
  

                             Applied Science and Engineering Progress, Vol. 19, No. 2, 2026, 7928 

    

  

 

R. F. Quierre and J. P. C. Sacdalan, “Postharvest Pathogens in Strawberry (Fragaria x ananassa): Potential of Plasma-Activated Water 

and Micro-Nano Bubbles for Control – A Review.” 

  
1 

 

 

 

Postharvest Pathogens in Strawberry (Fragaria x ananassa): Potential of Plasma-

Activated Water and Micro-Nano Bubbles for Control – A Review 

 

 

Rodalisa Fello Quierre* and John Paulo Caraan Sacdalan 

Department of Agricultural and Biosystems Engineering, College of Engineering, Central Luzon State 

University, Science City of Muñoz, Nueva Ecija, 3119, Philippines 

 

* Corresponding author. E-mail: rodalisa.quierre@clsu2.edu.ph       DOI: 10.14416/j.asep.2025.09.008 

Received: 13 June 2025; Revised: 18 July 2025; Accepted: 7 August 2025; Published online: 16 September 2025 

© 2025 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.        

 

 

Abstract 

Pathogen contamination of strawberries is a significant concern, as it leads to yield losses and a decrease in 

consumer acceptance. The quality and safety of strawberries are particularly vulnerable to fungal and bacterial 

pathogens, which can affect fruits during cultivation, transportation, and storage. Among the primary fungal 

pathogens responsible for their quality deterioration are Botrytis cinerea, Rhizopus spp., Colletotrichum spp., 

and Penicillium spp. In addition, strawberries are also vulnerable to bacterial pathogens, including Salmonella 

spp., Escherichia coli, Listeria monocytogenes, and Staphylococcus spp. Over the past few decades, researchers 

have developed several control methods to improve their quality and ensure safe consumption. These include 

chemical, physical, and biological controls. However, the lack of effective pathogen inactivation during 

postharvest remains a challenge. Plasma-activated water (PAW), which is rich in reactive oxygen and nitrogen 

species (RONS), has demonstrated pathogen inactivation abilities. Similarly, the properties of micro-nano 

bubbles (MNBs), such as a large specific surface area, a long lifetime in aqueous solutions, oxidizing ability, 

and reduction of surface tension, have been studied for disinfection applications. Therefore, this article provides 

a comprehensive overview of the morphological and pathogenic variability of the common fungal and bacterial 

pathogens in strawberries. Furthermore, it highlights the pathogen-inactivating ability of PAW and MNBs as a 

potential postharvest pathogen control measure, particularly in ensuring optimal quality and extending the shelf 

life of strawberries. 

 

Keywords: Bacterial pathogen, Food safety, Fungal pathogen, Pathogen inactivation, Postharvest quality, 
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1 Introduction 

 

Strawberries (Fragaria x ananassa) are considered 

one of the most economically significant fruits 

worldwide. In 2023, their total global production 

exceeded 10 million tons, with Asia being the largest 

continental producer, followed by America and 

Europe [1]. Strawberries are highly perishable and 

prone to fungal and bacterial pathogens during 

cultivation, transportation, and postharvest storage, 

which can reduce their shelf life and market value.  

They last 1 to 2 days at room temperature and about 7 

days at 5 °C due to their delicate skin and soft flesh 

[2], [3]. Fungal pathogens, including Botrytis cinerea, 

Rhizopus spp., Mucor spp., Colletotrichum spp., and 

Penicillium spp., are of particular concern [4], [5]. 

Additionally, bacterial pathogens such as Salmonella 

spp., Escherichia coli, Listeria monocytogenes, and 

Staphylococcus spp. pose a significant risk in the 

postharvest management of strawberries [6], [7].  

To address these issues, control methods have 

undergone significant improvements. However, many 

of these techniques primarily rely on chemical 

treatments, which have drawbacks, particularly chemical 

residues, resistance development, and environmental 

concerns, leading to increased interest in exploring 

more sustainable and efficient pathogen inactivation 

methods. 
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Recently, the use of the advanced oxidation 

processes (AOPs) for pathogen inactivation, particularly 

in agricultural applications, has been widely studied. 

AOPs generate highly reactive species, including 

hydroxyl radicals and ozone, which exhibit potent 

antimicrobial activity [8]. These include plasma-

activated water (PAW), which is produced by exposing 

water to cold atmospheric plasma. Optimizing PAW 

generation involves controlling parameters such as 

plasma-forming voltage, carrier gas composition, 

temperature, treatment duration, and frequency. 

Studies attribute the significant antimicrobial 

properties of PAW to its generation of diverse reactive 

oxygen and nitrogen species (RONS) [9].  

Similarly, nanotechnology has also gained 

interest as an emerging science, offering significant 

potential in the preservation of fruits and vegetables. 

Researchers have characterized micro-nano bubbles 

(MNBs) as nanoscopic gaseous cavities sized at the 

micro and nanoscale, having longer stability in 

aqueous solution and a large specific surface area [10], 

[11]. MNBs have been studied for their unique 

physiochemical properties, recognizing their 

applicability in managing the postharvest quality of 

agricultural produce. Additionally, their ability to 

improve the water and gas exchange at the cellular 

level offers the potential to reduce spoilage and 

maintain the overall quality of fruits and vegetables. 

To further investigate the potential of PAW and 

MNBs in controlling pathogens on strawberries, this 

review article examines the various fungal and 

bacterial pathogens that affect their postharvest 

quality. It also highlights the existing pathogen control 

methods, including chemical, physical, and biological 

treatments. Additionally, it aims to explore the 

application principles of PAW and MNBs in 

agricultural postharvest management and discuss 

future aspects and research areas for consideration. 

 

2 Fungal Pathogens in Strawberry Fruit 

 

Strawberries are susceptible to pathogens, including 

fungi, bacteria, and viruses. Among these, fungal 

infections are the most economically impactful, as 

they can infect leaves, roots, crowns, and fruits. 

Fungal pathogens are considered primary contributors 

to postharvest diseases in strawberries, with their 

presence in fruits leading to estimated losses ranging 

from 20% to 50% [12]. These can also cause losses 

throughout various stages, such as handling, 

transportation, and significantly during storage [13], 

[14]. Furthermore, specific fungal pathogens pose a 

risk to human health due to their ability to produce 

mycotoxins, such as those produced by Aspergillus 

niger and Penicillium expansum [15]. The severity of 

fungal infections depends on the cultivar and 

environmental conditions. Chandler, Camarosa, and 

Seascape cultivars are known to be vulnerable to 

Botrytis cinerea (gray mold) and Colletotrichum spp. 

(anthracnose) [16], [17]. Moreover, environmental 

conditions such as humidity and temperature, along 

with fruit handling practices and the fruit’s 

physiological status, significantly influence the extent 

of damage [13].   

Table 1 presents the list of strawberry diseases 

and their corresponding fungal pathogens. In 

particular, most of these pathogens exhibit 

necrotrophic behavior, meaning that they can destroy 

host cells by secreting cell wall-degrading enzymes or 

toxins, subsequently absorbing nutrients from the dead 

cells.

 

Table 1: Fungal pathogens of strawberries. 
Genus Species Strawberry Disease Ref. 

Alternaria tenuissima Alternaria fruit rot [18] 
Aspergillus niger Aspergillus fruit rot [19] 

Botrytis cinerea Gray mold, Botrytis fruit rot [20], [21] 

Cladosporium cladosporioides Cladosporium fruit rot [22] 
Colletotrichum acutatum Anthracnose fruit rot, crown rot, black spot [23], [24] 

gloeosporoides Anthracnose fruit rot, crown rot [24] 

Colletotrichum fragariea Anthracnose fruit rot, crown rot, black spot [24] 
siamense Anthracnose crown rot [24] 

fructicola Anthracnose fruit rot [24] 

gloeosporioides Anthracnose fruit rot, crown rot [24] 
aenigma Anthracnose crown rot [24] 

Fusarium sambucinum Fruit blotch [25] 

Gnomonia comari Stem end rot, leaf blotch [26] 
Mucor hiemalis Mucor fruit rot [27] 

mucedo Mucor fruit rot [27] 
piriformis Mucor fruit rot [27], [28] 
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Table 1: (continued). 
Genus Species Strawberry Disease Ref. 

