of R/b = 1/6 is 
considered. Due to symmetry, an upper right quarter 
of the plate is analyzed. The model is discretized into 
910 elements and 486 nodes as shown in Figure 5. 
Similarly, the plates with the hole size of R/b = 2/6, 
3/6 and 4/6 are then considered with the model 
consisting of 285 nodes and 522 elements, 276 nodes 
and 504 elements, and 361 nodes and 204 elements 
respectively. The predicted transverse deflections in 
dimensionless form along the circular hole are 
compared with the analytical solution by Lo and 
Leissa [9] in Figure 6. The figure shows that the DKT 
element can provide good solution accuracy. 
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Figure 4: A simply supported square plate  

with circular hole. 
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Figure 5: Predicted deformation of plate with 

circular hole using DKT element 
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Figure 6: Transverse deflections along the hole 
obtained from the DKT element compared  

with the analytical solution. 
 

The plate with the hole size R/b = 1/6 is reconsidered 
to evaluate the performance of the adaptive meshing 
technique. The model consisting of coarse mesh of 84 
nodes and 142 elements as shown in Figure 7(a) is 
used for the initial calculation. The Von Mises 

stresses obtained from this initial mesh solution are 
used as the key parameter to generate a new mesh. 
The new adaptive mesh, with 155 nodes and 268 
elements, is shown in Figure 7(b). The same process 
is applied to generate the second and third adaptive 
meshes. The second adaptive mesh with 267 nodes 
and 471 elements and the third adaptive mesh with 
388 nodes and 694 elements are shown in Figure 7(c) 
and 7(d), respectively. Small elements are generated 
in the region of high stress gradients near the edge of 
the circular hole in order to increase the solution 
accuracy. The uniform fine mesh model with 1,521 
nodes and 2,922 elements as shown in Figure 8 is 
also analyzed. The percentage errors of the maximum 
transverse deflections from both methods are shown 
in Figure 9. The results indicate that the adaptive 
meshing technique provides the same solution 
accuracy as compared to the finer mesh but with 
fewer numbers of unknowns. The Von Mises stress 
contours obtained from the third adaptive mesh and 
the fine mesh are also shown in Figure 10(a-b). 
 

(a) (b)
 

(c) (d)  

Figure 7: DKT finite element meshes: 
(a) initial mesh, (b) 1st adaptive mesh, 

(c) 2nd adaptive mesh and (d) 3rd adaptive mesh. 

 

 

Figure 8: The fine DKT finite element model. 
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Figure 9: Comparative percentage errors of the plate 
maximum transverse deflections obtained from the 

adaptive and uniform meshes. 

 
(a) 

 
(b) 

Figure 10: Predicted Von Mises stress contours of 
the plate: (a) 3rd adaptive mesh and (b) fine mesh. 

 
5.3 Plate with narrow cut subjected to vertical 

loading 

The problem statement of the plate with narrow cut 
subjected to vertical loading is shown in Figure 11. 
The plate is subjected to the uniform vertical load p = 
1 kN/m along one edge of the plate. The initial mesh 
consists of 299 nodes and 543 elements as shown in 
Figure 12(a). The Von Mises stresses obtained from 
this initial mesh solution are used as the key 
parameter for the adaptive remeshing. The new 
adaptive mesh, with 849 nodes and 1604 elements, is 
shown in Figure 12(b). Small elements are generated 
in the region of high stress gradients near the end of 
the cutout to provide more accurate stress solution. 
The second adaptive mesh with 1493 nodes and 2846 

elements and the third adaptive mesh with 1953 
nodes and 3734 elements are shown in Figure 12(c) 
and 12(d), respectively. The figures show more 
refined elements are created in that region to capture 
the high stress concentration in order to increase the 
solution accuracy. 

 
Figure 11: Problem statement of a plate with narrow 

cut subjected to vertical loading. 
 

   
(a)   (b) 

  
(c)   (d) 

Figure 12: DKT finite element meshes: (a) initial 
mesh, (b) 1st adaptive mesh, (c) 2nd adaptive mesh, 

and (d) 3rd adaptive mesh. 

Figure 13 shows that the predicted maximum Von 
Mises stress converges to the value of 2.40 GPa with 
the increase of the refined elements in the high stress 
concentration region. The deflection of the plate and 
the Von Mises stress contours by using the third 
adaptive finite element mesh are also shown in Figure 
14 and Figure 15 respectively. Details of the Von 
Mises stress contours near the intense stress location 
are presented in Figure 16. 
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Figure 13: The convergence of predicted maximum 
Von Mises stress by using DKT adaptive finite 

element mesh. 
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Figure 14: Predicted deflection of the plate using 
DKT 3rd adaptive finite element mesh. 

 

  

Figure 15: Predicted Von Mises stress contours of 
the plate using DKT 3rd adaptive finite element mesh. 

 
Figure 16: Predicted Von Mises stress contours of 

the plate using DKT 3rd adaptive finite element mesh 
in the region of high stresses. 

 
6 Conclusions 

The Discrete Kirchhoff Triangle (DKT) element was 
presented and evaluated by simple plate bending 
problem which has exact solution. The result 
indicated that the DKT element provides high 
solution accuracy. 
An adaptive meshing technique combined with the 
DKT finite element for plate bending analysis was 
presented. The DKT plate bending element has been 
combined with the adaptive meshing technique to 
improve the solution accuracy and reduce the 
computational effort. The examples presented in this 
paper demonstrated that the adaptive meshing 
technique: (1) reduces modeling effort because a 
priori knowledge of the solution is not required; (2) 
provides high solution accuracy by adapting the mesh 
to the physics of the solutions; (3) reduces the total 
number of unknowns by automatically generating 
small elements in the regions with high solution 
gradients and large elements in the other regions. 
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