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Abstract 

A new theoretical model is presented in this paper for bulge forming of tubular components with solid bulging 

mediums. The model is based on the results of the friction model which was developed previously by one of the 

authors for rubber/metal contact and takes into account the effect of local contact conditions. FE simulations 

using commercial software ABAQUS are carried out for an axisymmetric tube bulging operation using the 

defined friction model. The comparisons of the results of the theoretical model and the FE simulations clearly 

show that the newly developed theoretical model is suitable for predicting forming pressure and stress in the 

tube. The effect of key process parameters such as the friction between the tube and the die, the tube initial 

thickness and the length of the ealastomeric rod on the results are investigated using theoretical and FE 

models. 
 

Keywords: Finite element simulation; Friction; Theoretical analysis, Tube bulging. 
 

1 Introduction

In recent years, tube bulge forming techniques have 

been used in producing a wide range of tubular 

components. This is mainly due to the quest to 

decrease production costs and to optimize production 

technology. This technique is used for producing 

bicycle frame brackets from mild steel bulging and to 

manufacture the rear axle castings for automobiles. 

The process is also widely used in forming copper 

pipe fittings for domestic water and gas supplies [1]. 

The bulge forming of pipes can be done by 

implementing the internal hydrostatic pressure via a 

medium. The pressure medium is usually a liquid 

(hydraulic fluid or water) or solid elastomer (rubber 

or polyurethane). By restraining the pipe in dies with 

different geometries, components with desired shapes 

can be produced. Excessive thinning due to the high 

internal pressure is the main limitation of this 

process. To overcome this problem, compressive 

axial loading is applied to the end of the tube together 

with the internal pressure. In the bulge forming of 

tubes with solid medium, an elastomer rod inside the 

tube applies lateral pressure to expand the tube 

circumferentially, while simultaneous axial feeding 

of the tube is secured by the frictional traction on the 

tube as the elastomer rod deforms relative to the tube. 

The use of elastomeric media has further advantages. 

The need for an elaborate control system to co-

ordinate the axial compression with the hydraulic 

pressure is eliminated. Frictional forces between the 

tube and the elastomer are used to generate the axial 

compression, and the flexible medium applies a 

lateral pressure to the tube causing it to expand 

within the die. Moreover, the friction acting on the 

tube has an advantage in delaying the onset of tensile 

instability. When bulging with solid medium, sealing 

problems and the possibility of leakage of the high-

pressure liquid employed in hydraulic bulging are 

eliminated. The cost of producing the component is 

much less than using a specialized machine required 

for hydraulic bulging. The need for the filling and 

removal of oil or the cleaning of the bulged tube of 

oil after forming is eliminated. The insertion of the 

elastomer rod is both quick and convenient and the 

rod can be re-used again [2]. 

Many experimental studies concerning bulge forming 

are available in literature [3-4] and in recent years a 

significant number of finite element simulation 

studies have been detailed out [5-8]. Different 

theoretical models have also been developed for the 

process [9-11]. Mac Donald and Hashmi [5] 

developed a three-dimensional simulation of the 
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manufacture of cross-branch components using a 

solid bulging medium. The effect of varying friction 

between the bulging medium and the tube was 

examined in their paper and the history of 

development of the bulge and stress conditions in the 

formed component were investigated. 

Hwang and Lin [7] proposed a theoretical model to 

examine the plastic deformation behavior of a thin-

walled tube during the bulge hydro-forming process 

in an open die. They considered non-uniform 

thinning in the free-bulged region and sticking 

friction between the tube and die. The analysis was 

followed by finite element simulation of the process 

using DEFORM and the relationship between the 

internal pressure and the bulge height of the tube was 

achieved. Yang et al. [8] investigated the effect of the 

loading path on the bulged shape and the wall 

thickness distribution of the tube using theoretical 

and FE models. Using their model, a reasonable 

range of the loading path for the tube bulge hydro-

forming process was determined.  