Mycosphaerella fragariae Black seed disease [29] 

Neopestalotiopsis rosae Crown rot [30] 

Pestalotia longisetula Pestalotia fruit rot [31] 
Penicillium 

 

cyclopium Penicillium fruit rot [31] 

digitatum Penicillium fruit rot, green mold [32] 

expansum Penicillium fruit rot, blue mold [33] 
Peronospora potentillae Downy mildew, fruit blotch [34] 

Phytophthora cactorum Leather rot [35] 

citrophthora Leather rot [36] 
nicotianae Leather rot [37] 

Rhizoctonia fragariae Anther, pistil blight [38] 

solani Hard brown rot [39], [40] 

Rhizopus stolonifer Rhizopus rot [41] 

sexualis Rhizopus rot [41] 

Schizoparme straminea Fruit blotch [42] 
Sclerotinia sclerotiorum Sclerotinia crown, fruit rot [43] 

Sclerotium rolfsii Southern blight, fruit blotch [44] 

Sphaerotheca macularis Powdery mildew [45] 

 

Several postharvest pathogens, including 

Alternaria spp. and Colletotrichum gloeosporioides, 

can infect strawberries before harvest. These 

pathogens often remain dormant during the fruit’s 

growth and development but become necrotrophic 

upon ripening or senescence [46]. Significant 

biochemical changes during fruit maturation trigger 

the reactivation of these compounds, closely linked to 

the fruit’s physiological state. Moreover, diseases 

such as anthracnose, gray mold, transit rot, green 

mold, and blue mold exhibit a quiescent phase of 

infection. These occur when the disease develops 

during or after harvest, typically through penetrating 

wounds on the fruit [47].  

Globally, researchers identify Botrytis cinerea 

and Colletotrichum spp. as major pathogens 

responsible for severe strawberry fruit diseases. These 

pathogens significantly contribute to fruit losses and 

account for the highest quantity of fungicides applied 

in strawberry production. Consequently, the use of 

these treatments results in substantial financial 

expenditures for farmers, representing a significant 

burden on the strawberry industry across many 

countries [42]. On the other hand, Rhizopus spp., 

Mucor spp., and Penicillium spp., commonly found in 

strawberries, contribute to postharvest decay but have 

a comparatively lesser impact on the need for 

chemical treatments [48]. Table 2 summarizes the 

major fungal pathogens commonly associated with 

postharvest disease in strawberries, including Botrytis 

cinerea, Rhizopus spp., Mucor spp., Colletotrichum 

spp., and Penicillium spp.  

 

 

Table 2: Common fungal pathogens of strawberry 

fruit and their symptoms. 
Pathogen Symptoms Ref. 

Botrytis cinerea Light brown lesions, loss 

of fruit firmness 

[49], 

[50] 
Rhizopus spp. Tissue severely decayed, 

juice released 

[51] 

Mucor spp. Fruit tissue becomes very 
soft, leak sticky red juices 

[52] 

Colletotrichum spp. Small, dark, and sunken 

lesion 

[53] 

Penicillium spp. Small water-soaked lesions [54] 

 

2.1 Botrytis cinerea 

 

Botrytis cinerea is a typical necrotrophic, polyphagous 

pathogen that belongs to the phylum Ascomycota and 

is capable of infecting seedlings and fruits. It affects 

more than 1,400 species of host plants; hence, it is 

ranked second among pathogenic fungi [42], [49]. 

Specifically, gray mold, attributed to Botrytis cinerea, 

is considered the primary disease of strawberry fruit. 

This fungal species can cause damage under moist and 

humid conditions, which favor fungal growth. The 

pathogen primarily affects fruit, but can also colonize 

leaves, flowers, and stems. It survives partly by 

forming sclerotia, a dense mass of fungal tissue that 

functions as a survival structure under unfavorable 

conditions. Sclerotia remain in plant debris, soil, or 

crop bedding and germinate when environmental 

conditions become favorable [49], [55], [56]. 

B. cinerea can be observed at all growth stages 

of strawberries, but the symptoms are typically visible 

during the postharvest stage. It thrives in moderate 

temperature ranges of 15 °C to 25 °C but can grow at 

0 °C [20]. This adaptability to various environmental 
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conditions makes the pathogen particularly 

challenging to manage [57]. A recent study by Yousef 

et al. examined ten B. cinerea isolates and identified 

isolate B3 as the most potent, while isolate B5 

exhibited a low level of pathogenicity. Researchers 

observed a positive correlation between this 

variability and oxalic acid production, a key factor 

contributing to the pathogenicity of B. cinerea. 

Additionally, it exhibits a high degree of genetic 

variability and adaptability that contributes to its 

widespread resistance to various control methods [21]. 

Figure 1 illustrates the disease cycle of Botrytis 

cinerea in strawberries. It starts with the presence of 

sclerotia on dried leaves or plant debris within the 

field, which release ascospores. These spores 

germinate on leaves and flowers, followed by a 

symptomless quiescent state [58], [59]. Based on the 

study of Petrasch et al., after flower infection, B. 

cinerea tends to remain quiescent due to 

proanthocyanins that inhibit the activity of fungal 

enzymes, such as polygalacturonases. Fungal 

infection is activated when environmental conditions 

become optimal [59]. 

 

 
Figure 1: Schematic diagram of the disease cycle of 

Botrytis cinerea in strawberry 

 

B. cinerea infects host plants through wounds, 

stomata, or direct penetration. Its oval conidia 

germinate on the plant surface in the presence of 

external nutrients. Optimal infection occurs under 

humid conditions and temperatures ranging from        

10 °C to 25 °C. To effectively infect host tissue, B. 

cinerea secretes a variety of virulence factors, 

including enzymes that degrade plant cell walls, 

proteins that induce cell death, and phytotoxic 

compounds such as sesquiterpene botrydial and 

polyketide botcinins. B. cinerea also produces oxalic 

acid, which lowers the pH of infected tissues, thereby 

facilitating the activation of fungal enzymes such as 

proteases, pectinases, and laccases that contribute to 

tissue breakdown. Additionally, it releases immune-

suppressing molecules, such as small ribonucleic acids 

(sRNAs), which are exchanged between the pathogen 

and the plant during host-pathogen interactions, 

influencing disease progression. Researchers have 

found that sRNAs from B. cinerea regulate defense-

related genes in Arabidopsis, thereby influencing the 

severity of infection [21], [60].  

 

2.2 Rhizopus spp.  

 

Rhizopus spp. is a filamentous black bread fungus that 

causes soft rot, black mold, and Rhizopus rot in 

strawberries [61], [62]. It consists of branched, non-

septate white hyphae measuring 900 to 2700 μm in 

length and 22 to 32 μm in diameter. Its sporangium is 

spherical, initially white, and then turns black as it 

matures. The sporangium contains many spores, most 

of which are 90 to 120 μm in length [51]. Researchers 

characterized Rhizopus spp. by its fast growth and 

production of coarse, cottony, white to grayish-black 

mycelium [63], [64]. According to Liu et al., the 

pathogenicity and infection mechanism of Rhizopus 

spp. remain active over a wide range of temperatures, 

with an optimum of 25 °C. Its spores and mycelia 

typically spread through the wounds of fruit when the 

temperature exceeds 5 °C, with symptoms of infection 

appearing within 24 to 48 h. During germination, 

Rhizopus spores release various amino acids, 

enzymes, and other proteins, including 

polygalacturonase and pectin methylesterase. These 

enzymes facilitate the contamination of the host’s 

injured tissues by breaking down cell wall 

components, leading to rapid digestion of the host 

cells, electrolyte leakage, and subsequent decay [51]. 

As depicted in Figure 2, the disease cycle of 

Rhizopus spp. in strawberries begins with 

contaminated plants or field debris. Fungal spores are 

produced and disseminated by the wind. These conidia 

subsequently infect the flowers of strawberry plants, 

leading to the infection of green to mature fruits. When 

conditions become favorable, the fruit becomes 

visibly covered with fuzzy conidial masses, indicating 

active fungal growth.

 

 

Secondary infection 

through fruit opening 

Fungal 

colonization 

Spread of 

ascospore 

through air 

Fungal survival 

in plant debris 
Primary infection of 

flower 

Quiescent infection 
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Figure 2: Schematic diagram of the disease cycle of 

Rhizopus spp. in strawberry. 

