
19

KMUTNB Int J Appl Sci Technol, Vol. 9, No. 1, pp. 19–25, 2016

Filtering Test Case Selection for Increasing the Performance of Regression Testing

Adtha Lawanna*
Department of Information Technology, Vincent Mary School of Science and Technology, Assumption University,
Samut Prakan, Thailand

* Corresponding author. E-mail: adtha@scitech.au.edu DOI: 10.14416/j.ijast.2015.11.002
Received: 16 October 2015; Accepted: 26 November 2015; Published online: 4 January 2016
© 2016 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
Under the concept of using software testing, the problems are preparing the smallest size of the selected test
cases, fixing bugs, predicting the estimated testing time and numbers of the tester. The traditional methods
are developed to solve these issues. Unfortunately, they cannot be applied for all reasons. Therefore, the
filtering test case selection model is proposed to solve these problems and to increase the efficiency of the
regression testing. It prepares the methods of filtering, classifying, and selecting the appropriate test cases.
Accordingly, it gives the smaller size of the selected test cases than the traditional selections as 0.23–3.96%.
When consider the fault rate measured by the developed technique is also less than those methods equivalent
to 13–69%. Furthermore, the testing time and the amount of testers are also less than the comparative studies
as about 2–71%, and 13–69% respectively.

Keywords: Regression testing, Test case selection, Test suite

Please cite this article as: A. Lawanna, “Filtering test case selection for increasing the performance of
regression testing,” KMUTNB Int J Appl Sci Technol, vol. 9, no. 1, pp. 19–25, Jan.–Mar. 2016.

1 Introduction

Regression testing is the part of software testing the
software development life cycle, which is one of the
methodologies of software engineering [1]. The main
function of regression testing technique is to modify
the old program to the new version and to moderate
the size of the test cases before testing the new codes
[2]. The reason of using this technique is to guarantee
that newly added or modified code works correctly
[3]. However, the important problem is that which
technique is appropriate in the differentiated software
development environments [4]. The scopes of using
regression testing listed as follows; it is suitable for
only the modified program, testing time is accounted,
testers may not be from the previous team, and many
testing cycles are required when the modifications
are done [5]. In general, it needs six processes, which
are modifying the latest program, preparing test data,

testing the sequence of code, execution, verifying the
test cases, and fixing bugs [6]. In fact, the requirement
specifications are directed to write a code, including
the new software version [7]. Moreover, the amount
of the specifications of the revised software is greater
than the old [8]. This is because the needs of user
requirements increase [9]. The main problems are
what should be the selected test cases of the modified
program, how to select, and the size of the chosen set
is still too big [10]. These could affect the efficiency of
whole processes of applying the concept of providing
the suitable cases to get correctly modified codes [11].

There are many regression testing methods
developed for solving these problems, e.g., retest-all [12],
random [13], obsolete [14], re-testable [15], reusable
[16], redundant [17], execution traces [18], fault-revealing
[19], modification-revealing [20], inclusive [15], precise
[15], safe regression [8], and others. This paper studies
the random technique because it is practical for general

http://dx.doi.org/10.14416/j.ijast.2015.11.002

20

A. Lawanna / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 1, pp. 19–25, 2016

purpose, especially for the small test suite. Besides,
re-testable is reviewed, which the unchanged test cases
are chosen. This gives a high stability of measuring the
success of the system. Additionally, reusable technique
is used for finding the test cases that benefit to the
developer. Including the fault revealing method, this
can show the programming errors in the testing process.
As well as an execution trace that performs the high
efficiency for fixing many bugs in a code.

The same statements of problem are realized, e.g.,
the large size of the test suites, bugs increase, and testing
time consuming. The goal of offering the proposed
model, named the filtering test case selection is to give
the minimum amount of these problems compared with
those old-style processes. In addition, the estimated
testing time will be shown with the procedure and
calculation for offering the alternative decision making,
when this becomes the issue of adapting the codes.

2 Concepts of Regression Test Selection

2.1 Terms used

Table 1 is intended for understanding each technical
term used in this research paper.

