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Abstract

The cumulative sum (CUSUM) control chart is a well-known process monitoring tool that is sensitive to
small-to-moderate changes in process parameters. In this paper, we propose an approximated average run
length (ARL) method based on the numerical integral equation (NIE) method for monitoring the mean of a
long-memory autoregressive fractionally integrated process with an exogenous variable (ARFIX) running on a
CUSUM control chart. The approximated ARL based on the NIE method is realized by solving a system of linear
equations and integration based on the partitioning and summation of the area under the curve of a function
derived by using the Gauss-Legendre quadrature. In a comparative study with the ARL based on analytical
formulas, the proposed approximated ARL method could detect shifts of various sizes in the process mean of an
ARFIX process running on a CUSUM control chart. In addition, the proposed method was compared with their
analytical formulas in terms of the relative percentage change (#%) to verify the accuracy of the ARL results.
The results revealed that the ARL results obtained from the NIE method are an approach to analytical formulas
with 1% of less than 0.25. Hence, the NIE method is very accurate and in excellent agreement with the analytical
formulas approach. Apparently, the NIE method is an alternative as efficiently as the analytical method for this
situation. It also performed well in comparison with the approximated ARL for the same process running on an
exponentially weighted moving average control chart. In addition, real datasets are also used to demonstrate
the efficacy of the proposed method.

Keywords: Approximated ARL, Numerical integral equation, Gauss-legendre quadrature, CUSUM control
chart, ARFIX

1 Introduction

Control charts are critical for monitoring processes in the
production and manufacturing sectors. The Shewhart
control chart is the most frequently used one due to
its simplicity and excellent sensitivity to large changes
in process parameters. On the other hand, it is poor
at detecting small-to-moderate changes in process
parameters, and as a result of this limitation, researchers
have devised new control charts for this scenario,

including two well-known ones being the cumulative
sum (CUSUM) control chart [1] and the exponentially
weighted moving average (EWMA) control chart [2].

Montgomery [3] demonstrated that the CUSUM
control chart is a more efficient alternative to the
Shewhart control chart for detecting small-to-moderate
process parameter shifts. It is widely utilized in a wide
range of fields and operations, including healthcare,
manufacturing, credit card fraud detection, weather
monitoring, and stock exchange trading.
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The average run length (ARL) is the most widely
used measure for evaluating control chart performance.
To monitor a process efficiently, the in-control ARL
(ARL,) should be as large as possible, while no
shift in the process parameter occurs and the out-of-
control ARL (ARL,) should be as small as possible
when a shift in the process parameter occurs [4]. The
current study aims to establish an approximation of the
ARL by using the numerical integral equation (NIE)
method for a process running on a CUSUM control
chart.

Autocorrelation is a naturally occurring
phenomenon that can have a significant effect on the
performance of a control chart [S]—[7]. Nevertheless,
it must be appropriately modeled and monitored. Jiang
[8] analyzed the ARL of an autoregressive (AR) moving
average (MA) (ARMA) control chart viaan ARMA(1,1)
model, while Lu and Reynolds [9] investigated the
performance of a first-order AR (AR(1)) process
running on a CUSUM control chart.

Several models of random processes with a time-
series element have been developed. Autoregressive
models have been applied in a wide variety of sectors.
Yue and Pilon [10] examined annual mean daily
streamflow data from 15 watersheds by using a linear
trend in an AR(1) process. In Hamed's [11] study,
hydrologic data was represented as an AR(1) process
with a linear trend. In addition, Karaoglan and Bayhan
[12] conducted a case study using a trend-stationary
AR(1) model to determine the peroxide values of
stored vegetable oil. Thus, a control chart can be used
to examine the trend in an AR(1) model.

When constructing a model, it is extremely
important to measure observational errors that defined
as the difference between the actual and approximated
values. Inferring a more efficient model requires small
errors. White noise (or normally distributed white
noise) is a broad term that refers to the errors in a time-
series model with autocorrelated observations. An AR
model with normally distributed white noise is a time-
series model that is often used in many fields, such as
economics [13]. However, white noise can be non-
normally distributed, most commonly as exponential
[14]-[18].

The above-mentioned models are for short-
memory processes. For long-memory processes, we
use the advanced concept of fractional integration
when modeling, which has led to the development

of multiple models, the most popular of which
is the AR fractionally integrated MA(ARFIMA)
model introduced by Granger and Joyeux [19].
ARFIMAX is an extension of ARFIMA with an
exogenous variable [19], [20]. Ebens [21] proposed
using an ARFIMAX model to predict changes in a
Dow Jones Industrial Average portfolio and discovered
correlations between econometric models and
economic indicators (variables) that affect economic
forecasting. Government investment policies, currency
rates, interest rates, and inflation rates are all
examples of exogenous variables that are independent
of other variables in the system. These variables
affect the econometric model's forecasting capability.
If an exogenous variable is included in any sort of
forecasting, the predictive power of the model will
be greater than without it.