Thiruvarudchelvan [9, 10] developed a theoretical 

model based on the experimental friction analysis 

performed by Fakuda and Yamaguchi [12]. Using 

this model he could determine the initial yield 

pressure and the final forming pressure needed to 

bulge a tube. Boumaiza et al. [11] discussed the 

plastic instabilities of elasto–plastic tubes subject to 

internal pressure and developed a local necking 

criterion based on a modified Hill’s assumption for 

localized necking. In all these studies, the FE and 

theoretical analysis based on a comprehensive 

analytical friction model which takes into account the 

local contact condition have been missed.  

Ramezani et al. [2] developed a friction model for 

rubber-metal contact in tube bulge forming process 

using solid medium. They showed in their paper that 

the newly developed friction model is very effective 

in producing reliable FE simulations compared to a 

traditional Coulomb friction model. In the present 

work, this friction model is used in theoretical 

analysis of tube bulging process to examine its 

efficacy in developing analytical models for rubber 

forming processes. Based on the results of a friction 

model developed by Ramezani et al. [2, 13] and an 

analytical model developed by Thiruvarudchelvan 

[9], an analytical analysis is performed for the case of 

tube end bulging with polyurethane medium, 

followed by finite element simulation of an 

axisymmetric tube bulging operation using ABAQUS 

software. To evaluate the influence of the new 

friction model, theoretical and FE simulation results 

have been compared with each other and with 

experimental results from [4]. 

 

2 Static friction model 

When two solids are squeezed together they will in 

general not make atomic contact everywhere within 

the apparent contact area and contact happens only on 

peak asperities of surfaces [14]. To model the contact 

between rough surfaces, it is necessary to determine 

the contact parameters between the pair of asperities 

carrying the load [15]. For two elastic spherical 

asperities which are loaded by a normal force nF , 

Hertz theory [16] is the basic theory for specifying 

the radius of the contact circle, the pressure and the 

normal approach. For the case when a tangential 

force tF  is subsequently applied, the tangential 

displacement of asperities and the shear stress within 

the contact can be determined by Mindlin theory 

[17]. He considered a stick region in the centre of 

contact between a pair of asperities surrounded by an 

annulus area of micro-slip across the edge of the 

contact. Johnson [18] presented a solution for this 

micro-slip region.  

Rubber materials exhibit both elastic and viscous 

resistance to deformation. The materials can retain 

the recoverable (elastic) strain energy partially, but 

they also dissipate energy if the deformation is 

maintained [13]. Viscoelastic materials behavior can 

be modeled using springs and dashpots connected in 

series and/or in parallel. A dashpot is connected in 

parallel with a spring in Figure 1. This is known as a 

Voigt element. If deformed, the force in the spring is 

assumed to be proportional to the elongation of the 

assembly, and the force in the dashpot is assumed to 

be proportional to the rate of elongation of the 

assembly. In this model, if a sudden tensile force is 

applied, some of the work performed in the assembly 

is dissipated in the dashpot while the remainder is 

stored in the spring. 

A dashpot is connected in series with a spring is 

shown in Figure 1(b). This is called a Maxwell 

element. In this assembly, if a sudden tensile force is 

applied, it is the same in both the spring and the 

dashpot. The total displacement experienced by the 

element is the sum of the displacements of the spring 

and the dashpot. The response of rubber to changes in 

stress or strain is actually a combination of elements 
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of both mechanical models (see, Figure 1(c)). The 

response is always time-dependent and involves both 

the elastic storage of energy and viscous loss. 

The Standard Linear Solid (SLS) model (Figure 1(c)) 

gives a relatively good description of both stress 

relaxation and creep behavior. Stress relaxation is the 

time-dependent decrease in stress under constant 

strain at constant temperature. For the SLS model the 

generalized Hook’s equation can be written as 

 ).( 21211 ggggg dd         (1) 

where 1g , 2g  are the elasticity of springs, d  is 

the viscosity of the dashpot,   is the strain and   is 

the stress. 