 

Specifically, the germination of R. stolonifer 

spores requires specific nutrients. With adequate 

external sources of carbon and nitrogen, the spores 

will begin to germinate and develop infectious 

mycelia within 3 to 5 hours. Symptoms appear within 

a day, with rapidly growing mycelium forming fibrous 

gray sporangia that cover the infected fruit. As decay 

progresses, the tissue softens and breaks down into a 

watery decay, eventually releasing a fermented or 

acidic odor within 2 to 3 days [51], [65]. 

 

2.3 Mucor spp. 

 

Mucor spp. is a genus of fungi that belongs to the order 

Mucorales, a saprobic and facultative 

phytopathogenic fungus that causes soft rot in 

strawberries [66]–[68]. Mucor mold infestation is 

most prevalent in crops with fruit that have sustained 

injuries during pollination stages, such as 

strawberries. Researchers associated Mucor spp. 

infection with the enzymatic activity of its 

polygalacturonases, which degrade the middle 

lamellae of plant cells. Along with xylanase, cellulase, 

and amylase, polygalacturonases act as macerating 

enzymes that soften fruit tissues [48].  

Mucor spp. colonizes on decaying organic matter 

and can infect strawberries through even the slightest 

wound, rapidly causing fruit decay [69], [70].  It is 

found naturally in soil and plant debris and can be 

dispersed through the wind [71], [72]. This pathogen 

generally thrives at temperatures between 5 °C and 

25 °C. Optimal growth is often observed around 

20 °C, while temperatures above 30 °C can inhibit its 

growth. However, some species, like Mucor indicus, 

are thermotolerant and can withstand higher 

temperatures [66], [73].  

 
Figure 3: Schematic diagram of the disease cycle of 

Mucor spp. in strawberry. 

 

Figure 3 presents the disease cycle of Mucor spp. 

in strawberries, which begins when the fungus infects 

the fruit through natural openings or wounds on its 

surface. Once inside, the fungus rapidly colonizes the 

fruit, secreting enzymes that break down the tissue and 

cause it to rot, resulting in liquefaction of the entire 

fruit. Under high humidity conditions, the infected 

fruit develops a dense, wiry mycelium, with black 

sporulation appearing at the ends of elongated spore-

bearing structures, which release spores into the 

environment. These spores can spread to other fruits, 

particularly in late summer. 

Mucor spp. and Rhizopus spp. rots exhibit the 

same characteristics, making it challenging to 

distinguish between the two in field conditions. 

Although the fruit-softening symptoms may appear 

very similar, researchers identify these fungi by 

observing the fungal growth under a hand lens. 

Sporangia, tiny, dark brown to black spherical 

structures, can be found at the ends of white fungal 

strands. In particular, Rhizopus produces dry 

sporangia that appear randomly distributed, whereas 

Mucor forms wet sporangia aligned in parallel strands 

with a viscous liquid film [48]. 

 

2.4 Colletotrichum spp. 

 

Colletotrichum spp. can cause anthracnose, a 

detrimental fungal disease that results in a 70% yield 

loss in strawberries [53], [74], [75]. It is typically 

found at the crown of the fruit, which is why it is often 

called crown rot. It has three related species, namely 

C. acutatum, C. gloeosporioides, and C. fragariae. 

Specifically, C. acutatum is known for causing severe 

fruit rot, while C. gloeosporioides and C. fragariae are 

pathogens affecting the fruit crown [16], [76]. 

In the study by Ureña-Padilla et al., researchers 

isolated Colletotrichum spp. from diseased strawberry 

fruit and crowns. Only C. acutatum was recovered 
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from the fruit itself, and C. gloeosporioides was 

isolated from the fruit crown, which caused the 

collapse and death of the plant [76]. Additionally, a 

study by Guidarelli et al., demonstrated that after 24 h 

of interaction with C. acutatum, white strawberry 

fruits exhibited quiescence marked by melanized 

appressoria, whereas red fruits showed evidence of 

necrotrophic infection. Microarray data further 

revealed the upregulation of genes associated with 

epi/catechin pathways and fatty acid metabolism, a 

key process in the biosynthesis of quiescence-related 

compounds like flavan-3-ols, proanthocyanidins, and 

antifungal dienes, suggesting that these serve as 

defense components during strawberry ripening [77].  

As depicted in Figure 4, once the conidia land on 

the host, they will germinate and form appressoria, 

then subsequently penetrate the epidermal cells. 

Colletotrichum spp. can overwinter in plant debris, 

notably in decayed fruit, and produce primary 

inoculum during the spring. Optimal conditions for 

disease development occur at approximately 27 °C, 

though the fungus is capable of infecting fruit at lower 

temperatures. Lesions, characterized by the 

production of conidia, can trigger the infection cycle 

throughout the growing season. Conidia formation 

follows an infection latency period of 7 to 11 days at 

5 °C and 2 to 3 days at 25 °C. While conidial 

production occurs across a temperature range of 5 °C 

to 35 °C, it is most prolific at temperatures between 

22 °C and 26 °C. Conidial dispersal primarily occurs 

through rain, insects, animals, and human activities 

such as those of farm workers. Although C. acutatum 

exhibits a broad host range encompassing numerous 

fruit, vegetable, and weed species, existing research 

indicates that the strains pathogenic to strawberries 

show a relatively high degree of host specificity [24], 

[78], [79].  

 

 
Figure 4: Schematic diagram of the disease cycle of 

Colletotrichum spp. in strawberry. 

 

Understanding the mechanisms by which 

Colletotrichum spp. interacts with strawberry fruit at 

different ripening stages is essential for developing 

strategies for effective disease management. The 

different responses observed in white and red 

strawberries, as well as the specific dense-related 

genes, suggest that ripening-induced defense 

compounds play a significant role in mitigating the 

pathogenic infection. 

 

2.5 Penicillium spp. 

 

Penicillium fruit rot, primarily caused by Penicillium 

expansum along with other Penicillium species, is one 

of the major pathogens responsible for the postharvest 

decay of strawberries [48]. Several Penicillium 

species have been documented as producers of 

aflatoxins and ochratoxins, which can negatively 

affect the health of consumers [54], [80]. Infection 

may occur during fruit ripening, harvest, storage, and 

transport, leading to spoilage, financial losses, and, in 

some cases, the production of health-threatening 

mycotoxins [80]. In the study by Liu et al., researchers 

examined 91 strains of P. expansum and identified six 

mycotoxins, with patulin (PAT) and chaetoglobosin A 

being the most prominent, found at average 

concentrations of 77.56 mg·kg–1 and 45.58 mg·kg–1, 

respectively. Using untargeted metabolomics, the 

researchers profiled 506 metabolites, observing a 

general decrease in primary metabolites during fungal 

cultivation as P. expansum assimilated them. A 

comparative analysis between samples with high and 

low PAT levels revealed unique metabolic 

fingerprints. This distinct metabolic signature, 

particularly in organic acids, benzenoids, and 

organoheterocyclic metabolites, was directly linked to 

mycotoxin production pathways [81].  

This fungal pathogen is characterized by the 

appearance of blue-green spore masses on the infected 

fruit, which initially present as light to dark-brown 

circular lesions [82]. Studies have found that the 

continuous application of fungicides against gray 

mold can contribute to the occurrence of Penicillium 

fruit rot [48]. Generally, it thrives at temperatures 

ranging from 25 °C to 30 °C, but it can still grow at 

cooler temperatures, especially in the range of 4 °C to 

20 °C [6]. 

In the related study by Hussein et al., the authors 

examined the pectinase activity of Penicillium 

citrinum, highlighting its role in breaking down fruit 

tissue and causing rot. Their findings revealed that P. 

Overwintering  

Conidia production 

and dispersal  

Fruit infection  
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citrinum isolates demonstrated significant production 

of various pectinolytic enzymes, including 

polygalacturonases and pectin methyl esterases, both 

in liquid culture and when inoculated onto fruit. This 

enzymatic activity was directly correlated with the 

observed fruit softening and tissue maceration, 

confirming the crucial role of these enzymes in the 

pathogen’s ability to degrade the cell walls of 

strawberry fruit and cause decay. It highlights a key 

mechanism by which Penicillium species induce 

spoilage [83]. 
 

