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Abstract 

The two-degree-of-freedom aero flight control simulator is a nonlinear, unstable, and multi-input multi-output 

system with gravitational disturbance in its pitch dynamics. Its attitude control is a challenging task with linear 

controllers. The fuzzy controller by parallel distributed compensation uses a combination of linear controllers. 

It is a simple method, but exhibits poor tracking performance under disturbance. This study presents a design of 

a fixed structure fuzzy sliding mode controller to track the desired trajectory for this system. A sliding mode 

controller is combined with the fuzzy controller using an integral sliding surface to overcome gravitational 

disturbance and track the attitude. Lyapunov’s method verifies the stability of the closed-loop system. To 

validate the proposed design, numerical simulations are carried out and compared with existing methods. The 

tracking responses of yaw and pitch point out fast convergence of error with minimum settling time in the 

presence of matched disturbances. 
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1 Introduction 

 

In recent years, helicopter control system design has 

emerged as a prominent study area, owing to its 

extensive applications in military and civilian domains 

for supply, rescue, search missions, and surveillance 

[1], [2]. The helicopters are preferred over fixed-wing 

aircraft for their Vertical Take-Off and Landing 

(VTOL) capabilities, which makes them superior for 

hover and maneuverability. However, the helicopter 

has nonlinear [3], under-actuated, coupled [4], and 

uncertain [5] dynamics combined with environmental 

conditions, wind speed, and pressure pose a challenge 

to ensure stability and tracking of the reference 

trajectory. The Two Degrees Of Freedom (2-DOF) 

Quanser aero serves as a testbed for the investigation 

of control algorithms for helicopters.  

Several control algorithms have been developed 

by many researchers to stabilize and control 

helicopters. This includes some linear controllers, 

including Linear Quadratic Regulator (LQR) [6], 

Proportional Integral Derivative Controller (PID) [1], 

some intelligent controllers, including Fuzzy 

Controller (FC) [2], neuro-fuzzy controller [7], some 

advance controllers, including the adaptive 

backstepping controller (ABS) [3], Sliding Mode 

Controller (SMC) [4], etc. The PID [1] and LQR [6] 

are some classical linear controllers that are 

extensively used to control nonlinear systems. They 

can be designed by linearizing the nonlinear system 

around some operating point. These controllers 

perform well around the neighborhood of those 

operating points; beyond their performance of linear 

controllers degrades drastically. Their performance is 

also affected by unmodelled dynamics, time-varying 

parameters, and disturbance, so nonlinear controllers 

(e.g. FC, SMC, etc.) worked well for larger operating 

ranges and robustness against uncertainty and 

disturbance.  

A fuzzy controller [2] has been designed using a 

Mamdani inference system with forty-nine rules. This 

controller was designed using an input-output 
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relationship. [3] designed an adaptive backstepping 

controller for tracking of desired trajectory in the 

presence of unknown parameters. SMC has shown 

excellent tracking ability and robustness against 

parametric uncertainty and external disturbance [8]–

[10]. Adaptive backstepping has some limitations e.g. 

over-parameterization of unknown parameters, and 

higher order derivatives of virtual control, which can 

increase the complexity of hardware implementation. 

[4] designed a conventional SMC with a PD sliding 

surface, but it suffers from chattering in the 

controller’s output and state of the system due to the 

discontinuous switching control part, so a saturation 

function was used to minimize chattering. [5] 

designed a novel sliding mode controller that has 

state-dependent gain and a combined twisting 

algorithm with sliding mode control to eliminate 

chattering and saturation of input voltages of the 

motors of the system. The adaptive sliding mode 

controller uses time-varying switching gain to reduce 

chattering in the control law. This adaptive gain [11], 

[12] is designed by an integral law, which can cause 

an overestimation of switching gain and slower 

transient response. [7] used an adaptive neural fuzzy 

inference system to optimize the fuzzy rule base using 

a neural network. [13] proposed a novel fractional 

order-based fuzzy model and sliding mode control for 

unidentified limits of parametric uncertainty. The 

actor-critic algorithm was employed along with online 

fractional order Reinforcement Learning (RFL) for the 

approximation of equivalent and switching control of 

SMC and the value function of RFL. [14] designed an 

adaptive backstepping control law for tracking the 

desired trajectory in a prescribed time while 

parametric uncertainty was present in the aero system. 

[15] proposed adaptive backstepping controller for a 

communication network system where both input and 

states are quantized. The limitation of communication 

networks was addressed in this work. [16] designed a 

multi-input multi-output PID controller for uncertain 

cross-coupled gains of the aero system. [17] designed 

an online Adaptive Neural Network Fuzzy Inference 

System (ANFIS) to tune the fuzzy controller to adapt 

to any change in parameters. [18] designed 

Uncertainty and Disturbance Estimator (UDE) with 

adaptive gain that works better than high-gain UDE. 

[19] proposed adaptive neural network controller to 

compensate for uncertainty and input saturation. A 

disturbance observer is also employed to observe 

disturbances and correct the neural network error.  

The linear state feedback controllers provide a 

simple and easy approach to designing a controller for 

the aero system. A reduced and full-order state 

observer  [20] was designed using the linearized 

model of the aero system for an optimal LQR 

controller. [21]–[23] designed state feedback 

controllers for helicopters, considering the linearized 

model of the system. [21], [22] used two additional 

states, integration of outputs to improve steady-state 

error. [24] used a nonlinear feedforward control along 

with LQR and PID to compensate for the gravitational 

disturbance present in pitch dynamics for tracking 

performance improvement. This gravitational 

disturbance is a bounded and state-dependent 

disturbance that always has a nonzero value. [20]–[24] 

designed controllers for the linearized model of the 

aero system, neglecting nonlinearity, uncertainty, and 

disturbance as zero, which doesn’t reflect the real 

behavior of the system. In the real world, these 

nonlinearities, disturbances, and uncertainty are 

always present in the system and should be considered 

for accurate control. 

The Takagi-Sugeno (T-S) fuzzy model is a 

powerful method to express a wide variety of 

nonlinear systems by fuzzy rules containing the linear 

sub-systems. This enables us to use linear models for 

a wide operating range. The fuzzy model contains 

fuzzy propositions in the antecedent part, but the 

consequent part contains a local linearized sub-system 

of a nonlinear system. The Parallel distributed 

compensation (PDC) [25] approach is a T-S fuzzy 

model-based design approach for designing the fuzzy 

controller. In this approach, the linear subsystem of 

this model is replaced by a state feedback controller, 

and the whole model remains the same. These fuzzy 

controllers have excellent stabilization capabilities but 

lack tracking performance. 

