
บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

61 

Large-Scale Web Traffic Log Analyzer using Cloudera Impala on  
Hadoop Distributed File System  

 
Choopan  Rattanapoka* and Prasertsak  Tiawongsombat 

 
 

Abstract 
 Resource planning and data analysis are important for network services in order to increase the service 
efficiency. Nowadays, Large websites or web servers have a large number of visitors, which mean a large web 
traffic log need to be stored in the plain text or the relational database. However plain text and relational database 
are not efficient to handle a large number of data. Moreover, the web traffic log analysis hardware or software that 
can handle such a big data is also expensive. This research paper proposes the design of a large-scale web traffic log 
analyzer using PHP language to show the visitors' traffic data analysis in the form of charts. The Hadoop 
Distributed File System (HDFS) is used in conjunction with other related techniques to gather and store visitors' 
traffic log. Cloudera Impala is used to query web traffic log stored in HDFS while Apache Thrift is an intermediary 
connecting Cloudera Impala to PHP web. Upon testing our large-scale web traffic log analyzer on HDFS Cluster of 
8 nodes with 50 gigabytes of traffic log, our system can query and analysis web traffic log then display the result in 
about 4 seconds 
 
 
Keywords: Hadoop Distributed File System, Cloudera Impala, Big Data, Log Analysis, PHP 
 
 
 
 
  Department of Electronics Engineering Technology, College of Industrial Technology, King Mongkut University of Technology 
  North Bangkok. 
* Corresponding author, E-mail: choopan.r@cit.kmutnb.ac.th   Received  30  March  2016,   Accepted  16  December  2016 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

62 

1. Introduction 
 Resource planning and data analysis are important 
for network services in order to increase the service 
efficiency. System administrators need tools that 
simple and easy to use for monitoring and analyzing 
the use of the services. Nowadays, the most active 
network service on the internet is Hypertext Transfer 
Protocol (HTTP) and its traffic is increasing gradually. 
 Thus, the web traffic data that needs to be analyzed 
is large and need a big storage to store all of the traffic 
data. However, the software and hardware that can 
store and analyze these big data are too expensive. 
Although, there are free web traffic analyzer softwares 
such as AWStats [1], Open Web Analytics (OWA) [2] 
or Piwik [3] that store traffic data in the plain text 
format or in the relational database system such as 
MySQL, they are not efficient when data is too big.  
 A few years ago, C. Rattanapoka [4], S. Narkhede 
and T. Baraskar [5] published research papers on Log 
analyzer using Hadoop. However, both of them used 
Hadoop Mapreduce paradigm to extract and retrieve 
data from Hadoop Distributed File System (HDFS). 
However, the cost of starting MapReduce process is 
expensive. So, both of their systems cannot be used for 
analyzing real-time data. Later on, S. Adhikari et al. 
[6] proposed the system that analyses and generates log 
data and statistics report by using Hadoop. But, instead 
of using directly Hadoop Mapreduce paradigm, this 
system uses Pig [7] which is a tool that abstracts and 
hides the complexity of Mapreduce paradigm to more 

human-understandable commands and scripts. 
However, the operations underneath of Pig are still 
Mapreduce which take time to start processes and 
cannot be used for real-time analytics. Moreover, the 
Pig commands are not intuitive like the structural 
query language (SQL). 
 Hence, this research paper presents the design and 
implementation of a PHP web-based large-scale web 
traffic analyzer using Hadoop Distributed File System 
(HDFS) to store large-scale web traffic data and using 
Cloudera Impala (SQL-like commands) to query and 
analyze web traffic data from HDFS in real-time. 
 

2. Background 
 In this section, we review Hadoop Distributed File 
System, Cloudera Impala, Apache Flume and Apache 
Thrift which are main 4 components to implement our 
large-scale web traffic log analyzer. 
 
2.1 Hadoop Distributed File System  

The Hadoop Distributed File System (HDFS) [8] is 
a distributed file system that can be scalable to support 
thousands of commodity machines. The design of 
HDFS is fully inspired by Google File System (GFS) 
[9] which has master/slave architecture. HDFS is 
designed to work with large data sets requiring tens of 
petabyte of storage. HDFS operates on top of file 
systems of the underlying OS. HDFS is written in Java 
language and is highly fault-tolerant. Each HDFS 
cluster has one master node, called namenode, which 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

63 

manages the metadata information and several nodes, 
called datanodes, which manage storage attached to 
the nodes that they run on, store the actual data. 