 
Figure 5: Schematic diagram of the disease cycle of 

Penicillium spp.  in strawberry 

 

As illustrated in Figure 5, the disease cycle of 

Penicillium decay in strawberries begins with the 

production of inoculum. Penicillium fungi produce 

spores on infected strawberry fruit, soil, or debris. 

These spores can be dispersed through various means, 

including water, wind, or insects, infecting new 

strawberry plants. Infection occurs when spores come 

into contact with wounded or intact strawberries, 

colonizing the fruit and breaking down cell walls. The 

colonization process is facilitated by the production of 

enzymes and toxins that enable the fungus to penetrate 

and degrade the fruit's cellular structure. As the fungus 

grows, it produces new spores on the infected fruit, 

which can infect others or spread to different areas. 

This continuous cycle of infection, colonization, and 

sporulation enables Penicillium decay to spread 

rapidly, causing significant damage to strawberry 

crops [84]. 

The widespread impact of Penicillium fruit rot 

highlights the significant challenges of managing 

postharvest diseases in strawberries. Since some 

strains can produce mycotoxins, future research 

should integrate both controlling fungal growth and 

the production of mycotoxigenic strains. 

 

3 Bacterial Pathogens in Strawberry Fruit 

 

Strawberries carry a diverse range of microorganisms, 

which can impact their shelf life and quality [2]. Aside 

from fungal pathogens, bacterial pathogens are 

another type of microbiota considered spoilage 

organisms [2], [85]. In recent years, multiple 

foodborne outbreaks have been linked to strawberries, 

with particular concern for human pathogenic bacteria 

[86]. Some contaminants are considered detrimental 

and can cause serious illnesses [2]. 

A study conducted by Tenea et al. identified 

bacterial families, including Pseudomonaceae, 

Yersiniaceae, and Hafniaceae, as prevalent in the 

collected strawberries. Their findings suggest that 

microbial composition varies depending on the sample 

source and fruit variety. Researchers detected 

Escherichia coli and Salmonella enterica in ready-to-

eat strawberries from both field and market sources, 

highlighting potential food safety concerns. 

Interestingly, Shewanella putrefaciens and Shewanella 

profunda, two opportunistic human pathogens, were 

found exclusively in market samples, suggesting 

possible contamination during handling and 

distribution. Additionally, researchers observed that 

microbial compositions are significantly influenced by 

fruit ripeness and postharvest conditions [2]. 
 

Table 3: Bacterial pathogens of strawberries. 
Genus Species Strawberry Disease Ref. 

Xanthomonas fragariae Angular leaf spot, lesion in fruit calyx [87] 

arboricola Bacterial leaf blight, fruit rot [88] 

Pseudomonas fragariae Leaf spot, fruit rot [89] 

Escherichia coli Foodborne illnesses [2] 
Enterococcus gallinarum Foodborne illnesses [2] 

Salmonella enterica Foodborne illnesses [90] 

Listeria monocytogenes Foodborne illnesses [91] 

Bacillus cereus Foodborne illnesses [92] 

Staphylococcus aureus Foodborne illnesses [93] 

epidermidis Foodborne illnesses [93] 
Shewanella putrefaciens Foodborne illnesses [2] 

profunda Foodborne illnesses [2] 

Mycotoxin 

production 

Spore 

production  

Fungal 

infection  

Fungal colonization  
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Several studies have documented the occurrence 

of bacterial pathogens in strawberry fruits, both in the 

field and in storage. Specifically, Table 3 presents the 

isolated bacterial species and their corresponding 

diseases. 

Among the bacterial pathogens, human 

pathogenic bacteria such as Salmonella spp., 

Escherichia coli, Listeria monocytogenes, and 

Staphylococcus spp. are the most prevalent [94], [95]. 

 

3.1 Salmonella spp. 

 

Salmonella spp. is a gram-negative, rod-shaped 

bacterium within the Enterobacteriaceae family [96], 

[97]. It is facultatively anaerobic and non-sporulating, 

which makes it a significant contributor to the global 

burden of foodborne diseases [98]. Specifically, there 

are over 2,600 Salmonella serotypes, with Enteritidis, 

Typhimurium, Newport, Javiana, and Heidelberg 

being the most commonly detected [99]. This 

bacterium can proliferate in various food products and 

remain viable even after freezing or drying, retaining 

its pathogenic potential. Additionally, studies indicate 

that Salmonella can survive in highly saline 

environments [100]. 

Salmonella spp. thrives in strawberry fruit at 

25 °C, while refrigeration at 4 °C significantly reduces 

its growth [98], [101]. In a broader sense, this 

mesophilic bacterium can grow in temperatures 

ranging from 5 °C to 46 °C, with an optimum growth 

temperature between 35 °C and 37 °C. It is unable to 

multiply at a water activity (aw) of 0.94, especially 

when combined with a pH of 5.5 or lower, and is less 

tolerant of a pH of 4.5 and below [98], [102]. On the 

other hand, it grows in low aw with a pH range of 4 to 9, 

with 6.5 to 7.5 being ideal [103].  

Tenea and Reyes reported the presence of 

Salmonella enterica in ready-to-eat strawberries 

collected from both farm fields and retail stands, with 

higher contamination in market-sourced samples [2]. 

Their findings linked postharvest handling and retail 

exposure to an increase in pathogenic bacterial loads. 

Additionally, a separate study evaluating the survival 

and biofilm formation of S. enterica serovar 

Thompson on strawberries stored at 4 °C, 7 °C (192 h), 

and 20 °C (72 h) showed a population decline of 2.0, 

1.7, and 2.0 log CFU/g, respectively, from an initial 

inoculum of ~5 log CFU/g. Biofilms were observed on 

the epidermis at all temperatures, indicating a 

persistence strategy under storage stress conditions 

[98]. 

3.2 Escherichia coli 

 

Escherichia coli is a straight, rod-shaped bacterium, 

measuring approximately 1 to 3 μm in length and 0.4 

to 0.7 μm in width. It can survive in temperatures 

ranging from 10 °C to 40 °C, with an optimal growth 

temperature of 37 °C and a pH range of 4.5 to 9.5 

[104]. While most E. coli strains are non-pathogenic, 

specific variants, such as Shiga toxin-producing E. 

coli (STEC), are associated with foodborne illnesses 

[105]. Among these, Escherichia coli O157:H7 is 

widely recognized as a foodborne pathogen, followed 

by serotypes O104:H4 [106].  

Recent studies have identified E. coli 

contamination in ready-to-eat strawberries from both 

agricultural fields and commercial markets [2], [107]. 

Contaminated agricultural water has also been 

identified as a source of pathogenic contamination. 

However, ensuring the adequate and sanitary quality 

of agricultural water (<1 CFU /100 mL) during 

postharvest operations, such as washing, can be 

challenging. In the study of Vesga et al., E. coli was 

detected in 12.5% of strawberry samples irrigated with 

surface water. These findings were based on samples 

collected from farms, markets, and supermarkets. The 

study highlighted the persistence of E. coli across the 

strawberry supply chain, underscoring the 

vulnerability of strawberries to fecal contamination 

due to irrigation sources [107]. 

Escherichia coli O157:H7 has been observed on 

the surface and within the pulp of strawberry fruits 

throughout production and postharvest stages [105], 

[106]. A study by Yu et al., examined the survival of 

E. coli O157:H7 on strawberries, a fruit that is 

typically unwashed during production and handling. 

Two bacterial strains were tested, both on the surface 

and inside the fruit. Results showed that E. coli 

survived both externally and internally at 23 °C for 24 

hours and at 10 °C, 5 °C, and -20 °C for three days. 

The highest bacterial reduction occurred at -20 °C and 

on the fruit surface when refrigerated, while bacteria 

inside the fruit tended to survive better [108]. 

Moreover, Knudsen et al. investigated the survival of 

E. coli O157:H7 on fresh and frozen strawberries. 

Their findings indicate that these pathogens can 

survive on fresh strawberries throughout their 

expected shelf life and remain viable in frozen storage 

for over a month, with population reductions varying 

in conditions and in the presence of sucrose [109]. 
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3.3 Listeria monocytogenes 

 

Listeria monocytogenes is a gram-positive bacterium 

with a rod-shaped structure commonly present in the 

environment. It typically measures between 0.5 and 2 

μm in width and 0.5 and 4 μm in length. This pathogen 

is responsible for listeriosis, a serious foodborne 

illness. It is remarkably resilient, capable of surviving 

and proliferating within a temperature range of -0.4 °C 

to 45 °C, across pH levels from 4.6 to 9.5, and in an 

environment with low water activity (aw<0.90). 