Numerous control charts have been used to
construct models with a focus on the fractional
integration process with time-series components. For
example, Ramjee [22] used correlated data in Shewhart
and EWMA control charts with an ARFIMA model.
Although process shifts could be detected, the two
control charts were found to be inefficient. Later,
Ramjee ef al. [23] introduced the forecast-based
hyperbolic weighted MA(HWMA) control chart with
a non-stationary ARFIMA model. Pan and Chen [24]
used control charts for autocorrelated data based on
ARFIMA and AR integrated MA(ARIMA) models to
monitor the air quality in Taiwan; they determined that
the control chart based on the ARFIMA model is more
efficient than that based on the ARIMA model. Rabyk
and Schmid [25] suggested the EWMA control chart
for detecting changes in the mean of a long-memory
process. The control was derived from the results
of computations performed on an ARFIMA(p, d, q)
process. Meanwhile, the current study focuses on
the application of a CUSUM control chart to detect
changes in the mean of a long-memory AR fractionally
integrated process with an exogenous variable
(ARFIX).

In the literature, Monte Carlo simulation, the
Markov chain approach, explicit formulas, and
integral equations are the primary approaches for
computing the ARL. For example, Muhammad [26]
and Muhammad et al. [27] employed the Monte Carlo
simulations to evaluate the ARL on mixed HEWMA
and CUSUM control chart for the Weibull distribution.
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Brook and Evans [28] used the Markov chain
approach to investigate the run length properties
of a CUSUM control chart under the assumption
of independent and identically distributed (i.i.d.)
observations. Hawkins [29] improved the Markov
chain approach by using Richardson extrapolation
for an entire family of distributions including the
Chi-squared distribution. Champ and Rigdon [30] used
integral equations to determine the ARL. Fredholm
integral equations of the second kind have been
employed as part of the NIE approach used to calculate
the ARL [31]. Acosta-Mejja ef al. [32] recently used
an integral equation approach for the ARL numerically
approximated using the Gauss-Legendre quadrature.
Note that the sample variance has a skewed right
Chi-squared distribution that is constrained to the half-
real line. Knoth [33] proposed utilizing a piecewise
collocation method rather than the Gauss-Legendre
quadrature to approximate the ARL. Numerical
integration (or quadrature) is frequently referred to
as a way of approximating the integral. The midpoint
rule, the composite trapezoidal rule, the composite
Simpson's rule, and the Gaussian rule are all examples
of the quadrature that can be used to approximate
integral equations. Indeed, approximating the ARL
by using the integral equation technique with the
midpoint rule is of great importance [34], [35].

In this study, an approximated ARL was computed
by using an NIE method via the Gauss-Legendre
quadrature for a CUSUM control chart running
a long-memory ARFIX process with exponential
white noise. The goal of the control chart is to detect
changes in the mean of a long-memory ARFIX
process with emphasis on exogenous variable X.

The rest of this article is organized as follows.
Materials and methods are presented in Section 2. We
provide a brief explanation of the CUSUM control
chart, EWMA control chart, and long-memory
ARFIX(p,d,r) processes with exponential white
noise. Moreover, approximated ARL via the NIE
method for an ARFIX(p,d,r) process running on a
CUSUM control chart is proposed. A comprehensive
numerical evaluation, comparison and provides an
example of using real data to illustrate the efficacy of
the proposed method. The performance comparison
of CUSUM and EWMA control chart running an
ARFIX(p,d,r) process is presented in Section 3, and
some concluding remarks are given in Section 4.

2 Materials and Methods

2.1 The CUSUM and EWMA control charts and the
long-memory ARFIX(p, d, v) model with exponential
white noise

The CUSUM statistic can be obtained from the
following recursive Equation (1):

C, =max{C_ +Y, -k, 0},1=12,.., €))
Where £ is a suitably chosen positive constant termed
the reference value for the chart and Y, is the sequence
of a long-memory ARFIX(p, d, r) process with
exponential white noise. Starting value C,= y, where y
is the initial value. The EWMA statistic can be written
as Equation (2)

Z,=(01-p)Z _ +yY, t=12,.., 2)

where y € (0,1]is a smoothing parameter. The starting
value is Z, = Y,. The EWMA control chart performs
sensitively for small process parameter shifts and small
values of y The upper control limit (UCL), control
limit (CL), and lower control limit (LCL) to detect
the sequence are respectively given by Equation (3)

UCL=p,+ Lo | —[1-(1-p)*],
2-y
CL::uOf (3)
/4 2
LCL =u, Lo |—L—1-a-p*],
Hy 2_7[ (1=

where L is the width of the CLs for the EWMA control
chart (i.e., it is used to control the in-control ARL) and
and y, are o the process mean and standard deviation,
respectively. In practice, ARL, is fixed at either 370
or 500.

As mentioned previously, Y, is the sequence of a
long-memory ARFIX(p, d, r) process with exponential
white noise. This model can be derived by using the
following recursive equation:

4,(B)(1—=B)' (¥, — ) = ZwX ‘s, )

where terms ¢ (B)=1-¢B—¢,B’ —..—¢ B’ are
AR polynomials in backward-shift operator B (i.e.,
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B'Y,=Y,, for the ¢" order), 1 is the constant process
mean, ¢, is a white noise process assumed to follow
exponential distribution ¢, ~ Exp(f), (1 — B)? is a
fractional difference operator subjected to a binomial
series expansion [20], [36], and d is the degree of
differencing parameter. The values for d are interesting
in the context of long-memory processes as they are
restricted to the range of (0, 0.5) (i.e., non-integer).

Remark: An ARFIMAX(p, d, q, r) process [36]
when ¢ = 0 is an AR fractionally integrated process
with an exogenous variable denoted as ARFIX(p, d, r),
which is the main goal of the present work.