Fig. 1. shows the mechanism of HDFS. Clients 
contact the namenode machine for file metadata and 
perform actual file I/O directly with the datanodes. 
 

Rack 2

Namenode

Client

DatanodeDatanode

Rack 1

DatanodeDatanode

Metadata (Name, Replicas, ..) :
/home/foo/data, 3, ….

Metadata ops

Read

Client

Metadata ops

Write

 
Fig. 1. The Mechanism of HDFS. 

 
2.2 Cloudera Impala 

Cloudera Impala [10] is an open source Massively 
Parallel Processing (MPP) query engine that runs on 
Apache Hadoop. Impala provides high-performance, 
low-latency SQL queries on data stored in popular 
Apache Hadoop file formats. The fast response for 
queries enables interactive exploration and fine-tuning 
of analytic queries, rather than long batch jobs 
traditionally associated with SQL-on-Hadoop 
techniques. Impala provides access to data in Hadoop 
without requiring the Java skills required for 
MapReduce [11] jobs. Impala can access data directly 

from the HDFS file system. Impala is pioneering the 
use of the Parquet [12] file format, a columnar storage 
layout that is optimized for large-scale queries. 
 
2.3 Apache Flume 
 Apache Flume [13] is a distributed, reliable, and 
available service for efficiently collecting, aggregating, 
and moving large amounts of log data. It has a simple 
and flexible architecture based on streaming data flow. 
It is robust and fault-tolerant with tunable reliability 
mechanisms and many failovers and recovery 
mechanisms. It uses a simple extensible data model 
that allows for online analytic applications. Fig. 2. 
shows a Flume agent which receives log data, called 
Event. Then, the Event flows from Source to Channel 
and then to Sink. 
 

 
 

Fig. 2. Apache Flume Architecture. 
 
2.4 Apache Thrift 
 Apache Thrift [14] is an interface definition 
language and binary communication protocol that is 
used to define and create services for numerous 
languages. It is used as a remote procedure call (RPC) 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

64 

framework that aims to make reliable, performant 
communication and data serialization as efficient and 
seamless as possible. It combines a software stack with 
a code generation engine to build services that work 
efficiently to a varying degree and seamlessly between 
C#, C++, Cappuccino, Cocoa, Delphi, Erlang, Go, 
Haskell, Java, Node.js, OCaml, Perl, PHP, Python, 
Ruby, and Smalltalk. It is originally developed at 
Facebook. Thrift was open sourced in April 2007 and 
entered the Apache Incubator in May, 2008. Thrift 
became an Apache TLP in October, 2010.  
 Apache Thrift aims to embody the following 
values: Simplicity, Transparency, Consistency, and 
Performance. 
 

3. Design and Implementation 
 In this paper, we propose a design and 
implementation of a large-scale web traffic log 
analyzer on Hadoop Distributed File System.  Fig. 3. 
shows how our system works. We have a set of web 
servers that send web traffic log from Apache web 
servers (access log and error log) to HDFS via Apache 
Flume. Then, users can use our web-based log analyzer 
implemented in PHP language to query and display 
web traffic log information such as Top Visiting IP, 
URL error, Top Website Access, and Top Webpage 
Access. The web-based log analyzer invokes user’s 
requests via PHP Thrift library to contact and order 
Cloudera Impala to query user’s request in SQL style. 
 

Web Servers

Flume Source

Flume 
Channel

Flume Sink

HDFS Cluster

Cloudera 
Impala

Thrift LibraryWeb Application 
(PHP)

Users

Web Traffic Log

Web Traffic Log

Query / Log Information

 
 
Fig. 3. The Design of Large-Scale Web Traffic Log 
Analyzer on HDFS. 
 

Datanodes

Namenode

HDFS, Cloudera Impala

- HDFS
- Apache Flume
- Cloudera Impala
- Apache Web Server
- PHP
- MySQL

 
 

Fig. 4. HDFS Cluster Diagram. 
 