In this paper, the T-S fuzzy model of the 2-DOF 

aero system has been constructed to design a fuzzy 

controller by employing a set of linear controllers for 

a broad operating range. This fuzzy controller features 

a simple design structure due to a set of state feedback 

controllers, but its performance degrades because of 

gravitational pitch disturbance. The state feedback 

controller forces the system states to converge to zero 

as time approaches infinity. This gravitational pitch 

disturbance is a cosine function of the pitch angle; as 

the pitch angle converges to zero, the disturbance 

becomes constant, which is not eliminated by the state 

feedback controller law. Therefore, the sliding mode 

controller is combined with the fuzzy controller to 

provide robustness against this gravitational 

disturbance. The integral sliding surface offers a 

method to blend fuzzy and sliding mode controllers. 
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The equivalent control law, which is essential for 

sliding mode, is designed by the fuzzy controller, and 

the discontinuous control law will reject the 

gravitational disturbance. This robust controller is 

suitable for a larger operating range and can deliver 

faster convergence of tracking errors. Lyapunov’s 

method was employed to demonstrate the stability of 

the closed-loop system and derive the new Fuzzy 

Sliding Mode Controller (FSMC) law. The other 

FSMC was designed for fuzzy sliding surface [26], 

and fuzzy switching gain [27], which not only 

improves the performance but also alters the 

properties of SMC i.e., increase in reaching time, and 

convergence time. The proposed FSMC uses FC but 

keeps the properties of SMC intact. This is the novelty 

of the proposed controller.  

 

2 Materials and Methods 

 

2.1 Dynamic model of 2-DOF AERO 

 

The 2-DOF aero system is a simplified model of a 

helicopter that has two identical rotors, resembling the 

main and tail rotors. The horizontally placed main 

rotor is powered by a DC motor and produces a torque 

about the pitch axis to attain the pitch angle. The 

aerodynamic drag of this rotor also causes the yaw 

angle. The vertically placed tail rotor is also powered 

by a DC motor, which produces a torque about the yaw 

axis to attain the yaw angle, and it also causes the pitch 

angle due to aerodynamic drag. The voltages of 

vertical and horizontal motors are the input; yaw and 

pitch angles are the outputs of this system. The yaw 

angle can vary all around the yaw axis at 360° in both 

clockwise and anticlockwise directions. 

rp

ry

X

Fy

Z

Y

Fp

Pitch > 0

Yaw > 0

 
Figure 1: Free body diagram of 2-DOF Aero. 

 

So, this system has two degrees of freedom, i.e., 

pitch and yaw. In this paper, both pitch and yaw 

angular positions have been considered for trajectory 

tracking. The free body diagram of the 2-DOF aero 

system for understanding forces and angular 

displacement is given in Figure 1. 

The equation of motion for the system under 

consideration is given in Equation (1) 

 

̈ =
1

(Jp + ml2)
[𝐾𝑝𝑝𝑉𝑝 + 𝐾𝑦𝑝𝑉𝑦 − 𝐵𝑝θ̇

− ml2 cos  sin  ̇2 − mgl cos θ] 

̈ =
1

(Jy+ml2 cos2 )
[𝐾𝑦𝑝𝑉𝑝 + 𝐾𝑦𝑦𝑉𝑦 − 𝐵𝑦̇ +

2ml2 cos  sin  θ̇ ̇]               (1) 

 

Where 𝜃 stands for pitch angle, 𝜓 for yaw angle, 𝑉𝑝 

for the input voltage of the pitch motor, 𝑉𝑦 for the input 

voltage of the yaw motor,  𝐵𝑦 and 𝐵𝑝 for viscous 

friction coefficients; 𝐽𝑦 and 𝐽𝑝 for the moments of 

inertia about the yaw and pitch axes, respectively and 

𝐾𝑝𝑝, 𝐾𝑝𝑦, 𝐾𝑦𝑝 and 𝐾𝑦𝑦 for thrust torque constants. 

The state vector is 𝑥 =

[𝜃(𝑡), 𝜓 (𝑡), �̇�(𝑡), �̇�(𝑡)]
𝑇
𝑅4, the input vector is 𝑢 =

[𝑉𝑝 𝑉𝑦]𝑇𝑅2and the output vector is 𝑦 =
[𝑦1 𝑦2]𝑇 = [𝜃(𝑡) 𝜓 (𝑡)]𝑇𝑅2. The state space 

model of 2-DOF aero flight control simulator 

Equation (1) is given in Equation (2), as: 

 

�̇� = 𝑓(𝑥) + 𝐺(𝑥)𝑢                  (2) 

 

Where, 𝑓(𝑥) = [𝑥3 𝑥4 𝑓1 𝑓2]
𝑇𝑅4, is a vector of 

nonlinear functions of states, 𝐺(𝑥) =
[02×2; 𝑔11, 𝑔12; 𝑔21, 𝑔22]𝑅2×2, is a nonlinear input 

gain matrix. 

 𝑓1 =
−𝐵𝑝x3−ml2 cos x1 sin x1x4

2−mgl cos x1

Jp+ml2
,  

𝑓2 =
−𝐵𝑦x4+2ml2 cos x1 sin x1x3 𝑥4 

Jy+ml2 cos2 x1
, 

𝑔11 =
𝐾𝑝𝑝

Jp+ml2
,  

𝑔12 =
𝐾𝑦𝑝

Jp+ml2
,  

𝑔21 =
𝐾𝑦𝑝

Jy+ml2 cos2 x1
,  

𝑔22 =
𝐾𝑦𝑦

Jy+ml2 cos2 x1
. 