Equation (4) for a general long-memory
ARFIX(p, d, r) process with exponential white noise
running on a CUSUM control chart can be rewritten
as Equation (5)

Vo= u+g¥  +9 Y, +..+9Y
+d(Y;71 _¢1Y172 _¢2th3 _~~-_¢th7p71)

1
+Ed(d_1)(_Yt—2 +¢]Yt73 +¢2}It—4 +"'+¢p)]t7p72)
®)

+.t+to X, +to, X, +.+0,. X, +¢

where ¢, is an AR coefficient (-1 <¢,<1;i=1,2,...,p)
and w, are coefficients corresponding to 7. The initial
value of a long-memory ARFIX(p, d, r) process must
satisfy Y.\, Yoo,y Yoo Y inypeer Xipp Xopoenoy X, are
equal to 1, and the initial value of exponential white
noise g, = 1

Let 7, be the stopping time of the CUSUM chart
with a predetermined threshold of H given as follows

Equation (6)
r, =inf{r>0;C,> H}, (6)
for H > y where H is the upper control limit (UCL).

2.2 The approximate ARL based on the NIE method
for a CUSUM control chart

Here, the ARL is approximated by using the NIE
method based on a Fredholm’s integral equation of the
second kind [31]. As is known, the NIE method can be
applied by using the Gauss-Legendre quadrature and
numerically computing the integral equation.

Let P_and E, denote the probability measure and
induced expectation corresponding to the initial value

w respectively. A process on a CUSUM control chart
starts with the initial value y and the initial value for
monitoring with the CUSUM control chart statistic
is Cy, = y; 0 <y < H. Meanwhile, the function /(i)
denotes the ARL of a long-memory ARFIX(p, d, r)
process running on a CUSUM control chart. Thus,
Uw)=E,(r,) < satisfies the following integral
equation:

() =1+P{C, = 0}(0)+E [[10 < C, < H}((C)]. (7)

where C, is the first observation for which
1{0 < C} < H} is an indicator function.

Equation (7) is the integral equation for
computing the ARL of an upper-sided CUSUM control
chart by using a Fredholm integral equation of the
second kind [31]. Thereby, /() can be written in the
form Equation (8)

W)= 1+ O F -y =)
Y SRR A S
R8T
DT+ YA BT bt Y

8
-0 X, —0,X, —.—0.X, —¢)du, ®)

where f{.) and F(.) are the probability density function
(pdf) and cumulative distribution function (cdf) of
g, respectively, which can both be approximated
numerically.

The integral equation in Equation (9) is used as
the basis for calculating the ARL obtained by using the
method and the analytical formulas in the following
subsection.

2.2.1 The approximated ARL by using the NIE method

This is a new approximated ARL by using the NIE
method for a CUSUM control chart running a long-
memory ARFIX(p, d, r) process with exponential white
noise. The conventional Gauss-Legendre quadrature
rule technique can be used to approximate the ARL
quite accurately

Obtaining numerical solutions can be accomplished
by using the Gauss—Legen[gre quadrature rule technique
in Equation (9). Integral I , f(u)du can be approximated
by the sum of the areas of rectangles with bases H/m
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and heights chosen as the values of f'at the midpoints
of intervals with length A / m beginning at zero.
Interval [0, H] is divided into partitions 0 < @, < ...
<a,<H,whilew,=H/m;j=1,2,.., m are sets of
constant weights. The summation form to obtain the
approximation for the integral is as follows:

(W fedu= 3w f(a).

where W(u) is a weight function, and aj=%( Jj —%)

Function /™ (y) provides the approximated ARL
by using the NIE method via the Gauss-Legendre
quadrature on interval [0, H] The system of linear
equations with m unknowns can be transformed into
an integral equation. Therefore, the integral equation
comprises set /" (y) =" (a),..., 1" (a,), which
can be approximately derived as

é NIE

" (a)) = 1+[NIE(01)[F(k_a1 —H=¢Y =t PY,
_d(thl _¢1Yt—2 _"'_¢perp*1)

1
@D L+ Yt G, )

-p

—. =X,
w flk—pu—4Y, _---+¢pYr—p
_d(YH _¢1Yz—2 _"'_¢le*p71)
1
_Ed(d “DEY L+ AY 4 )

—m0 X, —..—0X, )]

——0, X, —&,

+zwj'€N1E(aj).f(aj th—a,—u-¢4Y,,
=)

et Y, —d(Y =Y =Y )
1

_Ed(d D LAY 44 Y )

om0 X, —..—0.X, —¢),

" (a,) = 1+ (@) Flk—a, —u— @Y, —..+4,Y,,
_d(YH _¢1Yz—2 _"'_¢le*pfl)
1
—dd DT+ B+t d Y, 0)

—.—wX,
twfla+k—a,—pu-@Y -+ ¢th—p
—dY_ =Y =Y )

1
@D L+ Yt Y, )

-0, X, —¢

—m 0 X~ 0,X, — )]
+§wijE(aj)f(aj +k—a,—u-¢Y_,
R A (R A B AN
—%d(d ST BTt BT )

—m0 X, —..—0,X, —¢&,),

This can be rewritten in matrix form as

I4m><l = lmxl + Rmxmmel ’ (9)

where L,,,, = Hf (@), 07 (@), £ (a,)]
1

. NIE

1, = [1, 1,...,1] is a column vector of £ (a, ) and ones,
and R, ., is a matrix with dimensions m x m written as

