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Abstract 

This study explores a novel approach for detecting diseases in tomato leaves through the application of neural 

networks, aiming to enhance early diagnosis and management strategies for farmers and plant pathologists. The 

research investigates nine prevalent diseases affecting tomato foliage, including Early Blight, Late Blight, 

Septoria Leaf Spot, Target Spot, Yellow Leaf Curl Virus, Bacterial Spot, Spider Mites, Leaf Mold, Tomato 

Mosaic Virus, and Healthy leaves, using pre-trained deep learning models, ResNet-34 and VGG16. A diverse 

dataset of tomato leaf images, exhibiting various disease symptoms under field and curated conditions, was pre-

processed, labeled, and split into training (80%) and testing (20%) sets to fine-tune the models. Evaluation of 

the testing dataset revealed that ResNet-34 achieved a higher accuracy of 99% compared to VGG16’s 89%, 

demonstrating superior performance in disease classification. Precision, recall, and F1 scores further confirmed 

ResNet-34’s robustness, averaging 0.99 across classes. These findings highlight the efficacy of deep learning in 

agricultural disease detection, contributing to sustainable practices by enabling timely interventions, reducing 

crop losses, and minimizing pesticide use. The study underscores the potential of AI-driven solutions to 

transform tomato cultivation, paving the way for scalable, real-time applications in resource-constrained farming 

environments. 
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1 Introduction 

 

Tomatoes are a vital crop in global agriculture, which 

contributes significantly to food security and 

economic constancy. However, tomato cultivation is 

highly susceptible to various diseases that adversely 

affect yield quality and quantity. Bacteria, fungi, 

viruses and other pathogens often go undetected until 

they have caused severe damage. Early diagnosis and 

management of such diseases are crucial for reducing 

losses and ensuring sustainable agricultural practices. 

The traditional methods of identifying plant diseases, 

such as visual inspections by agriculture experts, are 

slow, labor-intensive, and often prone to inaccuracies, 

particularly in large-scale farming. Thus, there has 

been a growing interest in utilizing advanced 

technologies such as deep learning to mechanize and 

enhance the process of disease detection [1]–[3]. AI-

driven disease detection enhances sustainability in 

agriculture by enabling early identification of tomato 

leaf diseases, which reduces the need for broad-

spectrum pesticide applications—a practice that can 

harm ecosystems and increase costs. By providing 

precise, timely diagnoses, the system allows farmers 

to implement targeted interventions, minimizing crop 

losses and optimizing resource use (e.g., water, 

fertilizers), thereby supporting long-term food 

security and environmental health. Neural networks, 

with their ability to learn and extract intricate patterns 

from data, have developed as a promising solution to 

this challenge. 

Recent improvements in deep learning and 

computer vision technologies have led to substantial 

progress in the automation of plant disease detection. 
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However, existing studies face challenges in achieving 

robustness, scalability, and practical applicability in 

real-world conditions. CNNs were employed to 

classify 38 diseases across 14 crops using the 

PlantVillage dataset, achieving high accuracy. 

However, the dataset consisted mainly of laboratory-

controlled images with uniform backgrounds, limiting 

the model's applicability to field conditions [4]. The 

application of CNNs was investigated including 

AlexNet and VGG16, for plant disease detection, 

showing impressive results. However, the study 

highlighted inconsistencies in performance when the 

models were tested on unseen field data with 

environmental variations such as lighting and 

background complexity [5]. Transfer learning with 

data augmentation was applied for tomato disease 

detection to improve classification performance. 

Nevertheless, the study primarily focused on accuracy 

without addressing computational efficiency, making 

it less feasible for on-field applications [6]. 

