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Abstract
The cumulative sum (CUSUM) control chart is a well-known process monitoring tool that is sensitive to 
small-to-moderate changes in process parameters. In this paper, we propose an approximated average run 
length (ARL) method based on the numerical integral equation (NIE) method for monitoring the mean of a 
long-memory autoregressive fractionally integrated process with an exogenous variable (ARFIX) running on a 
CUSUM control chart. The approximated ARL based on the NIE method is realized by solving a system of linear  
equations and integration based on the partitioning and summation of the area under the curve of a function 
derived by using the Gauss-Legendre quadrature. In a comparative study with the ARL based on analytical  
formulas, the proposed approximated ARL method could detect shifts of various sizes in the process mean of an 
ARFIX process running on a CUSUM control chart. In addition, the proposed method was compared with their 
analytical formulas in terms of the relative percentage change (r%) to verify the accuracy of the ARL results. 
The results revealed that the ARL results obtained from the NIE method are an approach to analytical formulas 
with r% of less than 0.25. Hence, the NIE method is very accurate and in excellent agreement with the analytical 
formulas approach. Apparently, the NIE method is an alternative as efficiently as the analytical method for this 
situation. It also performed well in comparison with the approximated ARL for the same process running on an 
exponentially weighted moving average control chart. In addition, real datasets are also used to demonstrate 
the efficacy of the proposed method.

Keywords: Approximated ARL, Numerical integral equation, Gauss-legendre quadrature, CUSUM control 
chart, ARFIX
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1 Introduction

Control charts are critical for monitoring processes in the 
production and manufacturing sectors. The Shewhart  
control chart is the most frequently used one due to 
its simplicity and excellent sensitivity to large changes 
in process parameters. On the other hand, it is poor 
at detecting small-to-moderate changes in process  
parameters, and as a result of this limitation, researchers  
have devised new control charts for this scenario, 

including two well-known ones being the cumulative 
sum (CUSUM) control chart [1] and the exponentially 
weighted moving average (EWMA) control chart [2]. 
 Montgomery [3] demonstrated that the CUSUM 
control chart is a more efficient alternative to the  
Shewhart control chart for detecting small-to-moderate 
process parameter shifts. It is widely utilized in a wide 
range of fields and operations, including healthcare, 
manufacturing, credit card fraud detection, weather 
monitoring, and stock exchange trading.
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 The average run length (ARL) is the most widely 
used measure for evaluating control chart performance.  
To monitor a process efficiently, the in-control ARL 
(ARL0) should be as large as possible, while no 
shift in the process parameter occurs and the out-of-
control ARL (ARL1) should be as small as possible 
when a shift in the process parameter occurs [4]. The  
current study aims to establish an approximation of the 
ARL by using the numerical integral equation (NIE)  
method for a process running on a CUSUM control 
chart.
 Autocorrelation is a naturally occurring  
phenomenon that can have a significant effect on the 
performance of a control chart [5]–[7]. Nevertheless, 
it must be appropriately modeled and monitored. Jiang 
[8] analyzed the ARL of an autoregressive (AR) moving  
average (MA) (ARMA) control chart via an ARMA(1,1)  
model, while Lu and Reynolds [9] investigated the 
performance of a first-order AR (AR(1)) process  
running on a CUSUM control chart.
 Several models of random processes with a time-
series element have been developed. Autoregressive 
models have been applied in a wide variety of sectors.  
Yue and Pilon [10] examined annual mean daily 
streamflow data from 15 watersheds by using a linear 
trend in an AR(1) process. In Hamed's [11] study, 
hydrologic data was represented as an AR(1) process 
with a linear trend. In addition, Karaoglan and Bayhan 
[12] conducted a case study using a trend-stationary 
AR(1) model to determine the peroxide values of 
stored vegetable oil. Thus, a control chart can be used 
to examine the trend in an AR(1) model.
 When constructing a model, it is extremely  
important to measure observational errors that defined 
as the difference between the actual and approximated 
values. Inferring a more efficient model requires small 
errors. White noise (or normally distributed white 
noise) is a broad term that refers to the errors in a time-
series model with autocorrelated observations. An AR 
model with normally distributed white noise is a time-
series model that is often used in many fields, such as 
economics [13]. However, white noise can be non-
normally distributed, most commonly as exponential  
[14]–[18].
 The above-mentioned models are for short-
memory processes. For long-memory processes, we 
use the advanced concept of fractional integration 
when modeling, which has led to the development 