M Ny o N

12 12 12

21 22 : 2m

Rme = : . b

rml rmZ rmm
for

r,=Flk—a,—p-¢Y —.+9,Y_,
_d(Yt—] _¢1Yr—2 _"'_¢pYr—p—1)
1
BT R SR ER LAY

——0 X, —..—0X, —¢€)
+w,f(a, +k—a,— =Y, —..+4,7,
_d(Yt—l _¢1er2 _"'_¢th7p71)

1
_Ed(d _1)(_Y;72 +¢1Y;73 +..+ ¢p}/l*p*2)

-p

——0 X, —..—0X, —¢),
where i, j =1, 2,...,m. The matrix form in Equation (10)
can be reformatted equivalently as

(Im _Rmxm )mel = 1m><1’

where I, = diag(1,1,...,1) is unit matrix order m.
If I,-R,,,) is invertible and exists, then the
approximated ARL via the NIE method for the integral
equations in the matrix is provided as follows:

L=, -R, )L, (10)

mxm
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where L, =[("(a), (" (a,),..., 1" (a,)] after
computing ¢V (a,), (" (a,), ..., " (a, ), and replacing
a,; by y, respectively.

Hence, the approximated ARL via the NIE
derived by using the Gauss-Legendre quadrature rule
on a CUSUM control chart can be expressed as

)= 15 O @) E kg — =Y, et 4,
AV =Y =m0
—%d(d DY ,+4Y s+ +0,Y, )
—.—0oX,
#2000 fa, kY
Y, A BT Y, )

1
_Ed(d - 1)(_Yt—2 + ¢]Yr—3 +..t ¢pYr7p72)

——0, X, —€)

——0 X, —..—0X, —¢),

(11)

. H H 1
withw; =— and a, :—(j——j ;J=L2,...,m.
m T m 2

2.2.2 The analytical ARL by using explicit formulas

The analytical ARL derived using explicit formulas
for a process running on a CUSUM control chart can
be written as

k(@Y 1+ Y o+
+d (Y= ~fpiep1)
A

%d(dq WYt

“pliop-2)etorXiptte) |

)= e (1-AH)+e et

where % (w) is used for the in-control ARL (ARL,)
process and detecting changes in the process mean
(ARL)). It can be written as

(Al 1Yy
+d (Yo ==fp¥i—p-1)
ol
+d (d-1)(=Y-+

+PpYip-2) et O X Hockey) +igH Jow

(- H)+e —e™

EF >
()=

k=(pr Yo+ Yo+

+d(Yo1==bpYi—p-1)
1

-%rl(xl*l)&*y, 2+ (1 2)

Ay

—e 1 s

Y p-2 Vot e X+t )
Ppti—p-2 A X1e l/‘rilH

MM1-AH)+e

3 Results and Discussion

For a long-memory ARFIX(p, d, r) process, we
assumed that the white noise is exponentially
distributed where the mean parameter of the exponential
is f for ARFIX(p =1, d = 0.2, » = 1) running on a
CUSUM control chart for k= 3.0, 3.5, or 4.0, the values
of H were calculated by using Equation (11) or (12)
as H = 3.96709, 3.26334, and 2.67966, respectively
(Table 1). Consequently, each combination of (k, H)
was used in computations for ARL, = 370 or 500.
Moreover, A = 4, = 1 for the in-control ARL process
while 4, = (1 + J)4, for out-of-control process, for
0 < < 1. For the out-of-control process, the shift
size (J) was set as 0 = 0.01, 0.03, 0.05, 0.07, 0.10,
0.30, 0.50, 1.00, 2.00, or 4.00. The out-of-control
performance results for the CUSUM control chart
running a long-memory ARFIX(p, d, ) process with
exponential white noise are given in Tables 2 and 3.
These results are approximated via Equation (11) by
using the Gauss-Legendre quadrature rule with the
number of division points m = 800 nodes by solving
the system of linear equations.

3.1 Comparison of the approximated and analytical
ARLs for a long-memory ARFIX(p, d, r) process
with exponential white noise running on a CUSUM
control chart

The performance comparison is expressed by calculating
the relative percentage change (#%) as follows:

) =" ()

%) =
. )

x100%,

where (M (y) and ¢ () are the predefined ARL,
=370 or 500 approximated via the NIE method and
derived by using the explicit formulas, respectively.

The values of CL (H) on a CUSUM control chart
for k = 3.0, 3.5, or 4.0, and coefficient parameters
¢, = 0.10, ¢, = 0.20, ¢, = 0.30, and w, = 0.20 for
ARL, = 370 or 500 are reported in Table 1. It
was found that as k increases, H decreases on the
CUSUM control chart for all of the long-memory
ARFIX(p ,0.2, 1) models. When p was changed from
1 to 3, the findings indicate that p increased and H
increased for each value of £.
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Table 1: The values of CL H of the CUSUM chart in the zero-state case for ARL, = 370 or 500, A = 1, and
k=3.0,3.5,0r4.0

ARFIX(p, 0.2, 1) Coefficient Parameters ARL, k
¢, 9, N w, 3.0 3.5 4.0
p=1 0.1 - - 0.3 370 3.967090 3.263340 2.6796600
500 4.317200 3.585383 2.9911290
p=2 0.1 0.2 - 0.3 370 4.205980 3.435022 2.8303901
500 4.573657 3.761815 3.1439600
p=3 0.1 0.2 0.3 0.3 370 4.670457 3.713077 3.0641010
500 5.101390 4.050036 3.3817230