 

The state space model of the system is designed 

on MATLAB Simulink to evaluate the performance of 

the designed controllers. The system parameters of the 

2-DOF aero system are given in Table 1. 
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Table 1: Parameters of 2-DOF Aero system. 
Parameter Description Value 

𝐽𝑝 Moment of inertia 0.0219 𝐾𝑔𝑚2 

𝐽𝑦 Moment of inertia  0.022 𝐾𝑔𝑚2 

𝐵𝑝 Viscus friction coefficient 0.00711 𝑉𝑠/𝑟𝑎𝑑 

𝐵𝑦 Viscus friction coefficient 0.022 𝑉𝑠/𝑟𝑎𝑑 

𝐾𝑝𝑝 Thrust constant of pitch 0.0011 𝑁𝑚/𝑉 

𝐾𝑝𝑦 Relative pitch-yaw thrust 
constant 

0.0021 𝑁𝑚/𝑉 

𝐾𝑦𝑝 Relative yaw-pitch thrust 

constant 
−0.0027 𝑁𝑚/𝑉 

𝐾𝑦𝑦 Thrust constant of yaw 0.002 𝑁𝑚/𝑉 

𝑚 Mass of body 1.075 𝐾𝑔 

𝑙 distance from the center of 

mass to rotation point 
0.0071 𝑚 

𝑔 Gravitational Acceleration 9.81 𝑚/𝑠2 

 

2.2  T-S Fuzzy Model 

 

This is a rule-based method of representation for 

nonlinear systems with fuzzy antecedents and local 

linear input-output models in the consequent, as 

shown in Equation (3): 

 

𝑅𝑢𝑙𝑒 𝑖: 𝐼𝐹 𝜐1(𝑡)𝑖𝑠 𝑀1
𝑖𝐴𝑁𝐷 ⋯⋯𝐴𝑁𝐷 𝜐𝑝(𝑡)𝑖𝑠 𝑀𝑝

𝑖  

𝑇𝐻𝐸𝑁 �̇�(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)                             (3) 

 

Where, 𝑀𝑗
𝑖  is fuzzy set, 𝑗 = 1,2, … . 𝑝 with 𝑝 denoting 

total number of premise variables, 𝜐(𝑡) =

 [𝜐1(𝑡) 𝜐2(𝑡) … … . 𝜐𝑝(𝑡)]𝑅𝑝 is premise vector, 𝑖 =

1,2, … . , 𝑙 with 𝑙 denoting total number of model rules, 

𝑥(𝑡)𝑅𝑛  is state vector,  𝑢(𝑡)𝑅𝑚 is input vector, 

𝐴𝑖 𝑅𝑛×𝑛, 𝐵𝑖 𝑅𝑛×𝑚. The fuzzy system output in 

crisp form is given as: 

 

�̇�(𝑡) = ∑ 𝒥𝑖(𝜐(𝑡))[𝐴𝑖𝑥(𝑡)+B𝑖𝑢(𝑡)]𝑙
i =1                    (4) 

 

Where  

∑ 𝒥𝑖(𝜐(𝑡))𝑟
I =1  = 1,  

𝒥𝑖(𝜐(𝑡)) =
∏ 𝑀𝑖𝑗(𝜐𝑗(𝑡))

𝑝
𝑗=1

∑ ∏ 𝑀𝑖𝑗(𝜐𝑗(𝑡))
𝑝
𝑗=1

𝑙
I =1

≥ 0 ∀𝑖.  

𝒥𝑖(𝜐(𝑡)) is the normalized grade of membership, 

𝑀𝑖𝑗(𝜐𝑗(𝑡)) is grade of membership of 𝜐𝑗(𝑡) for fuzzy 

set 𝑀𝑖𝑗. In the rest of the paper, for simplicity 𝒥𝑖(𝜐) =

𝒥𝑖(𝜐(𝑡)) will be used and (𝑡) will be omitted. 

 

2.3  Fuzzy Controller 

 

It uses a set of linear state feedback controllers 

designed for local linear sub-systems of the respective 

rule of the fuzzy model given in Equation (4). The 𝑖𝑡ℎ 

fuzzy rule for this controller will be similar to the T-S 

fuzzy model; only the consequent part has a state 

feedback controller, given by Equation (5): 

 

𝑅𝑢𝑙𝑒 𝑖: 𝐼𝐹 𝜐1𝑖𝑠 𝑀1
𝑖𝐴𝑁𝐷 ⋯⋯𝐴𝑁𝐷 𝜐𝑝𝑖𝑠 𝑀𝑝

𝑖  

 𝑇𝐻𝐸𝑁 𝑢𝑓𝑢𝑧𝑧𝑦 = −𝐾𝑖𝑒    𝑖 = 1,2, . . . , 𝑙                (5) 

 

Where, 𝑒𝑅𝑛  is the error vector and 𝐾𝑖𝑅𝑚×𝑛 is the 

constant feedback gains matrix for the respective 𝑖𝑡ℎ 

rule. The error vector is defined by the difference 

between the state vector 𝑥 and the desired state vector. 

 

𝑥𝑑𝑅𝑛   as 

 

𝑒 = 𝑥 − 𝑥𝑑 

 

The fuzzy controller output in crisp form is given 

in Equation (6): 

 

𝑢 = − ∑ 𝒥𝑖(𝜐)𝐾𝑖𝑒

𝑙

𝑖 =1

 

𝑢 =  −𝐾𝑒                 (6) 

 

Where, 𝐾 = ∑ 𝒥𝑖(𝜐)𝐾𝑖
𝑙
𝑖=1 , so it is a fuzzy aggregation 

of local linear state feedback controllers.  

 

Lemma 1 [25]: The closed-loop fuzzy system will be 

asymptotically stable if there exists a positive definite 

matrix P such that 

 

(𝐴𝑖 − 𝐵𝑖𝐾𝑖)
𝑇𝑃 + 𝑃(𝐴𝑖 − 𝐵𝑖𝐾𝑖) < 0 

(
(𝐴𝑖 − 𝐵𝑖𝐾𝑗) + (𝐴𝑖 − 𝐵𝑗𝐾𝑖)

2
)

𝑇

𝑃

+ 𝑃 (
(𝐴𝑖 − 𝐵𝑖𝐾𝑗) + (𝐴𝑖 − 𝐵𝑗𝐾𝑖)

2
)

≤ 0  𝑖 < 𝑗 ≤ 𝑟 

 

2.4  Fuzzy sliding mode controller 

 

For desired trajectory tracking while rejecting the 

gravitational disturbance present in pitch dynamics a 

new fuzzy sliding mode controller is designed in this 

sub-section. Let’s reconsider the 2-DOF aero system, 

given in Equation (7): 

 

[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

𝑥3

𝑥4

𝑓1
𝑓2

] + [

0 0
0 0

𝑔11 𝑔12

𝑔21 𝑔22

] [
𝑉𝑝
𝑉𝑦

] + [ 

0
0
𝑑𝑔

0

]                  (7) 
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Where, 𝑓1 =
−𝐵𝑝x3−ml2 cos x1 sin x1x4

2

Jp+ml2
 is a nonlinear 

function of states, 𝑑𝑔 =
−mgl cos x1

Jp+ml2
 is considered a 

disturbance. 