of multiple models, the most popular of which 
is the AR fractionally integrated MA(ARFIMA) 
model introduced by Granger and Joyeux [19]. 
ARFIMAX is an extension of ARFIMA with an 
exogenous variable [19], [20]. Ebens [21] proposed 
using an ARFIMAX model to predict changes in a  
Dow Jones Industrial Average portfolio and discovered  
correlations between econometric models and  
economic indicators (variables) that affect economic 
forecasting. Government investment policies, currency  
rates, interest rates, and inflation rates are all  
examples of exogenous variables that are independent  
of other variables in the system. These variables  
affect the econometric model's forecasting capability. 
If an exogenous variable is included in any sort of 
forecasting, the predictive power of the model will 
be greater than without it.
 Numerous control charts have been used to 
construct models with a focus on the fractional  
integration process with time-series components. For 
example, Ramjee [22] used correlated data in Shewhart  
and EWMA control charts with an ARFIMA model. 
Although process shifts could be detected, the two 
control charts were found to be inefficient. Later, 
Ramjee et al. [23] introduced the forecast-based  
hyperbolic weighted MA(HWMA) control chart with 
a non-stationary ARFIMA model. Pan and Chen [24] 
used control charts for autocorrelated data based on 
ARFIMA and AR integrated MA(ARIMA) models to 
monitor the air quality in Taiwan; they determined that 
the control chart based on the ARFIMA model is more 
efficient than that based on the ARIMA model. Rabyk 
and Schmid [25] suggested the EWMA control chart 
for detecting changes in the mean of a long-memory 
process. The control was derived from the results 
of computations performed on an ARFIMA(p, d, q)  
process. Meanwhile, the current study focuses on 
the application of a CUSUM control chart to detect 
changes in the mean of a long-memory AR fractionally  
integrated process with an exogenous variable  
(ARFIX).
 In the literature, Monte Carlo simulation, the 
Markov chain approach, explicit formulas, and 
integral equations are the primary approaches for 
computing the ARL. For example, Muhammad [26] 
and Muhammad et al. [27] employed the Monte Carlo 
simulations to evaluate the ARL on mixed HEWMA 
and CUSUM control chart for the Weibull distribution.  
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Brook and Evans [28] used the Markov chain  
approach to investigate the run length properties  
of a CUSUM control chart under the assumption 
of independent and identically distributed (i.i.d.) 
observations. Hawkins [29] improved the Markov 
chain approach by using Richardson extrapolation 
for an entire family of distributions including the  
Chi-squared distribution. Champ and Rigdon [30] used 
integral equations to determine the ARL. Fredholm  
integral equations of the second kind have been  
employed as part of the NIE approach used to calculate  
the ARL [31]. Acosta-Mejja et al. [32] recently used 
an integral equation approach for the ARL numerically  
approximated using the Gauss-Legendre quadrature. 
Note that the sample variance has a skewed right  
Chi-squared distribution that is constrained to the half-
real line. Knoth [33] proposed utilizing a piecewise  
collocation method rather than the Gauss-Legendre 
quadrature to approximate the ARL. Numerical  
integration (or quadrature) is frequently referred to 
as a way of approximating the integral. The midpoint 
rule, the composite trapezoidal rule, the composite 
Simpson's rule, and the Gaussian rule are all examples 
of the quadrature that can be used to approximate 
integral equations. Indeed, approximating the ARL 
by using the integral equation technique with the 
midpoint rule is of great importance [34], [35].
 In this study, an approximated ARL was computed  
by using an NIE method via the Gauss-Legendre 
quadrature for a CUSUM control chart running 
a long-memory ARFIX process with exponential 
white noise. The goal of the control chart is to detect  
changes in the mean of a long-memory ARFIX  
process with emphasis on exogenous variable X.
 The rest of this article is organized as follows. 
Materials and methods are presented in Section 2. We 
provide a brief explanation of the CUSUM control  
chart, EWMA control chart, and long-memory 
ARFIX(p,d,r) processes with exponential white 
noise. Moreover, approximated ARL via the NIE 
method for an ARFIX(p,d,r) process running on a 
CUSUM control chart is proposed. A comprehensive 
numerical evaluation, comparison and provides an 
example of using real data to illustrate the efficacy of 
the proposed method. The performance comparison  
of CUSUM and EWMA control chart running an 
ARFIX(p,d,r) process is presented in Section 3, and 
some concluding remarks are given in Section 4.