Table 2: Comparison of the ARLs obtained by using the NIE method and explicit formulas for a long-memory
ARFIX(p, 0.2, 1) process running on a CUSUM control chart when ARL, = 370

2
ARFIX k ARL 1
®,0.2,1) 1.01 1.03 1.05 1.07 1.10 1.30 1.50 2.00 3.00 5.00

p=1 3.0 | " (y) | 345.444 | 303.592 | 268.131 | 237.922 | 200.516 | 78.869 | 40.300 | 14.204 | 5.483 2.740
% () | 346.186 | 304.224 | 268.672 | 238.388 | 200.891 | 78.980 | 40.343 | 14.213 5.485 2.741

% 0.21 0.21 0.20 0.20 0.19 0.14 0.11 0.06 0.04 0.04
3.5 | " y) | 346.888 | 307.171 | 273.246 | 244.119 | 207.720 | 85.601 | 44.786 | 15.893 5.901 2.811

5 () | 347.544 | 307.737 | 273.737 | 244.548 | 208.072 | 85.717 | 44.835 | 15.904 | 5.903 2.811

% 0.19 0.18 0.18 0.18 0.17 0.14 0.11 0.07 0.03 0.00
4.0 | M) | 347.638 | 308.950 | 275.782 | 247.205 | 211.340 | 89.230 | 47.348 | 16.973 6.214 2.881

() | 348.193 | 309.432 | 276.204 | 247.575 | 211.645 | 89.331 | 47.394 | 16.984 | 6.216 2.882

% 0.16 0.16 0.15 0.15 0.14 0.11 0.10 0.06 0.03 0.03
p=2 3.0 | M (w) | 344.762 | 301.880 | 265.691 | 234.980 | 197.126 | 75.875 | 38.399 | 13.555 5.347 2.726

% () | 345.518 | 302.519 | 266.235 | 235.445 | 197.497 | 75.979 | 38.438 | 13.562 | 5.348 2.727

% 0.22 0.21 0.20 0.20 0.19 0.14 0.10 0.05 0.02 0.04
3.5 | " (y) | 346.596 | 306.463 | 272.235 | 242.893 | 206.288 | 84.218 | 43.838 | 15.516 | 5.800 2.791

() | 347.278 | 307.049 | 272.743 | 243.335 | 206.649 | 84.335 | 43.887 | 15.527 | 5.802 2.792

% 0.20 0.19 0.19 0.18 0.17 0.14 0.11 0.07 0.03 0.04
4.0 | M) | 347.474 | 308.571 | 275.243 | 246.549 | 210.569 | 88.436 | 46.779 | 16.724 | 6.139 2.863

5 () | 348.057 | 309.076 | 275.684 | 246.935 | 210.887 | 88.545 | 46.826 | 16.735 6.141 2.864

% 0.17 0.16 0.16 0.16 0.15 0.12 0.10 0.07 0.03 0.03
p=3 3.0 | M) | 343.059 | 297.542 | 259.522 | 227.575 | 188.658 | 68.769 | 34.077 | 12.203 5.107 2.719

" () | 343.805 | 298.159 | 260.035 | 228.004 | 188.989 | 68.843 | 34.100 | 12.206 | 5.107 2.719

% 0.22 0.21 0.20 0.19 0.18 0.11 0.07 0.02 0.00 0.00
3.5 | M (w) | 346.045 | 305.103 | 270.291 | 240.536 | 203.545 | 81.634 | 42.105 | 14.856 | 5.634 2.762

1% (y) | 346.762 | 305.718 | 270.821 | 240.994 | 203.917 | 81.749 | 42.152 | 14.866 | 5.636 2.763

% 0.21 0.20 0.20 0.19 0.18 0.14 0.11 0.07 0.04 0.04
4.0 | M) | 347.181 | 307.877 | 274.255 | 245.346 | 209.156 | 87.016 | 45.771 | 16.296 | 6.014 2.835

% () | 347.805 | 308.417 | 274.724 | 245.757 | 209.494 | 87.129 | 45.819 | 16.308 | 6.016 2.835
% 0.18 0.18 0.17 0.17 0.16 0.13 0.10 0.07 0.03 0.00
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Table 3: Comparison of the ARLs obtained by using the NIE method and explicit formulas for a long-memory
ARFIX(p, 0.2, 1) process running on a CUSUM control chart when ARL, = 500

(lil;l;{)i) k ARL 1.01 1.03 1.05 1.07 1.10 T 1.30 1.50 2.00 3.00 5.00
p=1 3.0 | M(p) | 464.737 | 405.057 | 354.893 | 312.488 | 260.462 | 96.456 | 47.258 | 15.722 | 5.843 2.862
" () | 465.827 | 405.976 | 355.672 | 313.153 | 260.99 | 96.601 | 47.311 | 15.732 | 5.844 2.862

% 0.23 0.23 0.22 0.21 0.20 0.15 0.11 0.06 0.02 0.00

3.5 | M (w) | 467.003 | 410.672 | 362.879 | 322.113 | 271.559 | 106.356 | 53.63 17.93 6.373 2.947