 

Assumption 1: The 𝑑𝑔 is a bounded, state-dependent 

disturbance; its upper bound is ∈, given in Equation (8), 

 

|
mgl cos x1

Jp+ml2
| ≤∈ ∀𝑥1               (8) 

 

Assumption 2: The desired trajectories 𝑥𝑑 =
[𝑥1𝑑 𝑥2𝑑 𝑥3𝑑 𝑥4𝑑]𝑇𝑅4 are bounded and 

continuously second-order differentiable 𝑥𝑑 𝐶2 and 

the desired pitch and yaw angular velocities are given 

as [𝑥3𝑑 , 𝑥4𝑑] = [�̇�1𝑑 , �̇�2𝑑]. The tracking error vector 

𝑒 = [𝑒1, 𝑒2, 𝑒3, 𝑒4]
𝑇 = 𝑥 − 𝑥𝑑 = [𝑥1 − 𝑥1𝑑 , 𝑥2 −

𝑥2𝑑 , 𝑥3 − 𝑥3𝑑 , 𝑥4 − 𝑥4𝑑]𝑇. The control objective is 

that all states should track the desired trajectories, 

which means the convergence of the error vector 𝑒 to 

zero as time increases from zero to infinity. 

 

𝑒 → 0 𝑎𝑠 𝑡 → ∞ 

𝑥 → 𝑥𝑑  𝑎𝑠 𝑡 → ∞ 

 

The integral sliding surface 𝑠 = [𝑠1, 𝑠2]
𝑇𝑅2 is 

selected for pitch and yaw angular velocity to 

overcome the gravitational pitch disturbance as: 

 

𝑠(𝑡) = [
𝑠1(𝑡)
𝑠2(𝑡)

] = [
𝑒3(𝑡)
𝑒4(𝑡)

] − [
𝑒3(0)

𝑒4(0)
] −

∫ [
�̇�3(𝑒, 𝑢𝑓𝑢𝑧𝑧𝑦, 𝑡)

�̇�4(𝑒, 𝑢𝑓𝑢𝑧𝑧𝑦, 𝑡)
] 𝑑𝜏

𝑡

0
              (9) 

 

 

Here, 𝑠(𝑡)𝑅2 is sliding variable. 𝑒3(0) & 𝑒4(0) 

are the initial value of error, and 𝑢𝑓𝑢𝑧𝑧𝑦 =

[𝑉𝑝𝑓𝑢𝑧𝑧𝑦, 𝑉𝑦𝑓𝑢𝑧𝑧𝑦]
𝑇
𝑅2  is fuzzy controller output, 

discussed in the previous section. Substituting the �̇�3 

and �̇�4 in Equation (9), 

 

𝑠(𝑡) = [
𝑠1(𝑡)

𝑠2(𝑡)
] = [

𝑒3(𝑡)

𝑒4(𝑡)
] − [

𝑒3(0)

𝑒4(0)
] − ∫ {[

𝑓1
𝑓2

] +
𝑡

0

[
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
] − [

�̇�3𝑑

�̇�4𝑑
]} 𝑑𝜏            (10) 

 

The closed-loop system during sliding mode 

shows both sliding variables 𝑠1 = 𝑠2 = 0. Therefore, 

equivalent control is calculated by  �̇� = �̇�1 = �̇�2 = 0. 

Differentiating Equation (10) with respect to time, 

 

�̇� = [
�̇�1

�̇�2
] = [

�̇�3

�̇�4
] − [

𝑓1
𝑓2

] − [
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
] +

[
�̇�3𝑑

�̇�4𝑑
] = 0              (11) 

 

Substituting the values of �̇�3 and �̇�4 in Equation (11), 

 

[
�̇�3 − �̇�3𝑑

�̇�4 − �̇�4𝑑
] − [

𝑓1
𝑓2

] − [
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
] 

+[
�̇�3𝑑

�̇�4𝑑
] = 0            (12) 

 

Substituting the values of �̇�3 and �̇�4 in Equation (12), 

[
𝑓1
𝑓2

] + [
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝
𝑉𝑦

] + [
𝑑𝑔

0
] − [

𝑓1
𝑓2

] −

[
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
] = 0            (13) 

 

For the calculation of equivalent control, it is assumed 

that no disturbances are present in the system. So the 

equivalent control is selected as fuzzy controller 

output Equation (6) which is given by: 

 

[
𝑉𝑝𝑒𝑞

𝑉𝑦𝑒𝑞
] = [

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
]             (14) 

 

Defining a positive definite Lyapunov function as, 

 

𝑉 =
𝑠𝑇𝑠

2
              (15) 

 

Differentiating the Equation (15) with respect to time, 

 

�̇� = 𝑠𝑇 �̇�              (16) 

 

Substituting the value of �̇� from Equations (13) to (16) 

 

�̇� = 𝑠𝑇 [
�̇�1

�̇�2
] = 𝑠𝑇 [[

𝑓1
𝑓2

] + [
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝
𝑉𝑦

] + [
𝑑𝑔

0
]

− [
𝑓1
𝑓2

] − [
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
]] 

�̇� = 𝑠𝑇 [[
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝
𝑉𝑦

] + [
𝑑𝑔

0
] −

[
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
]]             (17) 

 

The control law of fuzzy sliding mode control is 

selected as: 
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[
𝑉𝑝
𝑉𝑦

] = 𝑢𝑓𝑢𝑧𝑧𝑦 − [
𝑔11 𝑔12

𝑔21 𝑔22
]
−1

 
𝑠

||𝑠||
  

[
𝑉𝑝
𝑉𝑦

] = [
𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
] − [

𝑔11 𝑔12

𝑔21 𝑔22
]
−1

 
𝑠

||𝑠||
            (18) 

 

Substituting the control law from Equations (17) to (18), 

 

�̇� = 𝑠𝑇 [ [
𝑔11 𝑔12

𝑔21 𝑔22
] [[

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
]

− [
𝑔11 𝑔12

𝑔21 𝑔22
]
−1

 
𝑠

||𝑠||
] + [

𝑑𝑔𝑢

0
]

− [
𝑔11 𝑔12

𝑔21 𝑔22
] [

𝑉𝑝𝑓𝑢𝑧𝑧𝑦

𝑉𝑦𝑓𝑢𝑧𝑧𝑦
]] 

�̇� = 𝑠𝑇 [− 
𝑠

||𝑠||
 + [

𝑑𝑔𝑢

0
]] 

�̇� = − 
𝑠𝑇𝑠

||𝑠||
 + 𝑠𝑇 [

𝑑𝑔𝑢

0
] 

�̇� = − ||𝑠||  + 𝑠𝑇 [
𝑑𝑔𝑢

0
]            (19) 

 

Where  = 𝑑𝑖𝑎𝑔(
1
,

2
) > . The Equation (19) 

may be expressed as: 

 

�̇� ≤ − ||𝑠||  + ||𝑠|||𝑑𝑔|            (20) 

 

Equation (20) demonstrates that the closed-loop 

system will be asymptotically stable. The Lyapunov 

variable 𝑉 and sliding variable 𝑠 will converge to zero 

as time increases to infinity. 