3.1 HDFS Cluster 
 We installed our testbed system on 9 PCs (nodes) 
which are one namenode and eight datanodes. All of 
the nodes connect to 1Gbps Ethernet switch. Because 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

65 

we have limit on the number of nodes, so we also use 
namenode as the web server for our large-scale web 
traffic log analyzer. 
 Hence, in namenode, we have installed 6 programs 
which are HDFS, Apache Flume, Cloudera Impala, 
Apache web server, PHP, and MySQL. For datanodes, 
we have installed only 2 programs which are HDFS 
and Cloudera Impala as shown in Fig. 4. 
 
3.2 Apache Web Server and Apache Flume 
 In the proposed web traffic log analyzer, the web 
traffic log (access log and error log) comes from 
Apache Web Server and we want to store them in 
HDFS. The design of Apache Flume in this paper is 
implemented as shown in Fig. 5. 
 

Error LogAccess Log

Source: 

tail -f  .

Source: 

tail -f  .

Channel Channel

Sink: Thrift Sink: Thrift

Source: Thrift Channel Sink: HDFS

HDFSAgent 1

Agent 2 Agent 3

 
Fig. 5. The Design of Apache Flume. 

 
 Each web server has to install Apache Flume and 
configure Apache Flume’s Source with “tail –f” 
command. For web server access log and error log, by 

default, locates at /etc/httpd/logs/access_log and 
/etc/httpd/logs/error_log respectively. Thus, we 
configure Flume’s Source with command “tail –f 
/etc/httpd/log/access_log” for access log and command 
“tail –f /etc/httpd/log/error_log” for error log.  
 Agent2 and Agent3 are agents of Apache Flume 
that read web server traffic log via Source and transfer 
them to another Thrift agent (Agent1) via Sink. Then 
Agent1 read traffic log from multiple Sources (Sink of 
Agent2 and Agent3) and put that data to Sink which 
connected to HDFS. 
 Because we need more information from web 
server traffic logs. So, we modified both Apache web 
server’s access log and error log format to give us 
more useful information to analyze.  
 We modified web server’s access log format to 
LogFormat "%V`%h`%{%Y-%m-%d %H:%M:%S}t` 
%r`%D`%{User-agent}i" where %V is the web server 
name, %h is the remote hostname, %{%Y-%m-%d 
%H:%M%S}t is the time request, %r is the first line of 
request, %D is the time taken to serve the request (in 
microsecond) and %{User-agent}i is the user-agent of 
requester. Also, we use the backquote (`) as the 
delimiter because it is easy to Impala to split a log 
message to get information of each field.  
 For error log, we modified to ErrorLogFormat 
"%V`%{c}t`%a`%m" where %V is the web server 
name, %{c}t is the time request, %a is requester’s IP 
and %m is the request method. We use the backquote 
as the delimiter just like we did for access log. 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

66 

3.3 Cloudera Impala Table Creation 
 Web traffic log in HDFS that receives from web 
servers are stored in plain text. Normally, we need to 
write a Java program in MapReduce paradigm to 
extract and retrieve data. However, the cost of starting 
MapReduce process is quite expensive and its method 
used to query information is not intuitive like the 
structural query language (SQL). The Elasticsearch 
[15] is another solution to operate (extract and retrieve) 
on big data. Unfortunately, it also does not have 
capability of SQL-like command to do more complex 
querying on data. With Cloudera Impala, we can turn 
HDFS plain text file format into Impala table and then 
we can use Impala to query information with SQL 
syntax. Moreover, The Impala’s Parquet file format, a 
column-oriented binary file format, is good for queries 
scanning particular columns within a table. 
 In order to use Impala, we need to map HDFS plain 
text file to Impala table with plain text file format. In 
our case, the web server access log and error log are 
sent from web servers to HDFS via Flume and are 
saved in /tmp/accesslog and /tmp/errorlog respectively.  
 Thus, we create an Impala table that maps to our 
web server access log by using following command. 
 