" () | 467.967 | 411.506 | 363.598 | 322.735 | 272.065 | 106.513 | 53.695 | 18.003 6.375 2.948

% 0.21 0.20 0.20 0.19 0.19 0.15 0.12 0.41 0.03 0.03

4.0 | (M) | 468.145 | 413.385 | 366.732 | 326.777 | 276.989 | 111.561 | 57.194 | 19.415 6.765 3.031

1" (y) | 468.981 | 414.107 | 367.358 | 327.322 | 277.436 | 111.708 | 57.256 | 19.429 | 6.768 3.031

% 0.18 0.17 0.17 0.17 0.16 0.13 0.11 0.07 0.04 0.00

p=2 3.0 | M (y) | 463.604 | 402.229 | 350.887 | 307.689 | 254.981 | 91.852 | 44.440 | 14.815 5.663 2.844
() | 464.713 | 403.155 | 351.665 | 308.347 | 255.497 | 91.982 | 44.485 | 14.822 | 5.664 2.844

% 0.24 0.23 0.22 0.21 0.20 0.14 0.10 0.05 0.02 0.00

3.5 | (M) | 466.558 | 409.586 | 361.335 | 320.247 | 269.397 | 104.357 | 52.305 | 17.491 6.247 2.924

() | 467.566 | 410.447 | 362.075 | 320.886 | 269.914 | 104.514 | 52.368 | 17.504 | 6.249 2.924

% 0.22 0.21 0.20 0.20 0.19 0.15 0.12 0.07 0.03 0.00

4.0 | (M) | 467.896 | 412.808 | 365.914 | 325.787 | 275.834 | 110.428 | 56.403 | 19.087 6.67 3.009

% () | 468.769 | 413.561 | 366.566 | 326.354 | 276.298 | 110.579 | 56.466 | 19.101 6.673 3.01

™% 0.19 0.18 0.18 0.17 0.17 0.14 0.11 0.07 0.04 0.03

p=3 3.0 | M (y) | 460.48 | 394.321 | 339.721 | 294.38 | 239915 | 79.897 | 37.464 | 12.776 | 5.325 2.835
0 (y) | 461.562 | 395.194 | 340.429 | 294.959 | 240.347 | 79.973 | 37.481 | 12.776 | 5.325 2.835

% 0.23 0.22 0.21 0.20 0.18 0.10 0.05 0.00 0.00 0.00

3.5 | M) | 465.698 | 407.466 | 358.32 | 316.612 | 265.199 | 100.58 | 49.857 | 16.608 | 6.036 2.889

1" () | 466.755 | 408.364 | 359.087 | 317.269 | 265.729 | 100.734 | 49.917 16.62 6.038 2.889

% 0.23 0.22 0.21 0.21 0.20 0.15 0.12 0.07 0.03 0.00

4.0 | M (w) | 467.452 | 411.753 | 364.416 | 323.972 | 273.719 | 108.391 | 55.003 | 18.523 6.514 2.975

" () | 468.381 | 412.551 | 365.105 | 324.571 | 274.207 | 108.546 | 55.067 | 18.537 | 6.516 2.977

% 0.20 0.19 0.19 0.18 0.18 0.14 0.12 0.08 0.03 0.07

The numerical results for approximated ARL
obtained via the NIE method and analytical ARL by
using explicit formulas for the out-of-control ARL
for detecting changes in the process mean (1, > 4,)
are reported in Tables 2 and 3. The results indicate
that the ARLs derived by using the NIE method and
explicit formulas tended to decrease more rapidly
as the magnitude of the process mean change (/,)
increases, the decreasing order being long-memory
process models ARFIX(p=1,0.2,1), ARFIX(p=2,0.2, 1)
and ARFIX(p = 3, 0.2, 1) Bearing in mind that a

good performance of the CUSUM control chart
requires the ARL, value to be as small as possible,
we observed that for long-memory ARFIX(p, 0.2, 1)
processes, ARL, reduces rapidly for a small process
mean change (1.01 <2, < 1.10) and continues to do so
for a moderate process mean change (1.10 <4, <5.00).
Moreover, the performances with the ARFIX(p=3,0.2, 1)
model were lower than with ARFIX(p =2,0.2, 1) and
ARFIX(p =1, 0.2, 1) for each reference parameter
(k) level (Table 2 for ARL, = 370 and Table 3 for
ARL, = 500). Moreover, the associated reference

D. Bualuang and W. Peerajit “Performance of the CUSUM Control Chart Using Approximation to ARL for Long-Memory Fractionally

Integrated Autoregressive Process with Exogenous Variable”



Applied Science and Engineering Progress, Vol. 16, No. 2, 2023, 5917 9

value is inversely proportional to A and directly
proportional to the out-of-control ARL (ARL))
obtained by using both methods. In addition, for
ARL, =370 or 500, when comparing the ARL, values
for k= 3.0, 3.5, or 4.0 the model with the lowest &
value most quickly detected a change in the process
mean. The percentage change (%) results calculated
at various magnitudes of process mean changes for the
three long-memory ARFIX(p, 0.2, 1) processes were
less than 0.25, indicating that the proposed method
is very accurate and in excellent agreement with the
explicit formulas approach.