 

2.5 Application 

 

The fuzzy controller explained in the previous sub-

section is a model-based controller design approach, 

so the local approximation method was employed to 

create the T-S fuzzy model for the 2-DOF aero system. 

The dynamics of the 2-DOF aero system mostly 

depend on the pitch angle so five operating points for 

pitch angle, 𝑥1 = [−𝑝𝑖/4, −𝑝𝑖/8,0, +𝑝𝑖/8, +𝑝𝑖/4] 
rad, and remaining states [𝑥2, 𝑥3, 𝑥4]

T = [0,0,0]T were 

selected. Around these five operating points, 

triangular and trapezoidal membership functions were 

employed for this fuzzy model. The membership 

functions were uniformly distributed and covered the 

entire operating range. Figure 2 illustrates the 

membership function of the state 𝑥1. 

The system (2) has been linearized for these 

operating points and the linearized model of the aero 

system is given in Appendix I. T-S Fuzzy model’s 

fuzzy rules are given in Table 2. 

For each linear sub-system of aero, an LQR 

controller has been designed. The Q and R matrices 

are selected as: 

 

𝑄 = 𝑑𝑖𝑎𝑔(150,150,200,200), 𝑅 = 𝑑𝑖𝑎𝑔(1,1) 
 

 
Figure 2: Membership functions of state x1. 

 

Table 2: Rule Base of Fuzzy model. 
Rule Condition 

Rule 1 𝐼𝐹 𝑥1𝑖𝑠 − 𝜋/4 

𝑇𝐻𝐸𝑁 �̇� = 𝐴1𝑥 + 𝐵1𝑢 
Rule 2 𝐼𝐹 𝑥1𝑖𝑠 − 𝜋/8 

𝑇𝐻𝐸𝑁 �̇� = 𝐴2𝑥 + 𝐵2𝑢 
Rule 3 𝐼𝐹 𝑥1𝑖𝑠 0 

𝑇𝐻𝐸𝑁 �̇� = 𝐴3𝑥 + 𝐵3𝑢 
Rule 4 𝐼𝐹 𝑥1𝑖𝑠 + 𝜋/8 

𝑇𝐻𝐸𝑁 �̇� = 𝐴4𝑥 + 𝐵4𝑢 

Rule 5 𝐼𝐹 𝑥1𝑖𝑠 + 𝜋/4 
𝑇𝐻𝐸𝑁 �̇� = 𝐴5𝑥 + 𝐵5𝑢 

 

Where, 

𝐴1 = [

0 0 1 0
0 0 0 1

−2.4116 0 −0.32239 0
0 0 0 −0.9988

]  

𝐴2 = [

0 0 1 0
0 0 0 1

−1.3051 0 −0.32239 0
0 0 0 −0.9988

]  

𝐴3 = [

0 0 1 0
0 0 0 1
0 0 −0.32239 0
0 0 0 −0.9988

] 

𝐴4 = [

0 0 1 0
0 0 0 1

1.3051 0 −0.32239 0
0 0 0 −0.9988

] 
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𝐴5 = [

0 0 1 0
0 0 0 1

2.4116 0 −0.32239 0
0 0 0 −0.9988

] 

𝐵1 = 𝐵2 = 𝐵3 = 𝐵4 = 𝐵5 = [

0 0
0 0

0.5010 0.0957
−0.1226 0.9990

] 

 

The feedback gain matrix of LQR controllers is 

obtained as: 
 

𝐾1 = [
0.7067 −9.9442 7.1980 −10.999
3.3390 7.1494 11.1679 7.9108

] 

𝐾2 = [
2.1623 −10.0404 7.9186 −11.101
4.6875  7.0135 12.0082 7.7735

] 

𝐾3 = [
6.7070 −10.2477 10.0278 −11.347
10.2477  6.7070 14.8478 7.4611

] 

𝐾4 = [
16.7396 −10.5003 13.7825 −11.580
24.4661  6.3042 20.4479  7.0366

] 

𝐾5 = [
27.1666 −10.6523 16.8831 −11.742
40.1751   6.0439  25.3475  6.7539

] 

 

By using these feedback gain matrices, the fuzzy 

controller using the T-S fuzzy model has been 

designed. Fuzzy controller rules are given in Table 3. 

 

Table 3: Rule base of fuzzy controller. 
Rule Condition 

Rule 1 𝐼𝐹 𝑒1 𝑖𝑠 − 𝜋/4 

𝑇𝐻𝐸𝑁 𝑢𝑓𝑢𝑧𝑧𝑦 = −𝐾1𝑒 

Rule 2 𝐼𝐹 𝑒1 𝑖𝑠 − 𝜋/8 

𝑇𝐻𝐸𝑁 𝑢𝑓𝑢𝑧𝑧𝑦 = −𝐾2𝑒 

Rule 3 𝐼𝐹 𝑒1 𝑖𝑠 0 

𝑇𝐻𝐸𝑁 𝑢𝑓𝑢𝑧𝑧𝑦 = −𝐾3𝑒 

Rule 4 𝐼𝐹 𝑒1𝑖𝑠 + 𝜋/8 

𝑇𝐻𝐸𝑁 𝑢𝑓𝑢𝑧𝑧𝑦 = −𝐾4𝑒 

Rule 5 𝐼𝐹 𝑒1𝑖𝑠 + 𝜋/4 

𝑇𝐻𝐸𝑁 𝑢𝑓𝑢𝑧𝑧𝑦 = −𝐾5𝑒 

 

In the fuzzy controller, the antecedent part of 

fuzzy rules will be the same as the T-S fuzzy model 

but the consequent part contains an LQR controller. 