2 Materials and Methods

2.1  The CUSUM and EWMA control charts and the 
long-memory ARFIX(p, d, r) model with exponential 
white noise

The CUSUM statistic can be obtained from the  
following recursive Equation (1):

 (1)

Where k is a suitably chosen positive constant termed 
the reference value for the chart and Yt is the sequence 
of a long-memory ARFIX(p, d, r) process with  
exponential white noise. Starting value C0 = ψ, where ψ 
is the initial value. The EWMA statistic can be written 
as Equation (2)

 (2)

where  is a smoothing parameter. The starting 
value is Z0 = Y0. The EWMA control chart performs 
sensitively for small process parameter shifts and small 
values of γ The upper control limit (UCL), control 
limit (CL), and lower control limit (LCL) to detect 
the sequence are respectively given by Equation (3)

 (3)

where L is the width of the CLs for the EWMA control 
chart (i.e., it is used to control the in-control ARL) and   
and μ0 are σ the process mean and standard deviation, 
respectively. In practice, ARL0 is fixed at either 370 
or 500.
 As mentioned previously, Yt is the sequence of a 
long-memory ARFIX(p, d, r) process with exponential 
white noise. This model can be derived by using the 
following recursive equation:

 (4)

where terms  are 
AR polynomials in backward-shift operator B (i.e.,  
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BqYt = Yt–q for the qth order), μ is the constant process 
mean, εt is a white noise process assumed to follow 
exponential distribution εt ~ Exp(β), (1 – B)d is a 
fractional difference operator subjected to a binomial 
series expansion [20], [36], and d is the degree of  
differencing parameter. The values for d are interesting 
in the context of long-memory processes as they are 
restricted to the range of (0, 0.5) (i.e., non-integer).
 Remark: An ARFIMAX(p, d, q, r) process [36] 
when q = 0 is an AR fractionally integrated process 
with an exogenous variable denoted as ARFIX(p, d, r),  
which is the main goal of the present work.
 Equation (4) for a general long-memory 
ARFIX(p, d, r) process with exponential white noise 
running on a CUSUM control chart can be rewritten 
as Equation (5)

 (5)

where ϕ1 is an AR coefficient (–1 ≤ ϕ1 ≤ 1; i = 1, 2,…, p)  
and ω1 are coefficients corresponding to r. The initial 
value of a long-memory ARFIX(p, d, r) process must 
satisfy Yt–1, Yt–2,..., Yt–p, Yt–(p+1),..., X1t, X2t,..., Xrt, are 
equal to 1, and the initial value of exponential white 
noise εt = 1 
 Let τh be the stopping time of the CUSUM chart 
with a predetermined threshold of H given as follows 
Equation (6)

 (6)

for H > ψ where H is the upper control limit (UCL). 

2.2  The approximate ARL based on the NIE method 
for a CUSUM control chart

Here, the ARL is approximated by using the NIE 
method based on a Fredholm’s integral equation of the 
second kind [31]. As is known, the NIE method can be 
applied by using the Gauss-Legendre quadrature and 
numerically computing the integral equation.
 Let Pc and Ec denote the probability measure and 
induced expectation corresponding to the initial value 

ψ respectively. A process on a CUSUM control chart 
starts with the initial value ψ and the initial value for 
monitoring with the CUSUM control chart statistic 
is C0 = ψ; 0 < ψ < H. Meanwhile, the function (ψ) 
denotes the ARL of a long-memory ARFIX(p, d, r) 
process running on a CUSUM control chart. Thus, 

 satisfies the following integral 
equation:

 (7)

where C1 is the first observation for which  
 is an indicator function.

 Equation (7) is the integral equation for  
computing the ARL of an upper-sided CUSUM control 
chart by using a Fredholm integral equation of the 
second kind [31]. Thereby, (ψ) can be written in the 
form Equation (8)

 (8)

where f(.) and F(.) are the probability density function  
(pdf) and cumulative distribution function (cdf) of 
εt respectively, which can both be approximated  
numerically.
 The integral equation in Equation (9) is used as 
the basis for calculating the ARL obtained by using the   
method and the analytical formulas in the following 
subsection.

2.2.1 The approximated ARL by using the NIE method

This is a new approximated ARL by using the NIE 
method for a CUSUM control chart running a long-
memory ARFIX(p, d, r) process with exponential white 
noise. The conventional Gauss-Legendre quadrature 
rule technique can be used to approximate the ARL 
quite accurately
 Obtaining numerical solutions can be accomplished  
by using the Gauss-Legendre quadrature rule technique  
in Equation (9). Integral  can be approximated  
by the sum of the areas of rectangles with bases H / m 
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and heights chosen as the values of f at the midpoints 
of intervals with length H / m beginning at zero.  
Interval [0, H] is divided into partitions 0 ≤ a1 ≤ ... 
≤ am ≤ H, while wj = H / m; j = 1, 2,…, m are sets of 
constant weights. The summation form to obtain the 
approximation for the integral is as follows:

where W(u) is a weight function, and  

 Function  provides the approximated ARL 
by using the NIE method via the Gauss-Legendre 
quadrature on interval [0, H] The system of linear 
equations with m unknowns can be transformed into 
an integral equation. Therefore, the integral equation 
comprises set , which 
can be approximately derived as