The summary of the NIE method is based on
the results for evaluation of ARL and comparison
between approximated ARL and analytical ARL
for monitoring the mean of a long-memory ARFIX
running on a CUSUM control chart. The solution of
the integral equation can be approximated ARL using
of Gauss-Legendre quadrature rule [30]. The results
show that the NIE method is an easier alternative to
ARL calculations which represent the accuracy of the
ARL [34], [35]. However, the Gauss-Legendre rule
provided the simplest ARL calculation and achieved
the highest accuracy for the given number of nodes.
In the case of a large number of nodes, analytical ARL
derived using explicit formulas is an alternative for the
evaluation of ARL [36]-[38].

3.2  Anexample using real data on a CUSUM control
chart to monitor changes in the process mean

This subsection presents real data using the NIE
method on a CUSUM control chart to monitor changes
in the process mean were applied to two types of data.
The first example was a real dataset of Mutual Fund:
K Positive Change Equality Fund - A(A) (abbreviation
K-CHANGE-A(A)) for the Kasikorn bank in Thailand
with the exogenous variable being the exchange rate
and the second one is the data were taken from the
commodity market of gold futures price with the
exogenous variable being the exchange rate is used to
illustrate the CUSUM control chart’s efficacy.
Example 1: The dataset represents K-CHANGE-
A(A) (source: https:// kasikornasset.com/TH/mutual-
fund/fund-template/Pages/K-CHANGE-A(A).aspx)
with the exogenous variable being the exchange
rate for USD/THB (source: https://th.investing.com/
currencies/usd-thb-historical-data) consisted of 161

observations collected daily (5 days per week) from
20 November 2020 to 6 August 2021.

Example 2: The dataset is given by the
commodity market of gold futures price (source:
https://th.investing.com/commodities/gold) with the
exogenous variable being the exchange rate for USD/
THB. This dataset contains 146 observations collected
daily (5 days per week) for the period of 23 June 2020
to 13 January 2021.

For modeling purposes, the Eviews 10 statistical
software package was used to filter and estimate the
model parameters. Significant p-values for the best-
fitting long-memory ARFIX(p, d, r) process are shown
in Table 4.

Table 4: ARFIX(p, d, r) model fitting for the example
dataset 1 and 2 with the exogenous variable as the
exchange rate of USD/THB dataset

Example | Variable | Coefficient | Std. Error | t-Statistic Prob.
1 USD 0.676247 | 0.035190 | 19.21720 0.0000

d 0.221642 | 0.107682 | 2.058290 0.0412

AR(1) | 0937123 | 0.053237 | 17.60269 0.0000

2 USD | —108.1627 | 19.86484 | —5.444932 | 0.0000

d 0.499999 | 6.57E-10 | 7.61E+08 0.0000

AR(1) | 0.475489 | 0.082231 | 5.782335 0.0000

AR(2) | 0.297705 | 0.081395 | 3.657533 0.0004

The results in Table 4 reveal that the probability
for variable X was significant (0.05; p-value = 0.0000),
which indicates that the exchange rate does impact the
Mutual Fund for K-CHANGE-A(A) and the commodity
market of gold futures price. It can also be seen
that the dataset 1 is suitable for a long-memory
ARFIX(1,0.221642, 1) process by presenting statistically
significant parameters with coefficients ¢, = 0.937123,
,=0.676247. Likewise dataset 2 is suitable for a long-
memory ARFIX(1, 0.499999, 1) process by presenting
statistically significant parameters with coefficients
¢,=0.475489, ¢, = 0.297705, w, = 108.1627 and the
residual series behaving as white noise.

Table 5 reports the results of testing whether
the distribution of the white noise is exponential
according to the Kolmogorov-Smirnov test by using the
SPSS software package. In the null hypothesis test, the
white noise was found to be significantly exponentially
distributed (p-value > 0.05) with a mean of 0.2193
and 14.5106 for dataset 1 and 2, respectively when the
process was in-control.
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Table 5: Testing the distribution of the white noise
for the example dataset 1 and 2 with the exogenous
variable as the USD/THB exchange rate dataset

Alternative Hypothesis: Two-Sided
Example | Exponential One-Sample A.syr.nptotic
Parameter Kolmogorov- Significance
Smirnov Test (2-Sided)
1 0.2193 1.289 0.072*
2 14.5106 0.986 0.286*

According to the results in Tables 4 and 5, the
long-memory ARFIX(p, d, r) process consists of the
following equations:

This dataset 1 demonstrates the long-memory
ARFIX(1, 0.221642, 1) process is
Y= @Y —0221642(Y, , + 4, ,)+0.086258(Y,_, -4 Y, ;)

+0.05113278(Y,_, —4,Y_,) +0.676247X, + &
where &~ Exp(4, = 0.2193).

The dataset 2 represent long-memory

ARFIX(2, 0.499999, 1) process is

Y= ¢Y  +¢,Y ,+0499999(Y,_, -4Y,_, -7, ;)
+0.12499(Y_, -4 Y, - 4,Y,_,)
+O~06250(Y;-3 _¢1Y;-4 _¢2Y;-5)
-108.1627X, +¢,

where &~ Exp(A, =14.51006).

3.3 Performance comparison of CUSUM and EWMA
control chart running an ARFIX(p, d, r) process

Here, the approximated NIE of the CUSUM control chart
is compared with that of the EWMA control chart. The
approximated ARLs of the CUSUM and EWMA control
charts can both be obtained by using the NIE method.