Table 1: Terms used in this research paper
Term Description

P The previous program [1]
P' The modified program [1]
T Test suite of the old software [1]
T' Test suite of the adopted software [1]
t No. of test case in the original software [1]
t' The amount of the selected test cases in a modified code [1]
tr Redundant test case [2], [17]
T'r No. test case after removing the redundancy
Q Frequency (%)
n Nodes in the control flow graph [8]
G The control flow graph [8]
b Bugs or faults [6]
R Reduction Rate [1]–[5]
F Fault Rate [7]
S' Estimated testing time (hours)
S Exactly testing time required by users (days)
E' Expected no. of testers
E A real no. of testers
λ1 Random approach [13]
λ2 Re-testable [15]
λ3 Reusable [16]
λ4 Fault-revealing [19]
λ5 Execution trace [18], [21]
λ6 Filtering test case selection

2.2 Regression testing

It is a technique used in software testing, which reduce
the size of T' generated for P' by choosing t' existed in
this T'. If P' is adopted from using the P, then t' ∈ T'.
There are three main algorithms used in this concept
explained as follows;
Algorithm of the modification;
If input P then
 constitute P'
End,
Algorithm of generating a test suite for the new
program;
If there is P' then

generate T'
End,
Algorithm of selecting t'
If there is T' then

select only t' that is valid or without false
positive
End,

2.3 Re-testable

It executes the unchanged test cases of both previous
(P) and P', which tu ∈ T and T'. It avoids the errors
and the changes, which could be performed in P'.
Unfortunately, that to re-examining t' is a difficult
job to do.
Algorithm of selecting t'
If there is T' then

select only tu that is « unchanged »
End,

2.4 Reusable

It needs the reusable test cases (tr) of P', which
tr ∈ T' is considered. It focuses the reusable test
cases the new software version, which numbers
will equivalent to the previous one. Using this
algorithm may not handle the cost-effective and
errors through the whole program. Comparing this
technique to the previous methods, it gives the better
performances.
Algorithm of picking t'
If there is T' then

select only tu that is « reusable »
End,

21

A. Lawanna / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 1, pp. 19–25, 2016

2.5 Fault-revealing

It tests the sequence of the original code and builds
the control flow graph that consists of important node,
which the test cases can be performed. One problem
can be occurred, which may be about revealing the
multiple types of the faults and taking much analysis.
Algorithm of selecting t f

If modify P then
execute P'
Else If find a fault in T' then
select t f, which t f ∈ T'

End,

2.6 Execution trace

After modifying the original software, P' will be the
output that needs to be executed for finding bugs or
programming errors, which found in T'. According to
this, the maximum number of faults will be examined.
Therefore, the test cases with bugs are chosen. However,
this technique can make the complex tasks in finding
and fixing the faults.
 Algorithm of picking t'
If execute P then

record G when it is denoted as the control flow
graph of P

Else If compare P' with P then
select node (n), which n ∈ G
Else If choose tn ∈ n

End,

2.7 The proposed model for improving the ability
of the regression test selection

2.7.1 Algorithm

There are three algorithms created as followings;

Algorithm 1: Filtering a test suite

A test case (t'r) is redundant for T' if the test suite has
exercised method execution equivalent to all method
execution exercised by the test case. Suppose that there
are six test cases in a test suite as {t'1, t'2, t'3, …, t'6},
which has the value of testing requirements {4, 2, 2,
1, 2, 1} respectively [2]. Therefore, t'1 is a redundant
test case because it has the highest value of the testing

requirement, which equals 4. The reason of creating
algorithm 1 is to remove the redundant test cases,
which are produced during the process of making the
template. The testing is not affected by this activity
because they are not significant in term of checking the
programming errors. They will be covered the suitable
test cases, e.g., the utility of cases. The expectation is
to use the highest frequency of utilizing and choosing
the cases, which will be demonstrated in the algorithm
2 and 3.
Input: T'
Output: T' –t'r = T'r (1)
If t'r ∈ T'r then
 Remove t'r
End,

Algorithm 2: Classifying the range of the utilization

As shown in Table 2, it segments the test cases into
five groups depending on the frequency of using t'.
For example, if the Q equals 81–100%, this range (t'5)
can deliver the maximum number of t'. The reasons of
the segmentation are explained as follows;
(i) prepare the percent range of difference frequency
of use, which are 1–20%, 21–40%, 41–60%, 61–80%,
and 81–100%.
(ii) Utility value can be provided from (i).
(iii) Maximum value of utility is selected.
Input: T'r

Output: (2)

If 1≤Q≤20 then
t'1 ∈ T'r
Else If 21≤Q≤40 then
t'2 ∈ T'r
Else If 41≤Q≤60 then
t'3 ∈ T'r
Else If 61≤Q≤80 then
t'4 ∈ T'r
Else If 81≤Q≤100 then
t'5 ∈ T'r
End,

22

A. Lawanna / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 1, pp. 19–25, 2016

The difficulty of this algorithm is to build the rank or
the range of the exploitation, which relies on several
factors, e.g., programmers, skills, knowledge, template
or details of the test cases. For the different modifying
the software, the conditions and the software
environments may change than can yield other outcomes.