By making the stress constant and equal to 0  in  

Eq. (1) and solving the differential equation with 

respect to the strain  , we arrive at the creep 

compliance function )(t  as follows: 
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where 

2
2

g
T d  is the retardation time. 

Similarly, the stress relaxation function )(t  can be 

obtained by taking the strain constant and equal to 

0  in Eq. (1), resulting in 
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where 
)( 21

2
gg

T d





 is the retardation time. 

Surface roughness can be modeled as a composed set 

of spherical asperities which have the same radius 

and their heights following a statistical distribution, 

as for instance a Gaussian distribution (see, Figure 2). 

Three parameters are commonly used to describe a 

random rough surfaces model. The statistical 

parameters of the asperities are: the average asperity 

radius 
 
(spherical shaped asperities), the asperity 

density n , and the standard deviation of the asperity 

heights s . According to experiments reported by 

Greenwood and Williamson [19] most surfaces show 

a value in the range of 0.03-0.05 for the product 

sn . 

Hui et al. [20] developed a theory for viscoelastic-

rigid contacts under several loading conditions such 

as constant load test, load relaxation test and constant 

displacement rate test. In this theory, an 

exponentially distribution of asperities is considered 

and then an analytical solution is developed for the 

real contact area and the total normal load. In this 

paper, the case of a viscoelastic rough surface which 

is normally loaded against a rigid surface is 

considered.  

 

2.1 Normal loading of viscoelastic/rigid multi-

asperity contact 

For a certain separation h  the number of asperities in 

contact, the real contact area and the total load carried 

by the asperities can be calculated using the 

following equations. The number of asperities in 

contact at a certain separation is given by 






h

nc sdsnAn )(                                            (4) 

where nA  denotes the nominal contact area, 

sss /  is the normalized asperity height, 

shh /  is the normalized separation, and )(s  

is the normalized Gaussian height distribution which 

can be obtained as 

2

2

2

1
)(

s

es





                                            (5) 

Then, the real contact area is given by: 






h

snr dsshsnAA )()(                  (6) 

The total normal load can be obtained as the sum of 

all normal loads carried by the asperities in contact. 
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2.2 Tangential loading of viscoelastic/rigid multi-

asperity contact 

Considering the multi-asperity contact introduced in 

Section 2.1 to be subsequently loaded by an 

increasing tangential load, an approach is presented 

in this section for a viscoelastic rough surface pressed 

against a rigid flat. 

At a certain separation and for a tangential load 

smaller than the force necessary to initiate macro-

sliding, so-called maximum static friction force, the 

multi-contact interface will be composed of micro-

contacts which are in the partially-slip regime and 

micro-contacts which are totally sliding. Macro-

sliding will occur if all contacting asperities are in the 

fully sliding regime [17]. 

A condition has been set for an elastic multi-contact 

interface by Bureau et al. [21] which provides a 

critical asperity height above which the micro-

contacts are partially sliding. In their approach, a 

constant local coefficient of friction is considered for 

all micro-contacts. Using Bureau method, a critical 

asperity height for a viscoelastic multi-contact 

interface can be derived. 

])
.
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2

n
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     (8) 

where tv  is the preliminary displacement;   is the 

Poisson’s ratio; and   is the local coefficient of 

static friction. Rearranging the factors in Eq. (8), we 

arrive at: 
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The right-hand side of Eq. (9) is a positive real 

number for nt FF . , thus: 
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The indentation depth of the asperity n  can be 

replaced by )( hz  . Then, the inequality (10) 

becomes 

h
t
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
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From Eq. (11) it can be inferred that the asperities 

which have the height 

h
t

s tv
c 




)2(

)(




                                            (12) 

are in the fully sliding regime because they carry a 

tangential force which is equal to or larger than the 

maximum static friction force. The micro-contacts of 

which heights satisfy the relation csz 
 
are in the 

partially-slip regime. 