A shallow CNN technique was implemented for 

tomato disease classification and reported moderate 

accuracy levels. The model was computationally light 

but lacked the depth required to capture complex 

disease patterns [7]. A robust deep learning system 

was introduced for tomato pest and disease detection 

using Faster R-CNN. While effective, the approach 

required extensive computational resources and 

suffered from high inference times, making it 

unsuitable for real-time applications [8]. Different 

CNN architectures were compared, including 

MobileNet and DenseNet, for plant disease 

classification. The study noted that deeper networks 

often achieved better accuracy but were 

computationally expensive, highlighting the trade-off 

between model performance and efficiency [9]. The 

effectiveness of ResNet architectures was evaluated 

for plant disease detection [10]. While ResNet models 

demonstrated superior performance in addressing 

vanishing gradient issues, their use in agriculture 

remains underexplored for crop-specific diseases like 

tomato leaf diseases. 

A basic CNN model for crop disease detection 

was used to achieve reasonable accuracy. However, 

the study lacked a robust evaluation of its 

generalizability across diverse datasets [11]. 

Ensemble learning was utilized to combine multiple 

models for enhanced classification. Although this 

approach improved accuracy, it introduced 

computational complexity, making real-time deployment 

challenging [12]. Data pre-processing techniques were 

proposed by researchers to enhance CNN-based plant 

disease detection [13]–[15]. While this improved the 

model’s accuracy, the study did not address the performance 

of pre-trained architectures for specific crops. 

This study aims to develop a robust, AI-driven 

solution for detecting nine common tomato leaf 

diseases using deep learning techniques particularly 

using ResNet-34 and VGG16, addressing the 

limitations of prior work and promoting sustainable 

agricultural practices through early and accurate 

disease management. 

  

2 Materials and Methods 

 

The approach aims to deliver a dependable and helpful 

tool for farmers and plant pathologists to identify 

diseases early, enabling timely involvement and 

increased crop management strategies. Our proposed 

study addresses these limitations through the 

following contributions: Unlike previous studies that 

rely primarily on controlled datasets with uniform 

backgrounds, this study utilizes a real-world dataset 

comprising tomato leaf images captured under diverse 

field conditions. This approach enhances the robustness 

and scalability of the model, ensuring that it performs 

well in practical agricultural environments. Additionally, 

the study goes beyond evaluating individual models 

by conducting a systematic comparison between 

ResNet-34 and VGG16 architectures. This 

comparison helps identify the more effective model 

for accurately detecting tomato leaf diseases. 

Furthermore, the study focuses on disease-

specific optimization by fine-tuning both models to 

detect nine common tomato leaf diseases, rather than 

using generalized plant disease data. This targeted 

approach significantly improves diagnostic precision. 

By combining the computational efficiency of 

ResNet-34 with the deep feature extraction 

capabilities of VGG16, the proposed solution achieves 

a balance between high accuracy and practical 

deployment. This makes the system suitable for use in 

resource-constrained settings, such as remote farms or 

low-tech agricultural operations. By addressing the 

gaps in existing literature, this research provides a 

solution for tomato leaf disease detection, contributing 

to sustainable agricultural practices and improved 

yield management.
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2.1 Dataset collections 

 

The dataset for this study was sourced from the Kaggle 

repository, comprising labeled images of tomato 

leaves affected by nine common diseases, including 

Early blight, Late blight, Septoria leaf spot, Target 

spot, Yellow leaf curl virus, Leaf mold and Tomato 

mosaic virus, as well as healthy leaves. Images were 

obtained from diverse environments, including field 

conditions and curated datasets, ensuring a balanced 

representation of different disease conditions and 

environmental variations. This study utilized a pre-

existing dataset from Kaggle eliminating the need for 

a custom imaging setup [16].  

The dataset was sourced from diverse 

environments, including field conditions with varying 

weather (e.g., overcast, sunny) and image quality (e.g., 

low resolution, noise), as noted in its documentation. 

While not all images are field-captured—some are 

curated—the inclusion of real-world variability 

enhances model robustness compared to lab-only 

datasets (e.g., PlantVillage). Kaggle’s reliability stems 

from its community validation and widespread use in 

plant disease studies, though limitations like potential 

bias in disease representation were mitigated through 

preprocessing and balanced class distribution. 