Additionally, it demonstrates high salt tolerance, with 

concentrations up to 20% [110], [111].  

L. monocytogenes is capable of surviving and 

replicating within the host cells. This characteristic 

enables the bacteria to evade the host’s immune 

response and cause systematic infection [112], [113]. 

The bacterium is commonly found in soil and plant 

debris and is particularly prevalent in fruits and 

vegetables that grow directly in contact with the soil, 

such as strawberries [114]. 

Research by Yin et al., investigated the 

persistence of L. monocytogenes on fresh strawberries 

during refrigerated storage. Their findings revealed 

that the pathogen can survive for several days at a 

temperature of 4 °C. In untreated control samples, L. 

monocytogenes populations remained relatively stable 

for 7 days, indicating that strawberries provide a 

suitable surface for short-term survival under cold 

conditions. Although lactic acid bacteria (LAB) 

treatment significantly reduced pathogen levels, the 

research underscores that L. monocytogenes can 

survive on strawberry surfaces during typical 

postharvest storage [91]. 

 

3.4 Staphylococcus spp. 

 

Staphylococcus spp. is a gram-positive, spherical 

bacterium that typically ranges in diameter from 0.5 to 

1.5 μm [115]. The growth and toxin production of 

Staphylococcus spp. is optimal in the presence of 

oxygen, though it is capable of growing anaerobically 

[116]. It is known for its characteristic arrangement in 

grape-like clusters, a result of division in multiple 

planes. Unlike rod-shaped bacteria, it maintains a 

coccus morphology, which contributes to its resilience 

and ability to colonize various environments [117]. 

Specifically, Staphylococcus aureus can survive a 

temperature range of 7 °C to 48.5 °C. It thrives in pH 

conditions between 7.0 and 7.5, with survival limits 

extending from a minimum of 4.2 to a maximum of 

9.3. While it can survive in foods with a pH of 4.2, it 

remains dependent on the type of acid present [118]. 

Notably, Staphylococcus spp. is highly resistant to 

drying and capable of both growth and enterotoxin 

production in foods with water activity (aw) levels as 

low as 0.85 [119]. 

Staphylococcus species can contaminate crops 

during cultivation through contact with soil, water, 

and handling by farm workers. Studies have found that 

Staphylococcus aureus and Staphylococcus 

epidermidis are present in strawberry fruits [93]. Yoon 

et al. conducted a microbiological assessment for 

bacterial contamination in tunnel-style strawberry 

greenhouses and packaging centers. S. aureus showed 

high bacterial counts across most samples, indicating 

significant contamination risks associated with 

strawberry handling and processing [120]. In the study 

of Kim et al., the authors also detected S. aureus 

contamination in 16% of collected samples from the 

assessed strawberry farm, with the highest 

occurrences found on employees’ hands, scissors, and 

strawberries. A polymerase chain reaction (PCR) 

analysis of S. aureus enterotoxin genes shows that 

92% of strains carried Staphylococcal enterotoxin A 

(SEA), while 38% carried Staphylococcal enterotoxin 

B (SEB), and Staphylococcal enterotoxin C (SEC) 

was not found. These findings highlight the presence 

of toxin-producing S. aureus strains in the strawberry 

production environment [121] 

 

4 Existing Pathogen Control for Strawberries 

 

Strawberries are highly susceptible to pathogen 

contamination, requiring effective control strategies to 

maintain food safety and postharvest quality. Several 

studies have explored pathogen control methods, 

providing insight into various techniques and changes 

in the pathogenicity of target organisms. This section 

discusses existing pathogen control methods, focusing 

on chemical, physical, and biological treatments. 

Specifically, Table 4 presents the comparative 

analysis of existing pathogen control methods, 

focusing on their efficacy, cost, and limitations. 
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Table 4: Efficacy, cost, and limitations of existing pathogen control methods for strawberries. 
Category Pathogen 

Control 

Efficacy Cost Limitations Ref. 

Chemical Chemical 
fungicide 

Demonstrated significant 
bacterial reduction. 

Moderate: Cost varies 
depending on 

concentration and 

volume. 

• Higher concentration can 

negatively impact fruit 

quality. 

• Residual chemical toxins 

are linked to 

environmental problems 
and adverse health effects. 

[32], 
[108], 

[122] 

RNA-based 

fungicide 

Reduces fungal bacteria, 

particularly Botrytis cinerea 

High (Initial): Currently 

in research and 
development phase; high 

upfront investment 

expected for 
commercialization. 

Potential for off-target effects 

and resistance development. 

[123], 

[124], 
[125] 

Melatonin 

treatment 

Optimizing melatonin 

concentration can reduce 

pathogenicity and enhance 
postharvest fruit quality. 

Low: Relatively 

inexpensive cost for 

synthesized melatonin. 

• Limited commercial 

availability. 

• Optimal concentration and 

timing are still under 
study. 

[20] 

Physical MAP Reduces microbial growth 

and slows down spoilage 

processes. 

Moderate: Primarily 

involves the cost of 

specialized packaging 
materials and equipment. 

It may not completely 

eliminate pathogens, only 

inhibit their growth. 

[126], 

[127] 

Cold Storage Broad-spectrum microbial 

control, decay mitigation, 
and fruit quality 

preservation.  

High (Initial): Significant 

upfront investment in 
equipment. 

Limited in penetration; only 

long-lived species reach the 
fruit. 

[128] 

Isochoric 

impregnation 
• Cause smaller weight loss 

for fruits. 

• Extend shelf life and 

prevent microbial 

contamination. 

Moderate to high cost: 

Requires specialized 
equipment. 

• Requires specific 

equipment and setup to 

maintain constant volume. 

• Involves customizing the 

impregnation substance. 

[86] 

Biological Bio-fungicides • Exhibit antagonistic 

properties by competing 

for nutrients and space, 

exerting antibiosis 
effects, and triggering the 

resistance mechanism of 

the pathogen.  

• Effective against a range 

of fungal and bacterial 

diseases. 

Moderate to High: It 

varies by agents and 
application techniques. 

Performance varies under 

field conditions. 
 

[47] 

Plant extracts Contains various bioactive 

compounds that exhibit 

antimicrobial properties. 

Low to Moderate: Varies 

widely depending on 

plant source and 
extraction method. Some 

can be low cost for 

growers (e.g., agricultural 
waste) while commercial 

formulation has a 

moderate investment cost. 

Potential phytotoxicity at 

high concentrations. 

[55] 

4.1 Chemical treatment 

 

A study by Acosta-González et al., evaluated the 

preventive and curative efficacy of various chemical 

treatments against Neopestalotiopsis rosae, the 

causative agent of crown rot. Among the tested 

chemical fungicides, including prochloraz, cyprodinil 

with fludioxonil, and pydiflumetofen with fludioxonil, 

preventive applications of these agents demonstrated 

the highest disease suppression, achieving 99 to 100% 

efficacy in reducing disease incidence and severity. In 

contrast, curative treatments showed markedly lower 

effectiveness, with most failing to exceed a 37% 

control threshold [122].  
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On the other hand, the external application of 

RNA interference (RNAi)-based fungicides has also 

been explored to control pathogen contamination in 

strawberries. RNAi-based fungicides target specific 

genes in phytopathogens, which prevents their spread 

[123]. Sabbadini et al., demonstrated that double-

stranded RNAs (dsRNAs) targeting Botrytis cinerea 

effectively downregulated Bc-DCL gene expression, 

leading to reduced pathogenicity and fungal growth 

[124]. The application of dsRNA and single-stranded 

RNA (ssRNA) molecules to strawberry surfaces also 

proved effective in preventing gray mold infection 

[125].  

Additionally, a study by Promyou et al. 
examined the effects of exogenous melatonin 

treatment on postharvest quality and disease resistance 

of strawberry fruits against Botrytis cinerea. The 

findings suggest that optimizing melatonin 

concentration can reduce infection rates of inoculated 

pathogens [20]. 