The total tangential load carried by the multi-contact 

interface can be written as: 

slipstickt FFF                                            (13) 

where stickF  component is calculated as the sum of 

all tangential loads carried by the micro-contacts 

which are not fully sliding. That means that their 

contact areas are composed of stick and slip regions. 

Deladi [22] presented the following equation for 

stickF  component: 
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The slipF  component is taken as the sum of all 

tangential loads carried by the micro-contacts which 

are fully sliding and is calculated with equation 

sd
c

s

h

shs
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slip
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 
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           (15) 

Having obtained the tangential load carried by the 

multi-contact interface, the maximum force required 

to initiate macro-sliding (or maximum static friction 

force) can be determined as the sum of all tangential 

loads causing gross sliding of all micro-contacts [22]. 

When this condition is obeyed, the partially sliding 
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component stickF  becomes zero and the condition 

can be written as: 

0
max


stick

Fif
slip

F
st

F               (16) 

So, the static coefficient of friction can be 

calculated as:  

nF

stF
s

max                                                   (17) 

By giving the micro-geometry, the nominal area of 

contact and the material properties, the real area of 

contact, rA and the normalized separation, h  can be 

obtained from Eqs. (6) and (7). Next, assuming a 

tangential displacement, the critical height, cs  can 

be calculated from Eq. (12). Then, the tangential 

loads carried by each micro-contact are obtained 

from Eqs. (14) and (15). If the partially stick 

component of the tangential force is not zero, the 

tangential displacement should be increased until all 

micro-contacts are fully sliding. This maximum 

tangential displacement corresponding to the 

occurrence of macro-sliding is taken as the global 

limiting displacement. At this stage, the maximum 

static friction force is reached and so, the static 

coefficient of friction is determined from Eq. (17). 

 

Figure 1: Mechanical models representing the 

response of viscoelastic materials: (a) Voigt model, 

(b) Maxwell model, (c) SLS model. 

 

 
 

Figure 2: Contact model of rough surfaces. 

2.3 Calculation of friction coefficient 

An Alicona imaging infinite focus microscope (IFM 

2.1) was used to measure the surface parameters of 

polyurethane. Surface parameters in terms of density 

of asperity n , mean radius of asperity  , and 

standard deviation of the asperity heights s  are the 

input parameters of the friction model. Figure 3 

shows the roughness profile along a selected line in 

the surface. The geometrical parameters mentioned 

above can be obtained by these measurements using 

the Alicona microscope.  

The viscoelastic material parameters in terms of 

spring elasticity 21, gg  and dashpot viscosity d  of 

the SLS model are the other input parameters of the 

friction model. The values of viscoelastic material 

parameters used in the calculations of the friction 

model are obtained from a stress relaxation test of 

rubber. In a stress relaxation test a compressive strain 

at a constant rate within a very brief period of time is 

applied on an unconstrained cylinder and the stress 

required maintaining the compressive strain is 

recorded in time. The test is performed according to 

ASTM D 6048 standard. Stress relaxation modulus as 

a function of time (see, Eq. 3) for polyurethane of 

Shore hardness A 95 is shown in Figure 4. According 

to Eqs. (2) and (3), for 0t  we obtain 

1
1)0()0( g   and for t  we have 

21

211

.
)()(

gg

gg 
  . The values of input 

parameters for calculation of the coefficient of 

friction as a function of contact pressure are 

presented in Table 1.  

 

Figure 3: Roughness profile for polyurethane. 

 

Using the values of parameters in Table 1 as input 

values for the friction model presented in Section 2, 

we calculated the coefficient of friction between 

polyurethane and copper tube as a function of contact 

pressure (see, Figure 5). It can be seen from Figure 5 
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that an increase in contact pressure results in decrease 

in coefficient of friction. At low pressures this 

decrease is more significant than at higher loads 

when the coefficient of friction reaches a quite stable 

level. This is comparable to the observation made by 

Benabdallah [23] where experimental work on some 

thermoplastics against steel and aluminum showed 

similar effect.  