The dataset includes diverse images of tomato 

leaves, as exemplified in Figures 1 through 10, which 

illustrate characteristic symptoms of the ten target 

classes. Figures 1 through 10 illustrate the ten target 

classes in the dataset, showcasing the variability in 

disease symptoms and environmental conditions. 

Figure 1 shows Early Blight with concentric ring 

lesions and yellow halos. Figure 2 depicts Late Blight 

with dark, water-soaked lesions and necrosis. Figure 3 

presents Septoria Leaf Spot with irregular grayish 

spots and dark borders. Figure 4 displays the Target 

Spot with concentric lesions and grayish-white 

centers. Figure 5 illustrates the Tomato Mosaic Virus 

with mottled yellowing and leaf distortion. Figure 6 

shows a bacterial spot with small, dark spots and 

yellow halos. Figure 7 depicts Spider Mites with 

stippling and yellowing from mite feeding. Figure 8 

presents Leaf Mold with yellowing and chlorosis from 

fungal infection. Figure 9 illustrates the Yellow Leaf 

Curl Virus with upward curling and yellowish 

discoloration. Figure 10 shows Healthy leaves with a 

uniform green color and no symptoms. These figures 

highlight the dataset’s diversity, necessitating robust 

preprocessing for model generalizability. 

These nine diseases were selected for analysis 

due to their high prevalence and significant economic 

impact on tomato cultivation globally. Early Blight, 

Late Blight, and Bacterial Spot, for instance, are 

among the most common fungal and bacterial diseases 

affecting tomato yields, while viral diseases like 

Tomato Mosaic Virus and Yellow Leaf Curl Virus 

pose persistent threats due to their rapid spread and 

difficulty in management. Including a range of fungal, 

bacterial, viral, and pest-related conditions ensures the 

study addresses the most critical challenges faced by 

farmers, enhancing the practical relevance of the 

proposed solution. 

 

2.2 Data preprocessing 

 

Preprocessing for tomato leaf disease detection is an 

essential step to ensure the dataset is clean, consistent, 

and ready for analysis [16]. It begins with collecting a 

diverse set of labeled images representing different 

diseases and healthy leaves under various lighting 

conditions and backgrounds. The data is then cleaned 

by removing corrupt or unreadable images and 

ensuring labels are consistent across all classes. If 

needed, images can be annotated to highlight regions 

of interest, such as disease spots, using tools like 

Labelling. To prepare the data for deep learning 

models, all images are resized to a uniform size, such 

as 256×256 pixels, which is suitable for popular 

architectures like ResNet or MobileNet. Cropping can 

also be applied to eliminate unnecessary background 

and focus on the leaf areas. These preprocessing steps 

improve the quality of the dataset, enhance model 

performance, and reduce noise, enabling more 

accurate detection of tomato leaf diseases. 
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Figure 1: Sample images of early blight. 

 

 
Figure 2: Sample images of late blight. 

 

 
Figure 3: Sample images of septoria leaf spot. 

 

 
Figure 4: Sample images of target spot. 
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Figure 5: Sample images of tomato mosaic virus. 

 

 
Figure 6: Sample images of bacterial spot. 

 

 
Figure 7: Sample images of spider mites. 

 

 
Figure 8: Sample images of leaf mold. 
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Figure 9: Sample images of yellow leaf curl virus. 

 

 
Figure 10: Sample images of healthy leaves. 

 

2.3 Model architectures 

 

This study utilizes two pre-trained deep learning 

architectures, ResNet-34 and VGG16, known for their 

robust performance in image classification tasks. 

These architectures were selected for this study due to 

their established performance in image classification 

tasks and their complementary architectural strengths. 