The weighted average method was employed to obtain 

the defuzzified output, given in Equation (21): 

 

𝑢𝑓𝑢𝑧𝑧𝑦 = − ∑ 𝒥𝑖(𝜐)𝐾𝑖𝑒
5
𝑖 =1 = −𝐾𝑒          (21) 

  
Using linear matrix inequality, the common 

positive definite matrix 𝑃 for the asymptotic stability 

of the closed-loop fuzzy system is determined and 

given in Equation (22) as follows: 

 

𝑃 = [

17.6835 −0.3999 3.4268 −0.3768
−0.3999 22.2840 −0.5590 4.5500
3.4268 −0.5590 4.4538 −0.5210

−0.3768 4.5500 −0.5210 4.2601

]     (22) 

The proposed fuzzy sliding mode controller for 

2-DOF aero system is given in Equation (23) as:  

 

[
𝑉𝑝
𝑉𝑦

] = 𝑢𝑓𝑢𝑧𝑧𝑦 − [
𝑔11 𝑔12

𝑔21 𝑔22
]
−1

 
𝑠

||𝑠||+𝛿
           (23) 

 

Here 
1
,

2
= 5, 𝛿 = 0.01. the 𝛿 is used to 

minimize the chattering. These parameters are 

selected by asymptotic convergence conditions shown 

in Equation (20). 

 

3 Results and Discussions 

 

This section evaluates the effectiveness of previously 

designed FC and FSMC for the 2-DOF aero system 

using parameters given in Table 1. An LQR controller 

[21] was designed for operating points [0,0,0,0,0,0] 

and the integration of both outputs is selected as two 

additional states. A robust backstepping controller 

(BS) [3] was also designed for comparison with other 

controllers.  All controllers have been implemented on 

MATLAB Simulink. The fixed sample time of 0.001 

seconds was used in the simulation. 

 

3.1 Case 1: Stabilization 

 

Fig. 3 demonstrates the performance of LQR, BS, FC, 

and FSMC for stabilization of initial conditions. The 

initial conditions of the system are selected as [40 45 

0 0].  

Figure 3(a) and (b) show that both pitch and yaw 

angles are converging to zero in some finite time. The 

LQR controller was designed for a smaller operating 

range of about 10 pitch angles. So, when the initial 

condition is situated beyond this range, its 

performance is degraded. The FC settles around -13.2 

due to an uncompensated gravitational pitch 

disturbance. The FSMC-based system stabilizes the 

states in less time as compared to the FC and LQR 

controllers. Figure 3 (c) and (d) show the pitch and 

yaw angular velocities of the system with all 

controllers. Both velocities also converged to zero as 

pitch and yaw angles converged to zero.  Figure 3(e) 

and (f) show the output of all controllers, pitch, and 

yaw motor voltages. Table 4 lists the stabilization 

parameters of the transient and steady-state response. 

In Table 4, 𝑡𝑠 stands for settling time, 𝑒𝑠𝑠 stands for 

steady-state error. The LQR controller has zero 

steady-state error, but the settling time is much larger 

than FC and FSMC, which is 9 seconds in pitch 

response and 6 seconds in yaw response.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f)

Figure 3: Response of (a) pitch angle, (b) yaw angle, (c) pitch angular velocity, (d) yaw angular velocity, (e) 

input voltage of pitch motor, (f) input voltage of yaw motor. 

 

Table 4: Comparison of controllers for steady-state 

response. 

Method 
Pitch Response Yaw Response 

𝒕𝒔 (𝒔) 𝒆𝒔𝒔 (°) 𝒕𝒔 (𝒔) 𝒆𝒔𝒔 (°) 

LQR [21] 9 0 6 0 

BS [3] 3.5 -0.1 3.4 -0.1 

FC 1.7 13.2 1.8 1.1 

FSMC 1.6 0 1.7 0 

 

The FC shows the largest steady-state error of 

13.2 in pitch response but has a small steady-state 

error of 1.5 in yaw response. The BS shows the 

overdamped response; it required 3.5 seconds in pitch 

and 3.4 seconds in yaw response with 0.1 steady-state 

error. The FSMC required a settling time of 1.6 

seconds in pitch response and 1.7 seconds in yaw 

response, without any steady-state error. 

 

3.2 Case 2: Set Point Tracking 

 

To demonstrate the performance of designed 

controllers for set point tracking, the set points are 

selected as [-20 45 0 0] with the initial condition of 

the system as [-40 -45 0 0]. 

All the controller’s tracking of pitch angle set 

point is displayed in Figure 4(a). LQR controller 

shows the largest settling time as compared to FC and 

FSMC shows the sluggish response. It also shows a 

larger overshoot than other controllers. The FC-based 
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system’s pitch angle settles to 6.5 with a large steady-

state error of 13.5. This shows the effect of 

gravitational pitch disturbance. The FSMC tracks the 

set point with minimum overshoot, least settling time 

and no steady-state error present in the response. 

Figure 4(b) depicts the tracking of each controller’s 

yaw angle set point. The LQR controller tracks the 

yaw set point with the largest settling time as 

compared to FC and FSMC. The FC also tracks the 

yaw set point with a smaller overshoot and lesser 

steady-state error as compared to the pitch set point. 

The FSMC shows lesser overshoot and steady-state 

error than the FC for the yaw response. Figure 4(c) and 

(d) show the pitch and yaw angular velocities with all 

controllers. The angular velocity with FC and FSMC 

is more than LQR, showing fast-tracking. Figure 4(e) 

and (f) show the outputs of all controllers. The FC and 

FSMC have larger control outputs than LQR. Table 5 

lists the stabilization parameters of the transient and 

steady- state response. In Table 5, 𝑡𝑠 stands for settling 

time, 𝑀𝑝 stands for maximum overshoot, 𝑒𝑠𝑠 stands 

for steady-state error. 

 

 
(a) 

 
(b) 

 
(c) 

 

 

 
(d) 

 
(e) 

 
(f)

Figure 4: Response of (a) pitch angle, (b) yaw angle, (c) pitch angular velocity, (d) yaw angular velocity, (e) 

input voltage of pitch motor, (f) input voltage of yaw motor. 
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Table 5: Comparison of controllers for transient and 

steady-state response. 