This can be rewritten in matrix form as

 (9)

where  
 is a column vector of  and ones, 

and Rm × m is a matrix with dimensions m × m written as

for 

where i, j = 1, 2,...,m. The matrix form in Equation (10) 
can be reformatted equivalently as

where  is unit matrix order m.  
If  is invertible and exists, then the  
approximated ARL via the NIE method for the integral 
equations in the matrix is provided as follows:

 (10)
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where  af ter  
computing , and replacing   
ai by ψ, respectively. 
 Hence, the approximated ARL via the NIE  
derived by using the Gauss-Legendre quadrature rule 
on a CUSUM control chart can be expressed as 

 (11)

with , and  

2.2.2 The analytical ARL by using explicit formulas

The analytical ARL derived using explicit formulas 
for a process running on a CUSUM control chart can 
be written as

where  is used for the in-control ARL (ARL0) 
process and detecting changes in the process mean 
(ARL1). It can be written as

 (12)

3 Results and Discussion 

For a long-memory ARFIX(p, d, r) process, we  
assumed that the white noise is exponentially  
distributed where the mean parameter of the exponential  
is β for ARFIX(p = 1, d = 0.2, r = 1) running on a  
CUSUM control chart for k = 3.0, 3.5, or 4.0, the values 
of H were calculated by using Equation (11) or (12) 
as H = 3.96709, 3.26334, and 2.67966, respectively  
(Table 1). Consequently, each combination of (k, H) 
was used in computations for ARL0 = 370 or 500. 
Moreover, λ = λ0 = 1 for the in-control ARL process 
while λ1 = (1 + δ)λ0 for out-of-control process, for  
0 < δ < 1. For the out-of-control process, the shift 
size (δ) was set as δ = 0.01, 0.03, 0.05, 0.07, 0.10, 
0.30, 0.50, 1.00, 2.00, or 4.00. The out-of-control  
performance results for the CUSUM control chart 
running a long-memory ARFIX(p, d, r) process with 
exponential white noise are given in Tables 2 and 3. 
These results are approximated via Equation (11) by 
using the Gauss-Legendre quadrature rule with the 
number of division points m = 800 nodes by solving 
the system of linear equations.

3.1  Comparison of the approximated and analytical  
ARLs for a long-memory ARFIX(p, d, r) process 
with exponential white noise running on a CUSUM 
control chart

The performance comparison is expressed by calculating  
the relative percentage change (r%) as follows:

where  and  are the predefined ARL0 
= 370 or 500 approximated via the NIE method and 
derived by using the explicit formulas, respectively.
 The values of CL (H) on a CUSUM control chart 
for k = 3.0, 3.5, or 4.0, and coefficient parameters  
ϕ1 = 0.10, ϕ2 = 0.20, ϕ3 = 0.30, and ω1 = 0.20 for  
ARL0 = 370 or 500 are reported in Table 1. It 
was found that as k increases, H decreases on the  
CUSUM control chart for all of the long-memory 
ARFIX(p ,0.2, 1) models. When p was changed from 
1 to 3, the findings indicate that p increased and H 
increased for each value of k.
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Table 1: The values of CL H of the CUSUM chart in the zero-state case for ARL0 = 370 or 500, λ = 1, and  
k = 3.0, 3.5, or 4.0

ARFIX(p, 0.2, 1)
Coefficient Parameters

ARL0
k

ϕ1 ϕ2 ϕ3 ω1 3.0 3.5 4.0
p = 1 0.1 - - 0.3 370 3.967090 3.263340 2.6796600

500 4.317200 3.585383 2.9911290
p = 2 0.1 0.2 - 0.3 370 4.205980 3.435022 2.8303901

500 4.573657 3.761815 3.1439600
p = 3 0.1 0.2 0.3 0.3 370 4.670457 3.713077 3.0641010

500 5.101390 4.050036 3.3817230

Table 2: Comparison of the ARLs obtained by using the NIE method and explicit formulas for a long-memory 
ARFIX(p, 0.2, 1) process running on a CUSUM control chart when ARL0 = 370

ARFIX 
(p, 0.2, 1) k ARL

 λ1

1.01 1.03 1.05 1.07 1.10 1.30 1.50 2.00 3.00 5.00
p = 1 3.0 345.444 303.592 268.131 237.922 200.516 78.869 40.300 14.204 5.483 2.740