ResNet-34, with its residual connections, mitigates the 

vanishing gradient problem, enabling effective 

training of deeper networks, which is crucial for 

capturing complex disease patterns. VGG16, known 

for its simplicity and uniform architecture, excels in 

feature extraction and transfer learning, making it a 

reliable baseline for comparison. These models 

balance accuracy and computational feasibility, 

making them suitable for agricultural applications 

where resource constraints are common. 

 While ResNet-34 and VGG16 are established 

architectures and tomato disease detection has been 

explored (e.g., Brahimi et al., Fuentes et al.,), this 

study introduces novelty by systematically comparing 

these models on a diverse, field-representative dataset 

of 1,678 images, optimizing them for ten tomato-

specific target classes, and balancing accuracy with 

practical efficiency. Unlike Mohanty et al., who used 

controlled images, or Ferentinos, who addressed 

multiple crops without crop-specific tuning, our 

approach enhances robustness and applicability for 

tomato cultivation under real-world variability. 

 

2.3.1  ResNet-34 architecture 

 

ResNet-34, a deep convolutional neural network from 

the ResNet family, introduced in the 2015 publication 

‘Deep Residual Learning for Image Recognition’ [17], 

addresses the vanishing gradient problem common in 

deep networks through residual connections. Residual 

connections, also known as skip connections, are the 

main enhancement of ResNet-34 as depicted in Figure 11. 

They enable the network to learn residual functions 

rather than direct mappings.  Deeper architectural 

training is made possible by these remaining 

connections, which facilitate the gradient's easier 

passage through the network during backpropagation. 

The 34 layers that make up the ResNet-34 

architecture include 3×3 convolutional layers 

arranged in residual blocks. The network starts with 

max pooling after a 7×7 convolutional layer with 64 

filters and a stride of 2. The architecture is then 

separated into four phases, each of which has several 

leftover blocks. With each level, the number of filters 

doubles (64, 128, 256, and 512 filters), enabling the 

network to extract features that are more abstract. 
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Convolutional layers are followed by a fully 

connected layer with softmax activation and a global 

average pooling layer to get classification outputs. 

ResNet-34 performs exceptionally well on big 

datasets like ImageNet and is especially useful for 

image recognition tasks. 

 

2.3.2  VGG16 architecture 

 

VGG16, proposed by Simonyan and Zisserman is a 

deep convolutional neural network noted for its 

simplicity and effectiveness. The 16 weighted layers 

in the architecture are mostly composed of 3×3 

convolutional filters that have been applied with 

padding and stride 1 to maintain spatial dimensions as 

depicted in Figure 12. [18]. Unlike more complex 

architectures, VGG16 uses a uniform approach to 

building depth by stacking convolutional layers, 

which increases the network's capacity to learn 

hierarchical features. The VGG16 architecture begins 

with a series of convolutional layers in five blocks, 

with each block followed by a max pooling layer. The 

number of filters increases progressively across the 

blocks (64, 128, 256, and 512), allowing the network 

to capture more complex features as the depth 

increases. The network has three fully connected 

layers after the convolutional blocks. The first two 

layers have 4096 neurons each, while the third layer is 

a softmax layer for classification. VGG16 is still a 

well-liked option for transfer learning and is a 

standard for many computer vision tasks despite its 

many parameters [19]. 

Both ResNet-34 and VGG16 are highly 

influential architectures in deep learning, each with its 

strengths. ResNet-34 excels in handling very deep 

networks, using residual connections to mitigate 

training challenges and achieve higher efficiency. 

VGG16 is simpler in design and widely used for 

feature extraction and transfer learning but has a 

higher computational cost due to its fully connected 

layers and uniform filter stacking. These two models 

were initialized with pre-trained weights from the 

ImageNet dataset and adjusted using the tomato leaf 

disease dataset. A comparative study of both 

architectures is listed in Table 1. 

 

 
Figure 11: ResNet-34 architecture. 

 

 
Figure 12: VGG16 architecture. 