 

Figure 4: Stress relaxation modulus as a function of 

time for polyurethane rubber. 

 

 

Figure 5: Coefficient of friction (for polyurethane/ 

copper contact) as a function of contact pressure. 

 

The physical explanation for the increasing friction 

coefficient at lower pressures is that the effect of the 

adhesion force becomes more significant at lower 

normal loads [24]. High adhesion force decreases the 

separation h , at a given normal load and brings more 

asperities into contact especially when the normal 

load is small, enabling support for larger tangential 

load, and hence, the friction force and friction 

coefficient increase with decreasing normal load. 

From Figure 5 the following equation for the 

variation of coefficient of friction s  with pressure 

P  is curve-fitted. 

22.0695.0  Ps                                         (18) 

 

Table 1: Values of the input parameters for friction 

model. 

Parameters Values 

n )( 2m  
11107.2   

 )( m  542.0  

s )( m
 

28.0  

1g )(Pa
 

71030.8 
 

2g )(Pa  81089.1   

d ).( sPa  91068.2   


 4.0  

 

 
3 Theoretical model 

The schematic of tube bulge forming is shown in 

Figure 6. As can be seen in the figure, the tube and 

the polyurethane rod are divided into two zones (i.e. 

0-1 and 1-2) to simplify the theoretical analysis. The 

tube is in full contact with the die wall in zone 0-1 

and there is no plastic deformation of tube in this 

region. However, the tube is not constrained 

circumferentially in zones 1-2 and can deform 

plastically until taking the shape of the die. The 

theoretical model presented in this section is based on 

the work of Thiruvarudchelvan [9]. Mathematical 

formulations for the pressure in the polyurethane rod 

and stress components in the tube are developed for 

each zone and are presented below. 

Zone 0-1: 

According to Figure 6, the equilibrium equation for 

polyurethane rod at zone 0-1 can be expressed as 

xdp
d

p s d
4

d
2




                            (19) 
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Substituting Eq. (18) into Eq. (19) and simplifying 

the result, we arrive at 

x
d

pp d
695.04

d78.0 


                            (20) 

By integrating Eq. (20), we will have 

C
d

x
C

d

x
p  612.0695.088.022.0

                                                                                  

(21) 

According to Figure 6 at 0x  we have 0pp   

and so Cp 22.0
0 . Therefore 

22.0 22.0
0 612.0 










d

x
pp                             (22) 

 

 

Figure 6: Schematic of tube bulge forming process. 

 

On the other hand, the compressive axial load on the 

tube exerted by the polyurethane frictional force can 

be expressed as 

 )(
4

0

2

pp
d

Fx 


                                      (23) 

As the tube is dragged to the die surface, the 

frictional force exerted on the tube from the die is 

x
d

x
pdxdpF

xx

F d
612.0

d
0

22.0 22.0
00

0

0  







    (24) 

Integrating Eq. (24) leads to 

 22.122.1
00

22.1612.0

22.0
pp

d
dFF 




 

   

(25)

 

where 0  is the coefficient of friction between the 

die and the tube. The axial compressive stress and the 

hoop stress on the tube wall in zone 0-1 can now be 

easily derived from Eqs. (22), (23) and (25) by using 

the following equations: 

 22.122.1

0
0

22.0 22.0

00

295.0

612.0

4

pp
T

d

d

x
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T

d

Td

FF Fx
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






























                        (26) 




















 22.0 22.0

0

612.0

22 d

x
p

T

d

T

dp
   (27) 

As the tube is completely surrounded by the die wall 

at zone 0-1, the hoop stress   is small and may be 

neglected. For this region and by neglecting the 

lateral pressure p , the Tresca yield criterion is 

01.1   x , where 0  is the initial yield 

stress of the tube material. Thus 

  0

22.122.1

0
0

22.0 22.0

00

1.1
295.0

)
612.0

(
4


















pp
T

d

d

x
pp

T

d
x

  