For the CUSUM control chart, when k£ = 3.0 the desired
ARL, is setas 370 and H=0.487876 and 25.71797 are
computed for long-memory ARFIX(1, 0.221642, 1)
and ARFIX(2, 0.499999, 1) processes, respectively.
The results summarized in Table 6 for the ARL obtained
with the NIE method for a CUSUM control chart are
clearly consistent with those in Tables 2 and 3.

The numerical results were obtained from the
method for all cases when detecting small-to-moderate-
sized changed in the process mean. The smoothing
parameter for the EWMA control chart is y € (0, 1],
[3], with the recommended value being 0.05 <y <0.25.
In this study, y = 0.05 for dataset 1 and y = 0.07 for
dataset 2 were selected for the corresponding control
limits of the EWMA control chart for the desired ARL,,
For simplicity, ARL, was set as 370. The method
to compute the approximated ARL for the EWMA
control chart is similar to that of Sunthornwat et al.
[38]. The ARL, values for the CUSUM and EWMA
control charts for the process mean shift values (J)
varying from 0.01 to 1.00 are reported in Table 6. It is
noteworthy that, the first example on upper-sided
CUSUM control chart when &k = 3.0 is relatively
effective for shifts 6 = 0.07-1.00. For instance,
when £ = 3.0 and 6 = 0.07, the ARL, = 71.823 of the
upper-sided CUSUM control chart is smaller than
the ARL, = 71.929 of the EWMA control chart when
y = 0.05. Irrespective of the value of 6 the ARL,
values of the upper-sided CUSUM control chart were
generally smaller than the ones of the upper-sided
EWMA control chart, especially for moderate shifts
(0=0.07-1.00). Example 2, the upper-sided CUSUM
control chart when £ = 3.0 is relatively effective for
shifts 6 =0.50—1.00. The results reveal that of proposed
approximated ARL via the NIE method fora CUSUM
control chart is very accurate for moderate shifts.

Table 6: Comparisons of ARLs obtained using the NIE method for both the CUSUM and EWMA control charts
running ARFIX Long Memory (1, 0.221642, 1) and ARFIX(2, 0.499999, 1) are derived from the example 1

and 2, respectively, where ARL, =370

Example Control Parameters Shift Sizes ()
P Chart 0.01 0.03 0.05 0.07 0.10 0.30 0.50 1.00
k =3.0,
1 CUSUM | 4= 0487876 | 276-630 | 165.061 | 105796 | 71.823 | 43.768 6.819 3.174 1.656
7=10.05,
EWMA | |70 ia7306 | 276420 | 164.885 | 105.776 | 71.929 | 43.980 6.970 3.234 1.656
k =3.0,
, CUSUM | 525571597 | 368407 | 365.249 | 362.126 | 359.038 | 354.470 | 325.876 | 300.228 | 246.755
EWMA Lyjlo-g%z)’g 368.406 | 365.248 | 362.124 | 359.035 | 354.466 | 325.875 | 300.244 | 246.849
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Figure 1: Shifts in the mean running on an upper-sided
CUSUM control chart for ARL, = 370 of (a) long-
memory ARFIX(1,0.221642, 1) process and (b) long-
memory ARFIX(2, 0.499999, 1) process.

For ARL, = 370 on an upper-sided CUSUM
control charts in Figure 1(a), the center line and the
lower and upper control limits of the CUSUM control
chart were LCL = 0, CL = 0.2193, UCL = 0.487876.
The in-control ARL values are plotted as blue points
while the red points are the out-of-control values and
the red dashed lines indicate the UCL and LCL. The
first out-of-control signal occurs at the 4th point and
there are 9 out-of-control points altogether. Moreover,
Figure 1(b) for long-memory ARFIX(2, 0.499999, 1)
process of the CUSUM control chart was LCL=0, CL
=14.5106, UCL = 25.71797. The first out-of-control
signal occurs at the Sth point and there are 11out-of-
control points altogether. These results confirm that
the proposed NIE method is sensitive to changes in
the process mean and is as good at detecting them as
the analytical ARL based on explicit formulas.

4 Conclusions

First, the theoretical computation was successfully
derived a method for approximating the ARL for a
long-memory ARFIX process running on a CUSUM
control chart. The approximated ARL obtained by
using the NIE method performed well and offers a
new approach for validating ARL computation for

long-memory scenarios. In addition, the results from
the experiment using a two real datasets were similar
to those of the theoretical computation. For instance,
the excellent efficacy of the method was illustrated
by using mutual fund K-CHANGE-A(A) data and
the commodity market of gold futures price with the
USD/THB exchange rate as the exogenous variable.
When comparing the method for CUSUM and EWMA
control charts, it was found that it performed better
on the former than the latter for moderate shifts in
the process mean. Thus, we recommended that the
NIE method as a good alternative for the approximate
ARL of the CUSUM control chart. It has real-life
applications for varieties of data processes, such as
finance, economic, hydrology, biology, engineering,
social sciences, and environmental. If the data comes
from a complex process or an unstable environment
[39], these issues should be addressed in future
research. Future research could compare the results
of the ARL for the CUSUM control chart using the
neutrosophic statistical method, such as NCUSUM
control chart [39]. The application and implementation
of the NCUSUM control chart are provided interesting
properties compared to the classical CUSUM control
chart. In addition, to extend its practical usage, the
methodology could be extended to monitor the process
variance and for other distributions of white noise.
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