 

Table 1: Comparison of ResNet-34 and VGG16 architectures. 
Parameter ResNet-34 VGG16 

Year Introduced 2015 (ResNet family by He et al.) 2014 (by Simonyan and Zisserman) 

Primary Innovation Residual connections to solve vanishing gradient problems and 
allow deeper networks to train effectively. 

Simple and uniform architecture with deep 
convolutional layers. 

Number of Layers 34 weighted layers 16 weighted layers 
Filter Sizes Mainly 3×3 convolutions, with occasional 7×7 at the beginning. Uniformly 3×3 convolutions throughout 

Pooling Initial max pooling; global average pooling before the fully 

connected layer. 

Max pooling after each convolutional 

block. 
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Table 1: (Continue) 
Parameter ResNet-34 VGG16 

Fully Connected 
Layers 

A single fully connected layer at the end (global average pooling 
reduces dimensionality). 

Three fully connected layers at the end, 
with two large layers of 4096 neurons 

each. 

Parameter Count Fewer parameters due to residual blocks and global average 
pooling. 

Very large due to fully connected layers, 
leading to higher memory requirements. 

Training 

Complexity 

Easier to train deeper networks due to residual connections. Training becomes challenging as depth 

increases, with no skip connections. 
Strengths Efficient training of deep architectures avoids vanishing 

gradients. 

Straightforward design, and excellent 

feature extraction capabilities. 

Weaknesses Slightly more complex architecture. Large memory footprint and slower 
inference due to many parameters. 

2.3.3  Training and testing 

 

20% of the dataset was used for testing, and the 

remaining 80% was used for training. The models 

were trained with a learning rate of 0.001 and 

optimized using the Adam optimizer. The error 

between the true and predicted labels was measured 

using the categorical cross-entropy loss function. With 

a batch size of 32, the training procedure was carried 

out over 20 epochs. To guarantee effective 

convergence, a scheduler was used to dynamically 

modify the learning rate. To speed up training, Google 

Colab was used, which supports GPUs. 

 

2.3.4  Evaluation metrics 

 

The performance of ResNet-34 and VGG16 was 

assessed using multiple metrics, including: 

• Accuracy: Proportion of correctly classified 

samples. 

• Precision and Recall: To measure the balance 

between true positives and false positives. 

•  F1 Score: To provide a harmonic mean of 

precision and recall. 

•  Confusion Matrix: To envision the performance 

and identify misclassifications across disease categories. 

 

3 Results and Discussion 

 

3.1 Training and testing of VGG16 model 

 

The 16 layers of the VGG16 model—13 convolutional 

layers for feature extraction and three fully connected 

layers for classification—were trained with a batch 

size of 32. Over 20 epochs, the model progressively 

improved its accuracy, stabilizing at 89%. The training 

process is depicted in Figure 13, which illustrates the 

increasing trend of accuracy with successive epochs. 

Initially, at epoch 0, the accuracy was significantly 

low due to the lack of learned features. As training 

progressed, the model adjusted its weights and biases, 

resulting in a steady improvement in accuracy. The 

model’s loss values during training and validation are 

presented in Figure 14. At the beginning of training, 

both the training and validation losses were relatively 

high, indicating the model's initial inability to 

minimize prediction errors. However, as the epochs 

increased, these loss values declined consistently, 

signifying improved performance and better 

generalization. 

 

 
Figure 13: Accuracy of VGG16 training model. 

 

 
Figure 14: Losses of VGG16 training model. 
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Upon testing the trained VGG16 model on a 

separate dataset of 4,585 images, the model achieved 

a testing accuracy of 89%. This indicates the model's 

capability to classify tomato leaf diseases with 

reasonable reliability, although certain limitations, 

such as overfitting to specific patterns, might have 

constrained its performance compared to other 

models. 