Table 2: Utility of the test cases
Q(%) Utility Output
1–20 Lowest t'1
21–40 Low t'2
41–60 Normal t'3
61–80 High t'4
81–100 Highest t'5

Algorithm 3: Selecting the appropriate test cases

The most important thing is to pick the t', which relies
on many factors. However, this algorithm considers the
results from the previous algorithm. Besides, bugs are
produced when t' = 0. Therefore, the collection of the
test case that has t' = 0 will be selected for this purpose.
Input : t'5
Output : t' = 0
When t' = 0, this means the test case that has bugs.
Accordingly, the t'5 will be selected. On the other hand,
t' = 1 when there is no bug, which is not required
because it works properly. This is because those test
cases are unchanged from the original turning to the
adopted codes.
If t' = 0 then
 Select t'
End,

2.7.2 Experiment

Seven steps of doing the experiment are listed as
follows;
Step 1: Download the subject program from http://sir.
unl.edu/php/previewfiles.php
Step 2: Get the specifications requirement from users
Step 3: Prepare P'
Step 4: Generate T'
Step 5: Remove the redundant test cases
Step 6 : Classify the test cases regarding the range of
frequency (%)
Step 7 : Select the test cases in the highest range.

2.8 Evaluation

In this part, the evaluation methods are used to
compare the capabilities of the comparative studies,
which can be checked by the ability of decreasing the
size of the chosen test case regarding the reduction rate,
fault rate, estimated testing time and testers explained
as the followings;

2.8.1 Reduction rate

One factor that is important in challenging the
motivation of creating the regression test selection
refers to using reduction rate to measure the rate of
decreasing the test suite size, while the competency is
not damaged, as indicated in the Equation (3) below,

 (3)

2.8.2 Fault rate

Bugs or faults can be produced after modifying the
codes, which are found in t' of each study. Therefore,
Equation (4) is acquired for checking the fault rate.
However, the amounts of b can be shown in the test
cases that result the failures of the testing program.

 (4)

2.8.3 Estimated testing time

This criteria is added to find the value of the S', when
S is fixed by the needs of users. According to this, the
value of t' and T' are required and used in Equation (5).

 (5)

2.8.4 Expected no. of testers

The last calculation needed in this section is shown
in Equation (6). It can help the development team to
predict the amounts of tester depending on t', T', and
the real E.

 (6)

23

A. Lawanna / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 1, pp. 19–25, 2016

3 Results and Discussion

Table 3 contributes name, abbreviation, test suite, real
testing time and numbers of tester for the programs.
In fact, T' is given and used for the regression test
selection techniques. But the value of S and E are
prepared by taking data from the real situations. For
the part of evaluation, in order to measure the S' and
E' can be done relying on Equation (5) and (6). The
results given in Table 4 are the outputs of finding the
different t' of using λ6 . For example, in a test suite of
TC, there are 257 redundant test cases. Besides, the
test cases in t'1, t'2, t'3, t'4, and t'5 are 498, 354, 289,
193, and 16 respectively. Therefore, 16 test cases are
chosen because they existed in the highest range of use
regarding the algorithm 3 of the proposed model. After
this, Table 5 describes the final results by selecting test
cases for seven programs by taking those six studies. It
interprets that using λ6 can give the smallest amounts
of t'. With this, it guarantees that the less size the
more abilities of the regression test selection. Besides,
Table 6 calculates the R by Equation (3) for all techniques.
It proves that λ6 results the highest rate compared with
others. Therefore, the highest of the reduction rate are
formed by λ6. This implies that λ6 is reasonable for
reducing and giving the smallest size. Table 7 shows
numbers of bugs reported for each technique after the
modification. Table 8 represents the description of
computing F, which λ1 is highest and λ6 is lowest for
all modified software. While, λ2, λ3, λ4, and λ5 offer the
smaller values from the left to the right of each row.
In Table 9, the estimated test time is calculated to
recommend that λ6 prefers the smallest values, while
λ1 takes longest. Besides, the results of predicting the
amounts of testers are offered in Table 10. Let’s say that
λ2, λ3, λ4, and λ5 propose the higher number of testers
than λ6, while λ1 does many errors.