(28) 

 

Zone 1-2: 

The axial equilibrium equation for the polyurethane 

rod at zone 1-2 can be expressed as 

)cos(sin
cos

d

4
)d(

4

)d( 22








s

xp
D

p
D

Pp
DD






               (29) 

By neglecting higher order terms of Eq. (29) and 

rearranging the equation, we have 
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)(tan
tan2

d
4)dd2( 




D
ppDDp    (30) 

Considering tan2/dd Dx  , we have 

 cot39.1

d

cot2

dd
78.0p

p

p

p

D

D

s

   (31) 

Integrating Eq. (31) leads to 

0
cot39.111

50
ln 22.0 


 CpD


           (32) 

According to Figure 6 at dD   we have 1pp    

and so Cpd 







 22.0

1
cot
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Neglecting the effect of bending at point 1, the 

equilibrium equation normal to the conical surface of 

the tube at zone 1-2 is 

T

pp

r

d


 cos
                                     (34) 

where   is the tensile hoop stress. Assuming 

constant thickness, the equilibrium equation along the 

axis of the tube is 
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Combining Eqs. (34) and (35) leads to 
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where   and   are tensile and compressive 

stresses respectively. Using the modified Tresca yield 

criterion m  1.1  and combining Eqs. 

(34) and (36) lead to 
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where m  is the average yield stress of the tube 

material. By integrating and manipulating Eq. (37), 

we arrive at the following expression for the 

compressive meridian stress in section 2 ( 2rr  ): 
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Calculation procedure: 

From the above calculations, the pressures at sections 

1 and 2 are given by Eqs. (22) and (33), respectively. 
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Also, the compressive meridian stresses at sections 1 

and 2 can be achieved by Eqs. (26) and (38), 

respectively. 
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                                       (41) 

The initial pressure exerted on the top of the 

polyurethane rod to bulge the tube, 0p  can be 

obtained from FE simulations and subsequently, the 

values of 21 , pp  and 21 ,  can be calculated 

using Eqs. (39-41). 
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4 Finite element simulation  

Numerical studies were carried out to reveal the 

deformation pattern of the tube and to verify the 

theoretical analysis. A range of forming parameters 

can be used in the finite element simulations and the 

optimal values can be predicted at low CPU cost. 

ABAQUS finite element code was used to simulate 

the process and predict the material deformation 

during forming. Due to the axisymmetric character of 

the forming, only a 2-D model was used to reduce 

computation time. Figure 7 shows the shape at the 

last stage of the tube bulging using a solid bulging 

medium. A polyurethane rod of Shore Hardness 95A 

and diameter 38mm was used to bulge an annealed 

copper tube of diameter 42mm and wall thickness of 

1.2mm. The bottom plate of the die was not modeled, 

instead the nodes at the bottom of die, tube and 

flexible medium were constrained in the appropriate 

directions to simulate the presence of the die bottom 

plate. 

 

 

Figure 7: FE simulation of the process at the last 

stage of bulge forming. 

Die tool material was assumed to be steel, and the 

tube was modeled using CAX4R (a 4-node bilinear 

axisymmetric quadrilateral, reduced integration, 

hourglass control) elements. The polyurthane rod was 

modeled using CAX4RH elements. Penalty contact 

interfaces were used to enforce the intermittent 

contact and the sliding boundary condition between 

the blank and the tooling elements. The Coulomb 

friction model with various values of coefficient of 

friction is used for contact surfaces between the tube 

and the metallic die. The coefficient of friction 

between the polyurethane and the tube changes with 

contact pressure based on the model presented in 

section 2. The contact pressure dependent 

coefficients of friction are implemented into the 

model through the contact property option of the 

ABAQUS program. This option is used to introduce 

friction properties into the mechanical surface 

interaction models.    