Method 

Pitch Response Yaw Response 

𝒕𝒔  
(𝒔) 

𝑴𝒑 

(%) 

𝒆𝒔𝒔 

 (°) 

𝒕𝒔  
(𝒔) 

𝑴𝒑 

(%) 

𝒆𝒔𝒔  
(°) 

LQR[21] 13 12.5 0 5.0 - -0.2 

BS [3] 6.0 - 0.2 6.5 - 0.5 

FC 2.0 - 13.5 1.8 7.3 -1.5 

FSMC 1.7 5 0 1.6 3.3 0 

 

The LQR controller shows a settling time of 13 

seconds in pitch angle tracking, but it has a 12.5% 

overshoot as compared to FC and FSMC. It has no 

overshoot and -0.2 steady state error in yaw angle 

tracking. FC shows less settling time as compared to 

LQR, but has a large steady-state error of 13.5 in 

pitch angle tracking. FC shows an overshoot of 7.3% 

with 1.8 seconds settling time for yaw set point 

tracking. The BS shows an overdamped response, so 

no overshoot is present in the pitch and yaw response, 

but the settling time is very large as compared to FC 

and FSMC. A small steady-state error of 0.2 and 0.5 

is present in the pitch and yaw response. The FSMC 

shows minimum overshoot, lesser settling time, and 

no steady-state error as compared to both FC and 

LQR. It required 1.7 seconds to track the pitch set 

point with a 5% overshoot with zero steady-state error. 

For yaw set point tracking, it required 1.6 seconds with 

3.33% overshoot and no steady-state error. 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f)

Figure 5: Response of (a) pitch angle, (b) yaw angle, (c) pitch angular velocity, (d) yaw angular velocity, (e) 

input voltage of pitch motor, (f) input voltage of yaw motor. 
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3.3 Case 3: Square wave trajectory tracking 

 

To evaluate the responsiveness and robustness of the 

proposed controller, square wave trajectories have 

been selected as the reference. This trajectory changes 

its value abruptly, introducing a tracking error in the 

system. This shows the ability of the system to 

respond to discontinuous inputs or quickly changing 

inputs. Figure 5 illustrates the tracking of the desired 

square wave trajectory for a greater pitch angle of 

25 square(2𝜋𝑡/20) and yaw as 45 square(2𝜋𝑡/25) 

(in degrees) with initial conditions as [–40 0 0 0]. 

Figure 5(a) depicts the pitch angular position 

response of all controllers. LQR has a large overshoot 

and settling time for this trajectory as compared to the 

previous square trajectory. Here, the trajectory is 

beyond the operating range of the LQR controller, so 

it shows more oscillations and a larger settling time. 

FC shows the tracking of the trajectory with a constant 

tracking error due to gravitational disturbance. BS 

shows the overdamped response, so the settling time 

is larger. FSMC easily tracks the trajectory with an 

overshoot and a shorter settling time. Figure 5(b) 

depicts the response of the yaw angle for a square 

wave trajectory. 

All controllers are tracking the square yaw trajectory. 

LQR has the largest settling time and overshoot. FC 

and FSMC show similar responses. BS shows an 

overdamped response. Figure 5(c) and (d) depict the 

pitch and yaw angular velocity response. Figure 5(e) 

and (f) show the controllers’ outputs. 

 

Table 6: Comparison of controllers for the transient 

response of different square wave trajectories. 
Trajectory 

Method 
Pitch Response 

𝑨 (°) 𝒇 (𝑯𝒛) 𝒕𝒔 (𝒔) 𝑴𝒑 (%) 

5 0.025 

LQR[21] 7 - 

BS [3] 5 - 

FC 2 - 

FSMC 1.7 5 

15 0.025 

LQR[21] 10 8.67 

BS [3] 5 - 

FC 2 - 

FSMC 1.7 5 

25 0.025 

LQR[21] 16 23.2 

BS [3] 5 - 

FC 2 - 

FSMC 1.7 5 

Table 6 shows the transient response of square 

wave pitch trajectory tracking of three different 

amplitudes and the same frequency. The settling time 

and maximum overshoot of the LQR controller change 

with reference trajectory amplitude. The LQR is a 

linear controller, so its operating range is less. As the 

operating range increases, its performance changes. 

The FC, BS, and FSMC are nonlinear controllers and 

have larger operating ranges, so their responses are 

similar for all cases. 

 

3.4 Case 4: Sinusoidal trajectory tracking 

 

To assess the ability of the proposed controller for 

time-varying inputs, sinusoidal trajectories have been 

selected as the reference. 

This trajectory changes its value at each instance 

of time. For this case, two sinusoidal trajectories are 

selected as 30 sin(2𝜋𝑡/20) and 45 sin(2𝜋𝑡/25) (in 

degrees) for pitch and yaw, respectively. The initial 

condition of the system for this case is selected as [40 

0 0 0]. 

Figure 6(a) depicts the pitch angular position 

with sine wave trajectory for all controllers. The LQR 

has a poor response for time-varying trajectories. FC 

is tracking the trajectory with a constant tracking error. 

FSMC easily tracks the trajectory with less settling 

time. BS tracks the trajectory with a small steady-state 

error as compared to FSMC. Figure 6(b) depicts the 

yaw angular position with a sine wave trajectory for 

all controllers. LQR tracks the sine wave trajectory for 

lower angular positions, but when the angular position 

changes after 20, its performance degrades due to a 

smaller operating range. This response shows the 

largest settling time with steady-state error. FC, BS, 

and FSMC have similar responses, and both are 

tracking the desired yaw trajectory. Figure 6(c) and (d) 

depict the tracking of desired pitch and yaw angular 

velocity. FC, BS, and FSMC are tracking the desired 

angular velocity trajectories. Figure 6(e) and (f) show 

the controller outputs for sine wave trajectory 

tracking. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f)

Figure 6: Response of (a) pitch angle, (b) yaw angle, (c) pitch angular velocity, (d) yaw angular velocity, (e) 

input voltage of pitch motor, (f) input voltage of yaw motor. 

 

Table 7: Comparison of controllers for IAE, ISE, and 

ITAE. 

Method 
IAE ISE ITAE 

Pitch Yaw Pitch Yaw Pitch Yaw 

LQR [21] 7.18 4.69 1.93 1.14 155.1 77.94 

BS [3] 1.45 1.53 0.40 0.5099 14.36 13.54 

FC 11.03 1.26 2.49 0.034 273.9 30.89 

FSMC 0.37 0.34 0.12 0.0031 3.07 8.25 

 

To evaluate the performance of controllers, three 

standard performance integral absolute tracking error 

(IAE), integral square tracking error (ISE), and 

integral time absolute tracking error (ITAE) for all 

designed controllers have been used. IAE shows the 

total absolute error over time and provides a measure 

of tracking performance. ISE highlights the larger 

tracking error more effectively by squaring and shows 

the impact of deviations. ITAE emphasizes long-

duration error with a time-weighted factor, providing 

the effect of steady-state error and larger settling time. 