 

3.2 Training and testing of ResNet34 model 

 

The ResNet-34 architecture, a more complex network 

with 34 layers, including 33 convolutional layers and 

1 fully connected layer, was also evaluated. The 

architecture's distinctive feature is its residual 

connections, which facilitate the learning of deep 

features by bypassing intermediate layers and 

addressing the vanishing gradient problem. The 

training process of ResNet-34 is illustrated in        

Figure 15, where the model's accuracy showed a 

marked improvement over epochs. Starting from a low 

accuracy at epoch 0, the model reached a peak 

accuracy of 99.4% by epoch 20. This consistent rise 

shows how well the model can identify complex 

patterns in the data. 

Figure 16 highlights the reduction in training and 

validation losses during ResNet-34’s training. 

Initially, the losses were high due to random 

initialization of weights. As the model trained over 

successive epochs, the loss values dropped 

significantly, reflecting improved predictions and 

better alignment between the predicted and actual 

labels. Upon testing with the same dataset used for 

VGG16, ResNet-34 achieved an accuracy of 99.4%. 

The enhanced performance over VGG16 can be 

attributed to the model’s residual connections, which 

allow for deeper and more accurate feature extraction 

while minimizing errors. 

The accuracy at earlier epochs, such as epoch 6, 

is relatively low (e.g., approximately 70% for VGG16 

and 96% for ResNet-34, as observed in Figures 13 and 

15) because the models are still learning to extract and 

refine features from the complex dataset. At this stage, 

the weights and biases are not fully optimized, leading 

to higher error rates. As training progresses beyond 

epoch 6, the accuracy improves significantly, reaching 

89% for VGG16 and 99.4% for ResNet-34 by epoch 

20, reflecting the models’ convergence and improved 

generalization. 

 

 
Figure 15: Accuracy of ResNet34 training model. 

  

 
Figure 16: Losses of ResNet34 training model. 

 

3.3 Prediction of test data 

 

To validate the models on real-world data, individual 

test images were subjected to classification. An 

example prediction is shown in Figure 17, where a test 

image of a tomato leaf affected by Bacterial Spot was 

correctly identified by the model. This demonstrates 

the system’s capability to generalize and precisely 

categorize unseen data, crucial for practical 

applications in agriculture. 

  

 
Figure 17: Disease prediction of test data. 
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3.4  Comparison and insights 

 

The comparative analysis between VGG16 and 

ResNet-34 revealed a clear performance advantage for 

ResNet-34. While VGG16 achieved a stable testing 

accuracy of 89%, ResNet-34 surpassed it with a 

testing accuracy of 99.4%. The residual learning 

approach in ResNet-34 allowed for better handling of 

complex patterns and deeper feature representations, 

which were crucial for distinguishing subtle 

differences in disease symptoms.  

Table 2 presents a comprehensive evaluation of 

the ResNet-34 model’s performance in classifying 

various tomato leaf conditions using three key metrics: 

precision, recall, and F1 score. The results indicate 

that the model performs exceptionally well across all 

categories. Most classes show very high performance, 

with F1 scores consistently above 99%. The overall 

evaluation highlights the robustness and effectiveness 

of the ResNet-34 model in accurately identifying 

tomato leaf diseases. The confusion matrix for the 

ResNet-34 model shows strong classification 

performance across all tomato leaf disease categories 

(Figure 18). 

 

Table 2: Performance Evaluation of ResNet-34. 
Classification Precision  

(%) 

Recall  

(%) 

F1 Score 

 (%) 