The simulation begins with the tube in contact with 

the die and the polyurethane rod. The flexible rod 

then moves down to bulge the tube. The interface 

between the die and the tube, and between the tube 

and the flexible rod are modeled using an automatic 

surface to surface contact algorithm. The forming 

loads were applied on the polyurethane rod in terms 

of displacements on the top surface of the rod. The 

displacement was assigned to be equal to the 

displacement of the rod measured during the 

experimental tests performed by Girard et al. [4]. 

The constitutive behavior of the tube is described by 

an elastic–plastic model. For the elastic part, Young's 

modulus of 110GPa and Poisson's ratio of 0.343 is 

used. For the plastic part, the hardening model is 

assumed to be isotropic described by the power law 

approach: 

nK                                                         (42) 

where   is the true stress (MPa),   is the total true 

strain (dimensionless), K  is the strength coefficient 

(MPa) and n  is the strain-hardening exponent 

(dimensionless). For the annealed copper in this 

research, MPaK 530  and 44.0n  are being 

used and the average yield stress of the annealed 

copper is MPam 97 . 

Rubber is made of isotropic, non-linear, hyper-

elastic, incompressible, strain-history-independent 

material. Hyper-elastic materials are described in 

terms of a strain energy potential W which defines 

the strain energy stored in the material per unit of 

reference volume (volume in the initial configuration) 

as a function of the strain at that point in the material 
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[25]. Among several forms of strain energy potentials 

available in ABAQUS, Ogden (N=3) strain energy 

[26] is used for rubber modeling. The Ogden material 

model has previously been used with success to 

predict the behavior of hyper-elastic materials at high 

strain rates (see, e.g. [27]). The form of the Ogden 

strain energy potential is: 

ij
ij

W







                                                           (43) 
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              (44)                                                                      

where W is the strain energy per unit of reference 

volume;

 

i are the deviatoric principal stretches 

which can be defined by ii J  3/1 ; i  
are the 

principal stretches; J  is the total volume ratio; 
elJ  

is the elastic volume ratio; and i , i  and iD
 
are 

temperature-dependent Ogden constants. 

Compressibility can be defined by specifying nonzero 

values for iD , by setting the Poisson's ratio to a 

value less than 0.5, or by providing test data that 

characterize the compressibility. We assumed a fully 

incompressible behavior for rubber with 

4997.0  and iD
 

equal to zero and so the 

second expression in Eq. (44) can be eliminated. To 

determine the strain energy density W, ABAQUS 

uses a least-squares fitting algorithm to evaluate the 

Ogden constants automatically from experimental 

data. 

 

5 Results and discussions 

To validate the FE model developed in Section 4, the 

final thickness of the tube after bulging is compared 

with experimental results presented by Girard et al. 

[4] and is shown in Figure 8. As demonstrated in the 

figure, the thickness distribution obtained from the 

FE model and the experiments agree very well with 

each other with the error less than 6%. As shown in 

the figure, the maximum thinning happens at the end 

of the tube, where the tube has the maximum 

expansion. The undeformed part of the tube does not 

show any reduction in thickness. 

The pressure 0P  at the top of the polyurethane rod 

obtained from FE simulations with different values of 

coefficient of friction between the die and the tube is 

shown in Figure 9. As can be seen in the figure, 

higher pressures are needed for bulging with higher 

friction coefficients to overcome the frictional 

resistance between the die and the tube. 

 

Figure 8: Thickness distribution of the bulged tube 

obtained from FE simulations. 

 

Figure 9: Pressure at the top of the polyurethane rod 

obtained from FE simulations. 

 

The variations of pressures at points 1 and 2  

(see Figure 6) of the rod are illustrated in Figures 10 

and 11. The values of 1P  and 2P  are calculated using 

Eq. (39). According to the figures, the results of FE 

simulations and the theoretical model correlate with 

each other. The maximum error for predicting 1P  is 
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4.6% which happens at the coefficient of friction of 

0.1. The error increases to 4.9% for prediction of 2P . 

 

Figure 10: Variation of 1P  with coefficient of 

friction. 