 346.186 304.224 268.672 238.388 200.891 78.980 40.343 14.213 5.485 2.741

r% 0.21 0.21 0.20 0.20 0.19 0.14 0.11 0.06 0.04 0.04
3.5 346.888 307.171 273.246 244.119 207.720 85.601 44.786 15.893 5.901 2.811

 347.544 307.737 273.737 244.548 208.072 85.717 44.835 15.904 5.903 2.811

r% 0.19 0.18 0.18 0.18 0.17 0.14 0.11 0.07 0.03 0.00
4.0 347.638 308.950 275.782 247.205 211.340 89.230 47.348 16.973 6.214 2.881

 348.193 309.432 276.204 247.575 211.645 89.331 47.394 16.984 6.216 2.882

r% 0.16 0.16 0.15 0.15 0.14 0.11 0.10 0.06 0.03 0.03
p = 2 3.0 344.762 301.880 265.691 234.980 197.126 75.875 38.399 13.555 5.347 2.726

 345.518 302.519 266.235 235.445 197.497 75.979 38.438 13.562 5.348 2.727

r% 0.22 0.21 0.20 0.20 0.19 0.14 0.10 0.05 0.02 0.04
3.5 346.596 306.463 272.235 242.893 206.288 84.218 43.838 15.516 5.800 2.791

 347.278 307.049 272.743 243.335 206.649 84.335 43.887 15.527 5.802 2.792

r% 0.20 0.19 0.19 0.18 0.17 0.14 0.11 0.07 0.03 0.04
4.0 347.474 308.571 275.243 246.549 210.569 88.436 46.779 16.724 6.139 2.863

 348.057 309.076 275.684 246.935 210.887 88.545 46.826 16.735 6.141 2.864

r% 0.17 0.16 0.16 0.16 0.15 0.12 0.10 0.07 0.03 0.03
p = 3 3.0 343.059 297.542 259.522 227.575 188.658 68.769 34.077 12.203 5.107 2.719

 343.805 298.159 260.035 228.004 188.989 68.843 34.100 12.206 5.107 2.719

r% 0.22 0.21 0.20 0.19 0.18 0.11 0.07 0.02 0.00 0.00
3.5 346.045 305.103 270.291 240.536 203.545 81.634 42.105 14.856 5.634 2.762

 346.762 305.718 270.821 240.994 203.917 81.749 42.152 14.866 5.636 2.763

r% 0.21 0.20 0.20 0.19 0.18 0.14 0.11 0.07 0.04 0.04
4.0 347.181 307.877 274.255 245.346 209.156 87.016 45.771 16.296 6.014 2.835

 347.805 308.417 274.724 245.757 209.494 87.129 45.819 16.308 6.016 2.835

r% 0.18 0.18 0.17 0.17 0.16 0.13 0.10 0.07 0.03 0.00
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Table 3: Comparison of the ARLs obtained by using the NIE method and explicit formulas for a long-memory 
ARFIX(p, 0.2, 1) process running on a CUSUM control chart when ARL0 = 500

ARFIX 
(p, 0.2, 1) k ARL

 λ1

1.01 1.03 1.05 1.07 1.10 1.30 1.50 2.00 3.00 5.00
p = 1 3.0 464.737 405.057 354.893 312.488 260.462 96.456 47.258 15.722 5.843 2.862

 465.827 405.976 355.672 313.153 260.99 96.601 47.311 15.732 5.844 2.862

r% 0.23 0.23 0.22 0.21 0.20 0.15 0.11 0.06 0.02 0.00
3.5 467.003 410.672 362.879 322.113 271.559 106.356 53.63 17.93 6.373 2.947

 467.967 411.506 363.598 322.735 272.065 106.513 53.695 18.003 6.375 2.948

r% 0.21 0.20 0.20 0.19 0.19 0.15 0.12 0.41 0.03 0.03
4.0 468.145 413.385 366.732 326.777 276.989 111.561 57.194 19.415 6.765 3.031

 468.981 414.107 367.358 327.322 277.436 111.708 57.256 19.429 6.768 3.031

r% 0.18 0.17 0.17 0.17 0.16 0.13 0.11 0.07 0.04 0.00
p = 2 3.0 463.604 402.229 350.887 307.689 254.981 91.852 44.440 14.815 5.663 2.844

 464.713 403.155 351.665 308.347 255.497 91.982 44.485 14.822 5.664 2.844

r% 0.24 0.23 0.22 0.21 0.20 0.14 0.10 0.05 0.02 0.00
3.5 466.558 409.586 361.335 320.247 269.397 104.357 52.305 17.491 6.247 2.924