Bacterial spot 98.63 100.00 99.31 
Early blight 99.35 98.70 99.02 

Late blight 99.33 100.00 99.67 

Leaf Mold 99.31 99.31 99.31 
Leaf spot 99.38 99.38 99.38 

Spider mites 98.87 100.00 99.43 

Target Spot 100.00 98.68 99.33 
Yellow Leaf Curl  100.00 98.80 99.40 

Mosaic virus 100.00 100.00 100.00 

Healthy 100.00 100.00 100.00 

 
Figure 18: Confusion matrix showing classification performance of ResNet-34. 
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The superior performance of ResNet-34 (99.4% 

accuracy) over VGG16 (89%) aligns with findings by 

Too et al., who noted that deeper architectures like 

ResNet often outperform shallower models like VGG 

in plant disease classification due to their ability to 

capture complex features. However, our results 

exceed the 85.2% accuracy reported by Ferentinos 

using VGG16 on a multi-crop dataset, likely due to our 

focus on tomato-specific optimization and diverse 

field data. This improvement highlights the advantage 

of tailoring models to specific crops, as suggested by 

Brahimi et al., Also, compared to recent studies, our 

model’s performance is notably superior. For instance, 

Pandiyaraju et al., achieved 97.8% accuracy using 

ensemble models but required complex optimization 

steps. Mewada et al., employed integrated deep 

learning methods, reporting 94.5% accuracy, but 

lacked evaluation on diverse field conditions. In 

contrast, our ResNet-34 model attained 99.4% 

accuracy using a relatively straightforward 

architecture on a mixed real-world dataset. Similarly, 

Anandh et al., utilized CNNs with transfer learning, 

reporting 95.3% accuracy. These comparisons 

underscore the strength of our crop-specific tuning and 

robust preprocessing pipeline. Kumar et al., developed 

a YOLOv5-based detection system achieving 92.6% 

accuracy, optimized for speed but lacking detailed 

performance metrics across disease types [20]. 

Likewise, Sharma and Reddy proposed a hybrid CNN-

RNN architecture for tomato leaf disease 

classification, reaching 96.1% accuracy, but the 

model’s complexity and longer inference time made it 

less feasible for real-time field applications [21]. In 

contrast, our ResNet-34 model achieves a higher 

accuracy of 99.4% on a field-representative dataset, 

with efficient training and inference, highlighting its 

suitability for deployment in resource-constrained 

agricultural environments.  

This study demonstrates the potential of deep 

learning models for early and accurate detection of 

tomato leaf diseases. The findings suggest that 

ResNet-34, with its robust architecture, is better suited 

for deployment in real-world agricultural scenarios, 

enabling farmers and plant pathologists to mitigate 

losses and improve crop yields effectively. Future 

work may focus on optimizing these models for real-

time applications and exploring their adaptability to 

other crops and diseases. 

4   Conclusions 

 

The research study successfully demonstrated the 

usage of deep learning models, ResNet-34 and 

VGG16, for the detection and classification of tomato 

leaf diseases. Utilizing a dataset of 1,678 labeled 

images, the models were fine-tuned to identify nine 

common disease categories, including both healthy 

and diseased leaf samples. ResNet-34 achieved a 

higher accuracy of 99.4% compared to VGG16's 89%, 

establishing its superior capability in handling 

complex disease patterns and environmental 

variability. This finding highlights the ability of deep 

learning to transform agricultural disease 

management. By enabling accurate and early 

detection, the suggested system can assist farmers and 

plant pathologists in implementing timely 

interventions, thus reducing crop losses and 

supporting sustainable agricultural practices. The 

system provides farmers and pathologists with precise 

diagnoses, enabling manual intervention. Future work 

could integrate these models with IoT devices or 

robotic systems to automate treatment, such as 

targeted pesticide application, enhancing efficiency 

beyond detection alone. 

Future directions for this study include the 

integration of IoT-based systems for on-field disease 

monitoring and the expansion of the dataset to 

embrace a broader variety of plant species and 

environmental circumstances. This work can also be 

extended by incorporating severity classification using 

additional data or multi-task learning approaches. 

Additionally, optimizing the models for resource-

constrained environments can further enhance their 

applicability in remote and under-resourced farming 

areas. This work underscores the promise of AI-driven 

technologies in addressing critical tasks in agriculture, 

paving the way for innovative solutions to enhance 

food security and farming efficiency. 
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