 

Figure 11: Variation of 2P  with coefficient of 

friction. 

 

The effect of tube initial thickness and length of the 

rod on the distribution of pressure at different points 

of the polyurethane rod is calculated using the 

theoretical model and presented in Figures 12 and 13. 

As can be seen in the Figure 12, higher pressures are 

needed to bulge the tubes with thicker walls.  

Figure 13 shows that as length of the rod in contact 

with the constrained part of the tube increases, the 

pressure needed to bulge the tube increases. 

However, the calculations show that the effect of rod 

length is not as significant as the tube thickness. 

The effect of coefficient of friction between the tube 

and the die on the variations of stresses 1  and 2  

at points 1 and 2 of the tube (see Figure 6) is shown 

in Figures 14 and 15. It can be seen that the stress 

components tend to increase with increasing the 

coefficient of friction. This is due to the higher 

forming pressure exerted to the tube from the 

polyurethane rod at higher frictions. The theoretical 

model predicts this increase quite linearly. The 

comparisons between the theoretical and FE 

simulation results show good correlation. The 

maximum prediction error at 2.00   is 12% for 

1  and 8.2% for 2 . The FE simulations tend to 

predict the stresses higher than the theoretical model. 

 

 

Figure 12: Variation of pressures at different points 

of the polyurethane rod with tube thickness. 

 

Figure 13: Variation of pressures at different points 

of the polyurethane rod with the length of the rod. 

 

Effects of initial tube thickness and polyurethane rod 

length on the stress at point 2 of the tube are 

calculated using the theoretical model and are shown 

in Figures 16 and 17. As demonstrated in Figure 16, 
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the stress at point 2 increases sharply with decreasing 

the initial tube thickness which makes it difficult to 

bulge very thin tubes. According to Figure 17, the 

increase in the rod length does not have a remarkable 

effect on the stress at point 2. 

 

Figure 14: Variation of stress 1  with coefficient of 

friction. 

 

Figure 15: Variation of stress 2  with coefficient of 

friction. 

The history of radial stress at points 1 and 2 during 

the FE simulation is shown in Figure 18. As shown in 

the figure, the compressive radial stress increases 

constantly during the process and makes it possible to 

expand and bulge the tube end. The values of stresses 

at points 1 and 2 are quite similar which is due to the 

hydrostatic nature of the bulge forming using an 

elastomer bulging medium. The variation of axial 

stress at points 1 and 2 of the tube with simulation 

time is shown in Figure 19. As can be seen in the 

figure, the axial stresses increase with time, however 

there is a sharp decrease in axial stress at point 1 at 

the end stages of the bulge forming process. 

 

Figure 16: Effect of initial tube thickness on  

stress 2 . 

 

Figure 17: Effect of polyurethane rod length on 

stress 2 . 

 

Figure 18: Radial stress history at point 1 ad 2 of the 

tube during bulging simulation. 
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Figure 19: Axial stress history at point 1 ad 2 of the 

tube during bulging simulation. 

 

6 Conclusions 

In this paper bulge forming of tubular components 

was investigated using an analytical model and FE 

simulations. A new friction model based on local 

contact conditions was used in the FE simulation of 

the process and based on the results of this friction 

model, a theoretical model for bulge forming was 

developed. The main conclusions of this research are 

as follows: 

 An increase in contact pressure results in decrease 

in coefficient of friction between rubber and 

metal. The coefficient of friction reaches a nearly 

constant value at higher normal pressures. 

 Higher pressures are needed to bulge the tubes 

with thicker walls. The stress at the end of the 

tube increases sharply with decreasing the initial 

thickness of the tube, which may cause rupture at 

the end of the tubes with very thin walls. 

 The effect of the length of the elastomeric rod on 

the pressure and stress distributions is negligible. 

 Compressive axial and radial stresses at the tube 

increase constantly during the process which 

makes it possible to bulge the tube. 
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