 467.566 410.447 362.075 320.886 269.914 104.514 52.368 17.504 6.249 2.924

r% 0.22 0.21 0.20 0.20 0.19 0.15 0.12 0.07 0.03 0.00
4.0 467.896 412.808 365.914 325.787 275.834 110.428 56.403 19.087 6.67 3.009

 468.769 413.561 366.566 326.354 276.298 110.579 56.466 19.101 6.673 3.01

r% 0.19 0.18 0.18 0.17 0.17 0.14 0.11 0.07 0.04 0.03
p = 3 3.0 460.48 394.321 339.721 294.38 239.915 79.897 37.464 12.776 5.325 2.835

 461.562 395.194 340.429 294.959 240.347 79.973 37.481 12.776 5.325 2.835

r% 0.23 0.22 0.21 0.20 0.18 0.10 0.05 0.00 0.00 0.00
3.5 465.698 407.466 358.32 316.612 265.199 100.58 49.857 16.608 6.036 2.889

 466.755 408.364 359.087 317.269 265.729 100.734 49.917 16.62 6.038 2.889

r% 0.23 0.22 0.21 0.21 0.20 0.15 0.12 0.07 0.03 0.00
4.0 467.452 411.753 364.416 323.972 273.719 108.391 55.003 18.523 6.514 2.975

 468.381 412.551 365.105 324.571 274.207 108.546 55.067 18.537 6.516 2.977

r% 0.20 0.19 0.19 0.18 0.18 0.14 0.12 0.08 0.03 0.07

 The numerical results for approximated ARL 
obtained via the NIE method and analytical ARL by 
using explicit formulas for the out-of-control ARL 
for detecting changes in the process mean (λ1 > λ0) 
are reported in Tables 2 and 3. The results indicate 
that the ARLs derived by using the NIE method and 
explicit formulas tended to decrease more rapidly 
as the magnitude of the process mean change (λ1)  
increases, the decreasing order being long-memory  
process models ARFIX(p = 1, 0.2, 1), ARFIX(p = 2, 0.2, 1)  
and ARFIX(p = 3, 0.2, 1) Bearing in mind that a 

good performance of the CUSUM control chart 
requires the ARL1 value to be as small as possible, 
we observed that for long-memory ARFIX(p, 0.2, 1) 
processes, ARL1 reduces rapidly for a small process 
mean change (1.01 ≤ λ1 < 1.10) and continues to do so 
for a moderate process mean change (1.10 ≤ λ1 < 5.00).  
Moreover, the performances with the ARFIX(p = 3, 0.2, 1)  
model were lower than with ARFIX(p = 2, 0.2, 1) and 
ARFIX(p = 1, 0.2, 1) for each reference parameter 
(k) level (Table 2 for ARL0 = 370 and Table 3 for  
ARL0 = 500). Moreover, the associated reference 
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value is inversely proportional to H and directly  
proportional to the out-of-control ARL (ARL1) 
obtained by using both methods. In addition, for  
ARL0 = 370 or 500, when comparing the ARL1 values 
for k = 3.0, 3.5, or 4.0 the model with the lowest k 
value most quickly detected a change in the process 
mean. The percentage change (r%) results calculated 
at various magnitudes of process mean changes for the 
three long-memory ARFIX(p, 0.2, 1) processes were 
less than 0.25, indicating that the proposed method 
is very accurate and in excellent agreement with the 
explicit formulas approach.
 The summary of the NIE method is based on 
the results for evaluation of ARL and comparison 
between approximated ARL and analytical ARL 
for monitoring the mean of a long-memory ARFIX  
running on a CUSUM control chart. The solution of 
the integral equation can be approximated ARL using 
of Gauss-Legendre quadrature rule [30]. The results 
show that the NIE method is an easier alternative to 
ARL calculations which represent the accuracy of the 
ARL [34], [35]. However, the Gauss-Legendre rule 
provided the simplest ARL calculation and achieved 
the highest accuracy for the given number of nodes. 
In the case of a large number of nodes, analytical ARL 
derived using explicit formulas is an alternative for the 
evaluation of ARL [36]–[38].