Table 3: The programs used in the experiment
Name Abbr T' S E

Tcas TC 1,608 27 13
Totinfo TO 1,052 17 15
Schedule SC 2,650 17 13
Schedule2 SC2 2,710 6 18
Print-tokens PT 4,130 17 10
Print-tokens2 PT2 4,115 13 8
Replace RP 5,542 24 14

Table 4: Size of the test suites provided by λ6

t'r t'1 t'2 t'3 t'4 t'5

TC 257 498 354 289 193 16
TO 137 295 263 210 137 11
SC 292 875 663 530 265 27
SC2 352 759 705 515 352 27
PT 743 1033 867 826 578 83

PT2 864 905 864 782 617 82
RP 1108 1164 1330 942 831 166

Table 5: Numbers of the selected test case by the
comparative studies

λ1 λ2 λ3 λ4 λ5 λ6

TC 69 24 21 20 18 16
TO 64 16 15 14 13 11
SC 57 41 36 34 30 27
SC2 124 39 38 34 32 27
PT 417 120 109 106 95 83

PT2 202 122 107 102 97 82
RP 370 242 232 206 184 166

Table 6: The percent reduction rate of λ6 is greater than
the traditional studies

λ1 λ2 λ3 λ4 λ5

TC 3.44 0.51 0.32 0.25 0.13
TO 5.36 0.48 0.39 0.29 0.19
SC 1.16 0.54 0.34 0.27 0.11
SC2 3.75 0.45 0.41 0.26 0.19
PT 9.00 0.92 0.65 0.57 0.30

PT2 3.07 1.00 0.62 0.50 0.37
RP 3.94 1.43 1.24 0.75 0.34

Table 7: Bugs
λ1 λ2 λ3 λ4 λ5 λ6

TC 69 24 21 20 18 16
TO 64 16 15 14 13 11
SC 57 41 36 34 30 27
SC2 124 39 38 34 32 27
PT 417 120 109 106 95 83

PT2 202 122 107 102 97 82
RP 370 242 232 206 184 166

Table 8: Fault rate
λ1 λ2 λ3 λ4 λ5 λ6

TC 0.7681 0.3333 0.2381 0.2000 0.1111 0.0000
TO 0.8281 0.3125 0.2667 0.2143 0.1538 0.0000
SC 0.5263 0.3415 0.2500 0.2059 0.1000 0.0000
SC2 0.7823 0.3077 0.2895 0.2059 0.1563 0.0000
PT 0.8010 0.3083 0.2385 0.2170 0.1263 0.0000

PT2 0.5941 0.3279 0.2336 0.1961 0.1546 0.0000
RP 0.5514 0.3140 0.2845 0.1942 0.0978 0.0000

24

A. Lawanna / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 1, pp. 19–25, 2016

Table 9: Estimated testing time (hours)
λ1 λ2 λ3 λ4 λ5 λ6

TC 28 10 8 8 7 6
TO 25 6 6 5 5 4
SC 9 6 6 5 5 4
SC2 7 2 2 2 2 1
PT 41 12 11 10 9 8

PT2 15 9 8 8 7 6
RP 38 25 24 21 19 17

Table 10: Expected number of testers
λ1 λ2 λ3 λ4 λ5 λ6

TC 13 5 4 4 3 3
TO 22 5 5 5 4 4
SC 7 5 4 4 4 3
SC2 20 6 6 5 5 4
PT 24 7 6 6 6 5

PT2 9 6 5 5 5 4
RP 22 15 14 12 11 10

4 Conclusions

This article presents a new technique under the concept
of regression test selection, named the filtering test
case selection. By using this model, it gives the better
cost-effectiveness, which refers to the efficiency of
removing the test cases while fault rate is provided.
Besides, it shows the methods of determining the
expected testing time and number of programmers
for handling the software modification. When, it is
compared with the traditional methods mentioned in
this research. Taking the proposed model, the ability of
decreasing the sizes is approximately 2% (on average)
lower than others. Accordingly, it selects the maximum
percent of using the adopted test cases that consider the
minimum number of faults. This can aim the testers
to solve those problems in a new program. From
Table 7, the numbers of bug by using the proposed
model less than the old methods, which mean avoiding
testing overhead. The challenges of preparing the
filtering selection are to present the techniques for
minimizing testing time and testers, which can be the
recommendation for the long-run behavior of improving
the competency and preservation of the software
testing. In the future works, the interested test case
selection should be realized such as prioritization and
minimization technique.