However, despite their effectiveness, chemical 

treatments pose potential risks. Residual chemical 

toxins in strawberries have been linked to adverse 

health effects, such as endocrine disturbances and 

neurological disorders. Additionally, certain 

fungicides have been found to alter the metabolic 

pathways of strawberries, resulting in changes in 

flavor and nutritional value [129], [130]. 

 

4.2 Physical treatment 

 

Modified atmosphere packaging (MAP) has been 

widely studied as a method to extend the shelf life of 

strawberries.  Research indicates that equilibrium-

modified atmosphere packaging (EMAP) can 

significantly enhance postharvest quality and 

antioxidant activity by regulating oxygen (O₂) and 

carbon dioxide (CO₂) concentrations, thereby 

reducing microbial growth and slowing down spoilage 

processes [126]. Lei et al., found that an optimal 

atmosphere of 10 kPa O2 + 10 kPa CO2, maintained by 

microporous polyethylene film, increased polyphenol 

accumulation, thereby improving antioxidant 

properties and extending shelf life by several days. 

Additionally, polyethylene packaging under a 

modified atmosphere has been shown to influence 

metabolic changes in strawberries, reducing spoilage 

biomarkers such as oxidized phosphatidylcholines and 

lyso-phosphatidylcholines [127]. 

Steinka & Kukulowicz investigated the presence 

and behavior of methicillin-resistant Staphylococcus 

aureus (MRSA) in fresh and frozen strawberries, 

assessing how different freezing methods affect 

bacterial contamination. Fresh and frozen strawberries 

were tested for MRSA, with samples divided into 

washed and unwashed groups. Staphylococcus aureus 

and Staphylococcus epidermidis were inoculated into 

the samples, which were then stored at -18 ± 2 °C for 

two months. The study concluded that MRSA was 

present in 15.4% of field-obtained strawberries, and 

freezing at -18 °C reduced S. aureus and S. 

epidermidis levels by 0.16 and 0.47 log10
 CFU/g, 

respectively, after rinsing [128].  

However, freezing can cause cellular damage, 

resulting in moisture loss and a decline in sensory 

attributes such as firmness and juiciness. Prolonged 

exposure to modified atmospheres may also accelerate 

anthocyanin degradation, leading to discoloration and 

reduced consumer acceptance. While many studies on 

MAP aim to preserve anthocyanins and fruit color, 

optimal gas composition and exposure duration are 

critical. If the conditions are suboptimal for a specific 

fruit’s tolerance, the protective effects of MAP can 

diminish, and anthocyanin degradation can accelerate, 

leading to undesirable outcomes [131]–[133]. 

 

4.3 Biological treatment 

 

Biological control agents (BCAs), primarily 

composed of bacteria and yeast, play a crucial role in 

mitigating postharvest spoilage in strawberries. They 

exhibit antagonistic properties against pathogens by 

competing for nutrients and space, effectively limiting 

the resources available for microbial growth. 

Additionally, BCAs exert antibiosis effects by 

producing volatile or toxic compounds that disrupt the 

survival of pathogens. Some of these agents can also 

trigger resistance mechanisms within the host tissue, 

which strengthen the fruit’s natural defenses [134]. 

Several commercially available biofungicides are 

widely utilized for pathogen control. Notable 

examples include Pseudomonas syringae, Bacillus 

subtilis, Candida sake, and Metschnikowia fructicola 

[47]. 

A study by Zhao et al., examined the 

effectiveness of Debaryomyces hansenii as a 

biocontrol agent for combating postharvest diseases in 

strawberries. The research found that treating 

strawberries with D. hansenii helped inhibit natural 

decay and maintain a higher ascorbic acid content, a 

key indicator of quality. The study revealed that            
D. hansenii alters the microbial diversity on the 

surface of strawberries. Specifically, it changes the 

composition and structure of the fungal community, 
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which in turn helps inhibit plant pathogens and 

reduces the occurrence of postharvest diseases [134]. 

Moreover, the study by Kahramanoglu et al., 

investigated the antifungal effects of Origanum onites L. 

and Ziziphora clinopodioides L. essential oils against 

Botrytis cinerea in strawberries. In vitro tests using the 

poisoned food technique showed potent mycelial 

inhibition at optimal doses, while in vivo vapor 

treatments effectively prevented gray mold with 

moderate effects on fruit weight loss and quality [55]. 

While BCAs offer promising pathogen control, 

resistance development remains a potential concern. 

Some pathogens can adapt their mechanisms to 

counteract the antagonistic effects of BCAs, thereby 

reducing the efficacy of these compounds over time. 

Studies suggest that repeated exposure to specific 

biological treatments can lead to adaptive resistance, 

where pathogens modify their metabolic pathways or 

develop protective biofilms to evade suppression 

[135]. Additionally, most applications of biological 

treatments are limited to preharvest stages. Thus, 

BCAs alone cannot mitigate pathogen risk during 

postharvest processes [136]. 

  

5 Plasma-activated Water 

 

Plasma-activated water (PAW) is produced by 

subjecting water to non-thermal plasma generated at 

atmospheric pressure [137], [138], [139]. In particular, 

non-thermal plasma is a partially ionized gas 

containing reactive oxygen species (ROS) and 

reactive nitrogen species (RNS). When this plasma 

interacts with water, these reactive species are 

dissolved, creating a solution responsible for the 

antimicrobial effects of PAW [140]. In recent years, 

numerous studies have investigated the antimicrobial 

effectiveness of PAW. Rahman et al., highlighted 

PAW’s broad-spectrum antibacterial activity, which is 

attributed to the presence of reactive oxygen and 

nitrogen species (RONS) [141]. Other articles have 

demonstrated PAW’s potential in food safety and 

quality, showing significant microbial reduction in 

various food items [142], [143]. Moreover, a study by 

Miranda et al., using a coaxial dielectric barrier 

discharge plasma system, revealed the effectiveness of 

PAW against pathogens such as Staphylococcus 

aureus and Escherichia coli [144]. 

As shown in Figure 6, the commonly used 

systems for generating PAW include plasma jet, 

dielectric barrier discharge, and corona discharge. 

Additionally, there are also gliding arc discharges, as 

well as custom-built systems that have been developed 

and optimized for specific applications. Researchers 

customized the atmospheric pressure plasma jet by 

adjusting the settings like power, frequency, and gas 

mixture to achieve the desired PAW properties. In the 

study by Taaca et al., a custom-built atmospheric 

pressure plasma system was used to treat chitosan-

acrylic acid (Cs-AA) blends. Despite operating at a 

low temperature of less than 40 °C, the system 

successfully generated RONS. Treatment time and gas 

flow rate were found to influence the pH and 

absorption spectrum of deionized water. Furthermore, 

the analysis revealed that varying gas flow rates 

affected the production of nitric oxide (NO) and 

hydroxyl (OH) radicals, while different discharge 

conditions influenced the concentrations of nitrogen 

(N) species [145]. These findings demonstrate the 

potential of custom-built plasma systems to produce 

PAW with specific properties. 

 

 
Figure 6: Systems in generating plasma-activated 

water; a) plasma-jet, b) di-electric barrier discharge, c) 

corona discharge. 

 

5.1 Physicochemical properties of PAW 

 

PAW is characterized by several chemical properties 

resulting from the presence of RONS. These 

properties significantly impact its effectiveness as an 

antimicrobial agent and its application across multiple 

fields. One of the most notable changes is the 

modulation of pH. Specifically, exposure to cold 

atmospheric plasma induces the formation of acids, 

such as nitric acid, resulting in a decrease in pH. This 

is accompanied by an increase in water activity (aw), 

which is attributed to the presence of ions such as 

nitrate and nitrite. PAW also exhibits a higher 

oxidation-reduction potential compared to tap water, 

indicating its strong oxidizing properties. 
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Additionally, plasma activation reduces the 

surface tension of water, which enhances its 

applications as an antimicrobial agent [138], [146], 

[147]. Recent observations suggest that plasma 

activation significantly lowers the surface tension of 

water, indicating surfactant-like behavior. It also 

enhances PAW’s ability to spread more efficiently on 

surfaces, improving its effectiveness in microbial 

inactivation and surface treatment applications. 