The values of these performance indices are given in 

Table 7. 

The proposed controller has the lowest IAE, ISE, 

and ITAE for pitch and yaw trajectories. The FC 

controller always shows tracking errors due to 

gravitational disturbance in pitch dynamics, so it has 

the largest value of IAE, ISE, and ITAE in pitch 

tracking. The LQR controller shows the largest 

tracking error in yaw trajectory as compared to BS, 
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FC, and FSMC, due to its limited operating range, it is 

not able to track the trajectory after 15. The BS 

shows lesser IAE, ISE, and ITAE than FC and LQR, 

but greater than FSMC due to an overdamped 

response. The designed FSMC easily tracks both pitch 

and yaw trajectory with the lowest value of IAE, ISE, 

and ITAE as compared to other controllers. 

 

4 Conclusions 

 

The work proposed, the design and implementation of 

a new fuzzy sliding mode controller for the 2-DOF 

Aero flight control simulator to improve the tracking 

performance of both pitch and yaw angle trajectories, 

while gravitational disturbance is present in the 

system. The previously designed LQR controller [21] 

helps in tracking pitch and yaw trajectory, but has the 

largest overshoot and settling time with a greater 

number of oscillations in pitch response. The robust 

nonlinear BS controller [3] shows tracking of the 

desired trajectory, but shows a larger settling time and 

small steady-state error due to an overdamped 

response. 

 The T-S fuzzy model is utilized to construct a 

fuzzy controller employing the parallel distributed 

compensation approach. This fuzzy controller is not 

able to compensate for the gravitational pitch 

disturbance. The fuzzy controller shows a wide 

operating range, but the largest tracking error in pitch 

trajectory is due to gravitational disturbance. The 

suggested fuzzy sliding mode controller compensates 

for gravitational disturbance by combining fuzzy and 

sliding mode controllers. Fixed and time-varying 

trajectories of trajectories are applied to the system, 

and the performance of all controllers was compared 

in terms of IAE, ISE, and ITAE values of tracking 

error. The simulation study demonstrates that the 

proposed fuzzy sliding mode controller shows the 

lowest tracking error, robustness with gravitational 

disturbance, and a lesser settling time as compared to 

the LQR and BS controllers.  

The future research directions include the 

implementation of Hardware-in-the-loop (HIL) 

testing to validate the performance of the designed 

controller in real-time operating conditions. 

Additionally, Model Reference Adaptive Control 

(MRAC) could integrate and enhance the robustness 

against uncertainty and external disturbance by 

enabling the controller to adjust its parameters in real-

time based on a reference model. The controller 

provides optimal performance when the system 

changes its parameters over time. Finally, the 

proposed controller could be applied to more complex 

systems such as unmanned aerial vehicles (UAVs) or 

real flight platforms, which demonstrate the 

practicality and application of this controller.   

 

Appendix-I 

 

The linear model of the system is required for 

designing linear state feedback controllers. The Taylor 

series method [28] for the linearization of nonlinear 

systems provides the linear model: 

 

�̇� = 𝑓(𝑥𝑒 , 𝑢𝑒) + 𝐴(𝑥, 𝑢)|𝑥𝑒,𝑢𝑒
(𝑥 − 𝑥𝑒)

+ 𝐵(𝑥, 𝑢)|𝑥𝑒,𝑢𝑒
(𝑢 − 𝑢𝑒) 

and 

𝐴 =

[
 
 
 
 
 
 
 
 
𝜕𝑥3

𝜕𝑥1

𝜕𝑥3

𝜕𝑥2

𝜕𝑥3

𝜕𝑥3

𝜕𝑥3

𝜕𝑥4

𝜕𝑥4

𝜕𝑥1

𝜕𝑥4

𝜕𝑥2

𝜕𝑥4

𝜕𝑥3

𝜕𝑥4

𝜕𝑥4

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓1
𝜕𝑥3

𝜕𝑓1
𝜕𝑥4

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2

𝜕𝑓2

𝜕𝑥3

𝜕𝑓2

𝜕𝑥4]
 
 
 
 
 
 
 
 

𝑥1𝑒,𝑥2𝑒,𝑥3𝑒,𝑥4𝑒

 

𝐵 =

[
 
 
 
 
 
 

0 0
0 0

𝜕𝑔11

𝜕𝑉𝑝

𝜕𝑔12

𝜕𝑉𝑦
𝜕𝑔21

𝜕𝑉𝑝

𝜕𝑔22

𝜕𝑉𝑦 ]
 
 
 
 
 
 

𝑥1𝑒,𝑥2𝑒,𝑥3𝑒,𝑥4𝑒

 

 

Where, 
𝜕𝑓1

𝜕𝑥1
=

−ml2 cos 2x1ex4e
2 +mgl sin x1e

Jp+ml2
, 

𝜕𝑓1

𝜕𝑥3
=

−𝐵𝑝

Jp+ml2
, 

𝜕𝑓1

𝜕𝑥4
=

−2ml2𝑥4𝑒 cos x1e sin x1e

Jp+ml2
, 

𝜕𝑓2

𝜕𝑥1
=

2ml2 cos 2x1ex3e 𝑥4𝑒

Jy+ml2 cos2 x1e
+

(−𝐵𝑦x4+2ml2 cos x1e sin x1ex3e 𝑥4𝑒)(2ml2 cos x1e sin 𝑥1𝑒)

(Jy+ml2 cos2 x1e)
2 , 

𝜕𝑓2

𝜕𝑥3
=

2ml2 cos x1e sin x1e 𝑥4𝑒

Jy+ml2 cos2 x1e
, 

𝜕𝑓2

𝜕𝑥4
=

−𝐵𝑦+2ml2 cos x1e sin x1ex3e

Jy+ml2 cos2 x1e
, 

𝜕𝑓1

𝜕𝑥2
=

𝜕𝑓2

𝜕𝑥2
= 0, 

𝜕𝑔11

𝜕𝑣𝑝
=

𝐾𝑝𝑝

Jp+ml2
, 

𝜕𝑔12

𝜕𝑣𝑦
=

𝐾𝑝𝑦

Jp+ml2
, 

𝜕𝑔21

𝜕𝑣𝑝
=

𝐾𝑦𝑝

Jy+ml2 cos2 x1e
, 

𝜕𝑔22

𝜕𝑣𝑦
=

𝐾𝑦𝑦

Jy+ml2 cos2 x1e
. 

 

By substituting the required operating points, different 

linearized models can be obtained. 
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