3.2  An example using real data on a CUSUM control  
chart to monitor changes in the process mean

This subsection presents real data using the NIE 
method on a CUSUM control chart to monitor changes 
in the process mean were applied to two types of data. 
The first example was a real dataset of Mutual Fund: 
K Positive Change Equality Fund - A(A) (abbreviation 
K-CHANGE-A(A)) for the Kasikorn bank in Thailand  
with the exogenous variable being the exchange rate 
and the second one is the data were taken from the 
commodity market of gold futures price with the 
exogenous variable being the exchange rate is used to 
illustrate the CUSUM control chart’s efficacy. 
 Example 1: The dataset represents K-CHANGE-
A(A) (source: https:// kasikornasset.com/TH/mutual-
fund/fund-template/Pages/K-CHANGE-A(A).aspx) 
with the exogenous variable being the exchange 
rate for USD/THB (source: https://th.investing.com/
currencies/usd-thb-historical-data) consisted of 161 

observations collected daily (5 days per week) from 
20 November 2020 to 6 August 2021. 
 Example 2: The dataset is given by the  
commodity market of gold futures price (source: 
https://th.investing.com/commodities/gold) with the 
exogenous variable being the exchange rate for USD/
THB. This dataset contains 146 observations collected 
daily (5 days per week) for the period of 23 June 2020 
to 13 January 2021.
 For modeling purposes, the Eviews 10 statistical 
software package was used to filter and estimate the 
model parameters. Significant p-values for the best-
fitting long-memory ARFIX(p, d, r) process are shown 
in Table 4.

Table 4: ARFIX(p, d, r) model fitting for the example 
dataset 1 and 2 with the exogenous variable as the 
exchange rate of USD/THB dataset

Example Variable Coefficient Std. Error t-Statistic Prob.
1 USD 0.676247 0.035190 19.21720 0.0000

d 0.221642 0.107682 2.058290 0.0412
AR(1) 0.937123 0.053237 17.60269 0.0000

2 USD –108.1627 19.86484 –5.444932 0.0000
d 0.499999 6.57E-10 7.61E+08 0.0000

AR(1) 0.475489 0.082231 5.782335 0.0000
AR(2) 0.297705 0.081395 3.657533 0.0004

 The results in Table 4 reveal that the probability 
for variable X was significant (0.05; p-value = 0.0000), 
which indicates that the exchange rate does impact the 
Mutual Fund for K-CHANGE-A(A) and the commodity  
market of gold futures price. It can also be seen 
that the dataset 1 is suitable for a long-memory  
ARFIX(1, 0.221642, 1) process by presenting statistically  
significant parameters with coefficients ϕ1 = 0.937123, 
ω1 = 0.676247. Likewise dataset 2 is suitable for a long-
memory ARFIX(1, 0.499999, 1) process by presenting  
statistically significant parameters with coefficients   
ϕ1= 0.475489, ϕ2 = 0.297705, ω1 = 108.1627 and the 
residual series behaving as white noise.
 Table 5 reports the results of testing whether 
the distribution of the white noise is exponential  
according to the Kolmogorov-Smirnov test by using the 
SPSS software package. In the null hypothesis test, the 
white noise was found to be significantly exponentially  
distributed (p-value > 0.05) with a mean of 0.2193 
and 14.5106 for dataset 1 and 2, respectively when the 
process was in-control.
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Table 5: Testing the distribution of the white noise 
for the example dataset 1 and 2 with the exogenous  
variable as the USD/THB exchange rate dataset

Example

Alternative Hypothesis: Two-Sided

Exponential 
Parameter

One-Sample 
Kolmogorov-
Smirnov Test

Asymptotic 
Significance 

(2-Sided)
1 0.2193 1.289 0.072*
2 14.5106 0.986 0.286*

 According to the results in Tables 4 and 5, the 
long-memory ARFIX(p, d, r) process consists of the 
following equations:
 This dataset 1 demonstrates the long-memory 
ARFIX(1, 0.221642, 1) process is

where 
 The dataset  2  represent  long-memory  
ARFIX(2, 0.499999, 1) process is

where 

3.3  Performance comparison of CUSUM and EWMA  
control chart running an ARFIX(p, d, r) process

Here, the approximated NIE of the CUSUM control chart 
is compared with that of the EWMA control chart. The  
approximated ARLs of the CUSUM and EWMA control 
charts can both be obtained by using the NIE method. 