According to the study by Shaji et al., the findings 

indicate that plasma activation decreases the surface 

tension of water and lowers the contact angle of 

droplets on glass surfaces at room temperature. The 

lower surface tension facilitates better penetration on 

surfaces for various applications. These changes 

suggest that plasma modifies the mesoscopic structure 

of water at lower temperatures. Moreover, it increases 

the viscosity of water at high temperatures, enabling 

better surface interaction and penetration. It also 

indicates an increase in aw due to the presence of 

reactive species, such as hydrogen peroxide (H₂O₂), 

ozone (O₃), and nitrate ions (NO3
-) [148]. 

 

5.2 Pathogen inactivation mechanism of PAW 

 

The antimicrobial efficacy of PAW is primarily 

attributed to the presence of RONS, including 

hydrogen peroxide (H₂O₂), hydroxyl radicals (•OH), 

ozone (O₃), nitric oxide (NO), and peroxynitrite 

(ONOO⁻). These reactive species disrupt microbial 

cells through oxidative stress mechanisms that 

damage key cellular structures and functions [144].  

One of the primary modes of inactivation is 

membrane disruption. RONS can cause lipid 

peroxidation in microbial cell membranes, 

compromising membrane integrity and leading to cell 

leakage and death. Furthermore, oxidative damage to 

nucleic acids and proteins impairs microbial 

replication and enzyme function. Reactive species 

such as •OH and ONOO⁻ can induce strand breaks in 

DNA and oxidize amino acid residues, denaturing 

critical microbial proteins [149]. 

PAW also interferes with biofilm formation and 

stability, a primary defense mechanism of many 

pathogenic fungi and bacteria. By penetrating and 

degrading the extracellular polymeric substances 

(EPS) matrix, PAW effectively destabilizes biofilms 

and increases microbial susceptibility to treatment 

[150]. In the study of Xia et al., researchers treated 

Escherichia coli and Staphylococcus aureus biofilms 

with PAW under controlled conditions to assess their 

impact on biofilm stability. Biofilms were cultivated 

on surfaces and exposed to PAW for varying 

durations, allowing researchers to observe changes in 

EPS and microbial viability. The findings 

demonstrated that PAW effectively disrupts biofilms 

by mechanically degrading the EPS matrix and 

directly targeting biofilm-associated cells in both 

gram-negative and gram-positive bacteria, leading to 

increased susceptibility to treatment [151].  

The overall antimicrobial mechanism of PAW is 

multi-targeted and non-selective, making it difficult 

for pathogens to develop resistance. It makes PAW an 

up-and-coming alternative to chemical disinfectants, 

particularly for fresh produce like strawberries, where 

surface and internal contaminants pose a significant 

risk to food safety and shelf life. 

 

6 Micro-Nano Bubbles 

 

Micro-nano bubbles (MNBs) are tiny gas-filled 

bubbles generally in the range of micrometers and 

nanometers [9], [152]. As illustrated in Figure 7, 

bubbles with diameters ranging from 1 μm to 100 μm 

are referred to as microbubbles, while those with 

diameters of less than 1μm are called nanobubbles 

[153]. Specifically, bubbles in the range of 1 to 

100 μm are typically used for bio-activity fields, those 

less than 100 μm for fluid physics fields, and 

analytical sciences require smaller than 1 μm. Aside 

from their small size, MNBs exhibit a substantial 

specific surface area, high zeta potential, prolonged 

stability in water, and enhanced oxygen transfer 

efficiency [154]. 

 

 
Figure 7: Schematic diagram of the size range of 

micro-nano bubbles. 

 

MNBs have distinct physical properties that 

make them highly effective in various applications. 

Their small size allows them to remain suspended in 

liquids for extended periods without rising to the 

surface. This contributes to their prolonged stability, 

unlike larger-sized bubbles that quickly collapse. 

Additionally, MNBs exhibit high internal pressure, 

which increases as bubble size decreases, resulting in 

enhanced gas dissolution efficiency [153].  

Nanobubbles Microbubbles Fine Bubbles 
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MNBs are continuously gaining attention in 

agriculture for their ability to help plant roots absorb 

nutrients more efficiently and improve soil aeration. 

Studies show that nanobubble-enriched irrigation 

water improves oxygen availability in the root zone, 

enhances plant growth, and increases crop yield. 

Notably, research on lettuce, tomatoes, and cucumbers 

demonstrates improved nitrogen use efficiency and 

increases in yield quality [155], [156]. MNBs can also 

be used in industries as a sterilizer and cleaning agent. 

Particularly, they contribute to pathogen inactivation 

through multiple mechanisms, primarily enhancing 

oxidative stress and disrupting microbial cell 

structures. Their high internal pressure facilitates the 

dissolution of ROS, such as hydroxyl radicals and 

hydrogen peroxide, which effectively degrade 

bacterial membranes and viral envelopes.  

Additionally, MNBs generate physical shear 

forces that weaken biofilms, making pathogens more 

susceptible to antimicrobial agents. In the article by 

Ovissipour, the author examines their ability to 

remove biofilms and enhance cleaning efficiency 

[157]. In food science, researchers are investigating 

how MNBs can prolong the freshness of perishable 

foods, improve food texture, and enhance cleaning 

methods in food production. Research by Javed et al., 

explores the role of nanobubbles in food processing, 

examining their influence on food texture, extraction, 

freezing, and sanitation. It highlights their ability to 

improve mass transfer and stability in liquids [158]. 

 

6.1 Generation principle of MNBs 

 

Micro-nano bubbles can be generated through various 

techniques, predominantly categorized into physical 

and chemical methods. Chemical techniques include 

electrolysis and chemical reactions, where gas is 

released into a liquid medium to form bubbles. 

Physical methods involve cavitation, gas dispersion, 

solution mixing, temperature alteration, and 

electrohydrodynamic (EHD) effects, all of which 

utilize fluid dynamics to produce stable micro-nano 

bubbles [159]. 

The stability of MNBs is a crucial factor in their 

production. Specifically, stability is influenced by 

factors like surface charge, gas solubility, and the 

presence of surfactants [160]. In particular, gas 

solubility also affects the persistence of bubbles. 

Gases with high solubility, such as carbon dioxide 

(CO2), tend to dissipate more rapidly, whereas less 

soluble gases like oxygen (O2) and nitrogen (N2) can 

remain in liquid for more prolonged durations [161], 

[162]. MNBs exhibit unique properties, including 

slow buoyancy, negative surface charges, and 

increased mobility of water molecules, which 

contribute to their potential applications in various 

fields [163].  

A fundamental principle governing bubble 

movement is Stokes’ law, which states that a bubble’s 

rising velocity is directly proportional to the square of 

its radius. Due to their small size, MNBs ascend at a 

negligible rate or may even remain suspended 

indefinitely, especially in viscous fluids [164]. 

Thermal energy in the liquid drives Brownian motion, 

continuously propelling bubbles into random motion 

and preventing them from rising conventionally. The 

high internal pressure, a consequence of the Laplace 

pressure being inversely proportional to the radius, 

compresses the gas inside each bubble, thereby 

improving gas dissolution efficiency through Henry’s 

law [165], [166]. Their ability to remain active in 

solutions for longer than conventional gas bubbles 

underscores their significance in applications, 

particularly for pathogen inactivation. 

 

6.2 Pathogen inactivation mechanism of MNBs 

 

The application of MNBs in pathogen control spans 

various fields, including food safety, water treatment, 

and medical sterilization. The primary mechanisms of 

pathogen inactivation in MNBs involve the generation 

of reactive oxygen species (ROS) within the bubbles, 

which induce oxidative stress on microbial 

membranes, leading to lipid peroxidation and 

structural damage to the pathogen. Additionally, the 

high internal pressure and collapse dynamics of MNBs 

contribute to the disruption of biofilms, which further 

weakens the microbial defense mechanisms [11]. 

In oxidative damage, MNBs facilitate pathogen 

inactivation through enhanced gas solubility and 

diffusion. The small size and high surface area of these 

bubbles enhance the delivery of antimicrobial gases, 

such as ozone and hydrogen peroxide, increasing their 

efficacy against fungi and bacteria. A related study 

demonstrated that ozone micro-nano bubbles 

significantly improve disinfection capacity by 

prolonging ozone retention in water, thereby 

enhancing microbial inactivation. Furthermore, the 

interaction of MNBs with microbial cells can trigger 

changes in membrane permeability, leading to 

increased susceptibility to external stressors and 

antimicrobial agents [11]. Another study by Luo et al., 
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investigated the impact of MNBs on biofilm growth 

within drinking water distribution systems. 