References

[1] E. Engstrom, P. Runeson, and M. Skoglund,
“A systematic review on regression test selection
techniques,” Information and Software Technology,
vol. 52, no. 1, pp. 14–30, Jan. 2010.

[2] S. Yoo and M. Harman, “Regression testing
minimization, selection and prioritization:
a survey,” Software Testing, Verification and
Reliability, vol. 22, no. 2, pp. 1–60, 2007.

[3] E. Rogstand, L. Raiand, and R. Torkar, “Test
case selection for blak-box regression testing of
database applications,” Information and Software
Technology, vol. 55, no. 10, pp. 1781–1795, Oct.
2013.

[4] Y. C. Huang, K. L. Peng, and C. Y. Huang,
“A history-based cost-cognization test case
prioritization technique in regression testing,”
Journal of System and Software, vol. 85, no. 3,
pp. 626–637, Mar. 2012.

[5] J. Porter and P. Yu, “Regression discontinuity
designs with unknown discontinuity points:
testing and estimation,” Journal of Economics,
vol. 189, no. 1, Nov. 2015.

[6] G. Rothermel and M. J. Marrold, “Analyzing
regression test selection technique,” IEEE
Transactions on Software Engineering, vol. 22,
no. 8, pp. 529–551, 1996.

[7] H. Zhong and L. Mei, “An experimental study
of four typical test suite reduction techniques,”
Information and Software Technology, vol. 50,
no. 6, pp. 534–546, 2008.

[8] G. Rothermel, M. J. Harrold, J. Ronne, and
C. Hong, “Empirical studies of test suite reduction,”
Software Testing, Verification, and Reliability,
vol. 4, no. 2, pp. 219–249, 2002.

[9] C. T. Lin, K. W. Tang, and G. M. Kapfhammer,
“Test suite reduction methods that decrease
regression testing costs by identifying irreplaceable
tests,” Information and Software Technology,
vol. 56, no. 10, Oct. 2014.

[10] G. Dandan, W. Tiantian, S. Xiaohong, and M.
Peijun, “A test-suite reduction approach to
improving fault-localization effectiveness,”
Computer Languages, Systems and Structure,
vol. 39, no. 3, pp. 95–108, Oct. 2013.

[11] T. Y. Chen and M. F. Lau, “Dividing strategies
for the optimization of a test suite,” Information

25

A. Lawanna / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 1, pp. 19–25, 2016

Processing Letters, vol. 60, no. 3, pp. 135–141,
1996.

[12] H. K. N. Leung and L. A. Leung, “A cost model to
compare regression test strategies,” in Proceeding
ICSM, 1991, pp. 201–208.

[13] W. E. Wong, J. R. Horgan, and A. P. Mathur,
“Effect of test set minimization on fault detection
effectiveness,” Software Practiceand Experience,
vol. 28, no. 4, pp. 347–369, Apr. 1998.

[14] H. K. N. Leung and L. White, “Insight into regression
testing,” in Proceeding ICSM, 1989, pp. 60–69.

[15] I. Granja and M. Jino, “Technique for regression
testing: selecting test case sets tailored to possibly
modified functionalities,” in Proceeding CSMR,
1999.

[16] S. Bates and S. Horwitz, “Incremental program
testing usig program dependence graphs,” in
Proceeding ACM SIGPLAN-SIGACT, 1993,
pp. 384–396.

[17] D. Jeffrey and N. Gupta, “Test suite reduction
with selective redundancy,” in Proceeding
ICSM’05, 2005, pp. 549–558.

[18] H. Agrawal, J. R. Horgan, E. W. Krauser, and
S. A. London, “Incremental regression testing,”
in Proceeding ICSM, 1993, pp. 348–357.

[19] D. Leon and A. Podgursski, “A comparison of
coverage-based and distribution-based techniques
for filtering and optimizing test cases,” in
Proceeding ISSRE, 2003, pp. 442–456.

[20] G. Rothermel and M. J. Harrold, “A framework
for evaluating regression test selection
techniques,” in Proceeding ICSE, 1994, pp. 201–
210.

[21] I. Alazzam, I. Alsmadi, and M. Akour, “Test case
selection on source code features extraction,”
International Journal of Software Engineering
and Its Applications, vol. 8, no. 1, pp. 203–214,
2014.