For the CUSUM control chart, when k = 3.0 the desired 
ARL0 is set as 370 and H = 0.487876 and 25.71797 are 
computed for long-memory ARFIX(1, 0.221642, 1)  
and ARFIX(2, 0.499999, 1) processes, respectively. 
The results summarized in Table 6 for the ARL obtained  
with the NIE method for a CUSUM control chart are 
clearly consistent with those in Tables 2 and 3.
 The numerical results were obtained from the   
method for all cases when detecting small-to-moderate- 
sized changed in the process mean. The smoothing 
parameter for the EWMA control chart is γ ∈ (0, 1], 
[3], with the recommended value being 0.05 ≤ γ ≤0.25.  
In this study, γ = 0.05 for dataset 1 and γ = 0.07 for 
dataset 2 were selected for the corresponding control 
limits of the EWMA control chart for the desired ARL0. 
For simplicity, ARL0 was set as 370. The method 
to compute the approximated ARL for the EWMA  
control chart is similar to that of Sunthornwat et al. 
[38]. The ARL1 values for the CUSUM and EWMA 
control charts for the process mean shift values (δ) 
varying from 0.01 to 1.00 are reported in Table 6. It is  
noteworthy that, the first example on upper-sided  
CUSUM control chart when k = 3.0 is relatively  
effective for shifts δ = 0.07–1.00. For instance, 
when k = 3.0 and δ = 0.07, the ARL1 = 71.823 of the  
upper-sided CUSUM control chart is smaller than 
the ARL1 = 71.929 of the EWMA control chart when  
γ = 0.05. Irrespective of the value of δ the ARL1  
values of the upper-sided CUSUM control chart were 
generally smaller than the ones of the upper-sided 
EWMA control chart, especially for moderate shifts 
(δ = 0.07–1.00). Example 2, the upper-sided CUSUM 
control chart when k = 3.0 is relatively effective for 
shifts δ = 0.50–1.00. The results reveal that of proposed 
approximated ARL via the NIE method for a CUSUM 
control chart is very accurate for moderate shifts.

Table 6: Comparisons of ARLs obtained using the NIE method for both the CUSUM and EWMA control charts 
running ARFIX Long Memory (1, 0.221642, 1) and ARFIX(2, 0.499999, 1) are derived from the example 1 
and 2, respectively, where ARL0 = 370

Example Control 
Chart Parameters

Shift Sizes (δ) 
0.01 0.03 0.05 0.07 0.10 0.30 0.50 1.00

1
CUSUM k  = 3.0, 

H = 0.487876 276.630 165.061 105.796 71.823 43.768 6.819 3.174 1.656

EWMA γ = 0.05, 
L = 0.0147306 276.420 164.885 105.776 71.929 43.980 6.970 3.234 1.656

2
CUSUM k  = 3.0, 

H = 25.71797 368.407 365.249 362.126 359.038 354.470 325.876 300.228 246.755

EWMA γ = 0.07, 
L = 1.9098 368.406 365.248 362.124 359.035 354.466 325.875 300.244 246.849
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 For ARL0 = 370 on an upper-sided CUSUM 
control charts in Figure 1(a), the center line and the 
lower and upper control limits of the CUSUM control 
chart were LCL = 0, CL = 0.2193, UCL = 0.487876. 
The in-control ARL values are plotted as blue points 
while the red points are the out-of-control values and 
the red dashed lines indicate the UCL and LCL. The 
first out-of-control signal occurs at the 4th point and 
there are 9 out-of-control points altogether. Moreover, 
Figure 1(b) for long-memory ARFIX(2, 0.499999, 1) 
process of the CUSUM control chart was LCL = 0, CL 
= 14.5106, UCL = 25.71797. The first out-of-control 
signal occurs at the 5th point and there are 11out-of-
control points altogether. These results confirm that 
the proposed NIE method is sensitive to changes in 
the process mean and is as good at detecting them as 
the analytical ARL based on explicit formulas.

4 Conclusions

First, the theoretical computation was successfully 
derived a method for approximating the ARL for a 
long-memory ARFIX process running on a CUSUM 
control chart. The approximated ARL obtained by 
using the NIE method performed well and offers a 
new approach for validating ARL computation for 

long-memory scenarios. In addition, the results from 
the experiment using a two real datasets were similar 
to those of the theoretical computation. For instance, 
the excellent efficacy of the method was illustrated 
by using mutual fund K-CHANGE-A(A) data and 
the commodity market of gold futures price with the 
USD/THB exchange rate as the exogenous variable. 
When comparing the method for CUSUM and EWMA  
control charts, it was found that it performed better 
on the former than the latter for moderate shifts in 
the process mean. Thus, we recommended that the 
NIE method as a good alternative for the approximate 
ARL of the CUSUM control chart. It has real-life  
applications for varieties of data processes, such as 
finance, economic, hydrology, biology, engineering, 
social sciences, and environmental. If the data comes 
from a complex process or an unstable environment 
[39], these issues should be addressed in future  
research. Future research could compare the results 
of the ARL for the CUSUM control chart using the 
neutrosophic statistical method, such as NCUSUM 
control chart [39]. The application and implementation 
of the NCUSUM control chart are provided interesting 
properties compared to the classical CUSUM control 
chart. In addition, to extend its practical usage, the 
methodology could be extended to monitor the process 
variance and for other distributions of white noise.
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