Researchers observed that MNBs significantly 

inhibited biofilm formation, particularly when 

combined with oxygen, leading to a 77.87% reduction 

in biofilm dry weight. The mechanism of MNBs’ 

action varied across three phases of biofilm growth, 

including physical obstruction and chemical oxidation 

in the slow growth phase (0 to 27 days), oxidative 

inactivation in the rapid growth phase (27 to 42 days), 

and adsorption and scour in the dynamic stability 

phase (42 to 66 days). Specifically, MNBs initially 

form a hydrophobic layer on surfaces, making 

microbial adherence difficult. Their collapse generates 

hydroxyl radicals (•OH), which reduce bacterial 

numbers and favor the growth of oxidation-resistant 

bacteria. This method also decreased microbial 

diversity within the biofilm, with a 54.22 to 61.66% 

inactivation rate of planctomycetes and an 87.9% 

removal of total organic carbon (TOC) from the water 

[165].  

Another research has shown that integrating 

MNBs with PAW and ultraviolet photolysis can 

significantly enhance microbial reduction in food 

products [167]. Furthermore, a study by Naewkanya 

and Petiraksakul investigated the effectiveness of 

carbon dioxide micro-nano bubbles (CO2 MNBs), in 

combination with sodium hypochlorite (NaOCl) and 

sodium chloride (NaCl) solutions, for inactivating 

aerobic bacteria in tilapia fillets and extending their 

shelf life. The results showed that a specific 

combination of 100 mg/L NaOCl, 10% w/v NaCl, and 

32 min of contact time with CO2 MNBs significantly 

reduced the number of aerobic bacteria by 1.509 log 

CFU/g. Experimentally, this treatment achieved a 

reduction of 1.503 ± 0.009 log CFU/g, bringing the 

bacterial count down from 5.623 log CFU/g to 4.120 

log CFU/g [168]. Moreover, Wang et al., reported that 

ozone MNBs significantly enhance the postharvest 

quality of spinach by preserving cellular integrity and 

slowing down senescence-related deterioration. By 

treating spinach with 4 mg/L ozone MNBs for 5 

minutes and storing it at 20 °C for 8 days, the study 

demonstrated that ozone MNBs alleviate cell 

membrane damage, reduce malondialdehyde (MDA) 

accumulation, and maintain structural integrity. This 

treatment inhibits respiration and ethylene release, 

thereby delaying the loss of nutrients and oxidative 

damage. Also, it minimizes chlorophyll and vitamin C 

loss while promoting antioxidant enzyme activity, 

including peroxidase and catalase, which mitigate 

hydrogen peroxide accumulation [169]. However, 

these combined applications are limited only to 

exposure time and the type of pathogen. Thus, further 

optimization of treatment parameters is necessary to 

maximize their potential for food safety applications. 

It also highlights the need for further investigation into 

complementary control methods. 

 

7 Comparative Analysis of PAW and MNBs as 

Pathogen Control Strategies  

 

PAW exhibits strong antimicrobial properties due to 

the presence of RONS, while MNBs offer enhanced 

gas dissolution and prolonged bubble stability that aid 

in disrupting microbial cells. These two techniques 

differ in their modes of action. Particularly, PAW 

relies on chemically reactive species, whereas MNBs 

primarily use physical interactions. To further 

understand their potential, this section provides a 

comparative overview of PAW and MNBs as 

innovative approaches for controlling pathogens. By 

examining key parameters such as antimicrobial 

efficacy, cost-effectiveness, and operational 

limitations, Table 5 highlights the advantages and 

disadvantages of these methods as potential control 

measures for pathogens in strawberries.

Table 5: Efficacy, cost, and limitations of PAW and MNBs for pathogen control. 
Pathogen 

Control 

Generation 

Method 

Efficacy Cost Limitations Ref. 

Plasma-

activated water 

Atmospheric 

pressure plasma jet 
• Highly effective 

against a broad 
range of foodborne 

pathogens. 

• RONS can 

inactivate bacteria 

and disrupt biofilms 

• It shows good 

antimicrobial 
efficacy even at low 

frequency. 

Moderate to High: 

Cost varies 
significantly with 

scale and specific 

system. 

Efficacy can be influenced by 

factors such as feeding gases, 
discharge parameters, and 

initial microbial concentration. 

[138], 

[141] 
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Table 5: (Continued). 
Pathogen 

Control 

Generation 

Method 

Efficacy Cost Limitations Ref. 

 Di-electric barrier 
discharge 

• RONS effectively 

inactivate E. coli 

and Bacillus cereus. 

• Suitable for treating 

sensitive biological 

materials due to the 
lower plasma 

temperature. 

Low to High: The 
cost is dependent 

on scale and 

specific design. 

It requires high voltage. [138], 
[144], 

[170] 

Corona discharge • RONS were 

produced. 

• Demonstrated 

efficacy in 

decontaminating 

food packaging 
films, with higher 

microbial 

inactivation under 
wet conditions. 

Low to Moderate: 
Cost varies with 

electrode design 

and power source. 

The discharge may eventually 
result in an arc discharge if the 

applied voltage surpasses the 

insulation resistance limit. 

[171] 

Gliding arc 

discharge 
• An effective plasma 

source for the 
activation of 

aqueous solutions. 

• Potential in 

microbial 

inactivation and 

wastewater 

treatment. 

• RONS were 

produced. 

Low to Moderate: 

Cost varies with 
gas flow rate and 

system size. 

Complex electrode design and 

potential ozone generation. 

[148], 

[172], 
[173] 

Plasma-

activated water 

Custom-built 

atmospheric 
pressure plasma 

system 

• Demonstrated 

antimicrobial 

efficacy against 

spoilage bacteria on 
fresh produce and 

surfaces. 

• Performance 

depends on 

configuration. 

Low to Moderate: 

Cost varies with 
design complexity 

and components. 

Limited standardization and 

reproducibility in commercial 
settings. 

[145], 

[174] 

Micro-nano 
bubbles 

Physical (air and 
water mixing) 

Exhibit mass transfer 
efficiency, prolonged 

stability, and 

antimicrobial potential. 

Low to Moderate: 
Cost varies in 

generator type and 

capacity. 

High intensity forces may 
potentially damage surface 

structures in some applications. 

[159], 
[175] 

Chemical (gas 

infusion) 
• Enhances the 

delivery and 
reactivity of infused 

gases. 

• Enhanced bacterial 

inactivation.  

Low to Moderate: 

Depending on gas 

source, equipment, 
and scale of 

operation. 

Long term stability of the 

bubbles is influenced by the 

infused gas. 

[159], 

[176] 

 

8 Conclusions 

 

Pathogen contamination in ready-to-eat fruits and 

vegetables, such as strawberries, remains a critical 

challenge in ensuring food safety, reducing postharvest 

losses, and maintaining consumer acceptance. Both 

fungal and bacterial pathogens contribute to rapid 

spoilage, reduced shelf life, and potential health risks, 

especially during postharvest handling. While conventional 

treatments are commonly used, they pose concerns 

related to chemical residues, environmental impact, and 

the risk of antimicrobial resistance. 

Emerging technologies, such as PAW and 

MNBs, offer promising and sustainable alternatives. 

As part of the AOP, PAW generates RONS that 

effectively inactivate various pathogens. MNBs, on 

the other hand, enhance the delivery and stability of 

these reactive species due to their unique 
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physicochemical properties and potential to improve 

gas and water exchange at the cellular level. 

Despite preliminary findings, the integration of 

PAW and MNBs for postharvest pathogen control in 

strawberries remains underexplored in scientific 

literature. Therefore, further analysis is necessary to 

comprehensively understand their synergistic 

mechanisms, optimize treatment conditions, and assess 

their long-term effects on fruit quality, nutritional value, 

and safety. Furthermore, additional research is needed 

to evaluate the effectiveness of combined PAW and 

MNBs treatment in actual storage environments, where 

fluctuating temperatures, humidity, and microbial 

diversity may impact efficacy. By understanding their 

impact on consumer safety and microbial resistance, 

this integrated approach holds great potential for 

advancing postharvest technologies, contributing to 

safer produce, reducing food waste, and promoting 

sustainable agricultural practices. 
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