CREATE TABLE textaccesslog ( 
 servername      STRING, 
 ip                     STRING, 
 accessdate       STRING, 
 website            STRING 
 timeused         STRING, 

 user_agent      STRING 
) 
ROW FORMAT DELIMIED FIELDS TERMINATED BY ‘`’ 
STORED AS TEXTFILE 
LOCALTION ‘/tmp/accesslog’ 

 
 From the command above, The Impala table named 
textaccesslog will be created. This Impala table maps 
to file /tmp/accesslog in HDFS. The content of this 
file, in each line, will be split by using backquote as 
the delimiter and map to each field of this table.  
 The same applies for web server error log. We 
have to create another Impala table that maps to error 
log file stored in HDFS. Because, in our case, the web 
server error log file format has 4 fields and is stored at 
/tmp/errorlog in HDFS. Thus, we create an Impala 
table named texterrorlog which corresponds to the web 
server error log by using the following command. 
 
 

CREATE TABLE texterrorlog ( 
 servername   STRING, 
 accessdate     STRING, 
 clientname    STRING, 
 pathURL       STRING 
) 
ROW FORMAT DELIMIED FIELDS TERMINATED BY ‘`’ 
STORED AS TEXTFILE 
LOCALTION ‘/tmp/errorlog’ 

 
 However, the query speed on Impala tables with 
plain text file format is not good (see the result of the 
experiment in Section 4). We can solve this problem 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

67 

by using Impala Parquet file format instead of plain 
text file format. Hence, we need to create another 2 
Impala tables pqaccesslog and pqerrorlog that can 
store information of access log and error log in Parquet 
file format, respectively. 
 The Cloudera Impala command to create the table 
pqaccesslog that store access log using Parquet file 
format is as follows  
 

CREATE TABLE pqaccesslog ( 
 servername  STRING,      ip                   STRING, 
 accessdate    STRING,     website          STRING 
 timeused      STRING,      user_agent     STRING 
) 
STORED AS PARQUET; 

  
 Unfortunately, the Impala table with Parquet file 
format cannot directly map to our logs in HDFS. Thus, 
we need to transfer data from our Impala tables with 
plain text file format, textaccesslog and texterrorlog, to 
our new Impala tables with Parquet file format, 
pqaccesslog and pqerrorlog respectively. In our paper, 
we use crontab (task scheduler) to transfer data every 
day at midnight to keep the number of records in 
Impala table with plain text file format as low as 
possible. After the data transfer is complete, we 
remove data from Impala tables with plain text file 
format. 
 The command using for transferring data from 
textaccesslog to pqaccesslog as follows. 
 

REFRESH  textaccesslog; 
INSERT INTO pqaccesslog SELECT * FROM textaccesslog; 

 
 Thus, we have 4 Impala tables in our database.  
textaccesslog, texterrorlog are Impala table with plain 
text file format that respectively maps today’s web 
server access log and error log in HDFS. While, 
pqaccesslog, pqerrorlog are the Impala table with 
Parquet file format used to store all of history of web 
server’s access log and error log. 
 To facilitate our web-based log analyzer, we create 
2 views on our database named accesslog and errorlog 
that union the information of Impala table with plain 
text file format and Impala table with Parquet file 
format. For creating the accesslog view, we use the 
following command. 
 

CREATE VIEW accesslog AS 
SELECT * FROM textaccesslog UNION ALL  
SELECT * FROM pqaccesslog; 

 
3.4 PHP and Cloudera Impala via Apache Thrift 
 We use PHP language to implement our web-based 
large-scale web traffic log analyzer. Then, our web 
application cannot directly connect to Impala because 
its implementation is in Java language. However, 
Thrift is a middle layer that make the communication 
between PHP and Cloudera Impala possible.  
 The PHP phar file containing the Thrift library to 
connect and send quries to an Impala server can be 
downloaded at [16]. 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

68 

0

10

20

30

40

50

3 4 5 6 7 8

Qu
ery

 tim
e (

sec
on

ds)

The Number of Datanodes

q1

q2

q3

0
1
2
3
4
5
6

3 4 5 6 7 8

Qu
ery

 Ti
me

 (s
ec

on
ds)

The Number of Datanodes

q1 q2 q3

 

4. Experiments 
In the experiments, we have setup 8 datanodes 

HDFS cluster with 1Gbps Ethernet connection. Each 
datanode has the specification as follows: Intel Core 2 
Quad Processor CPU, 8 GB of RAM, and 1 TB of 
Hard disk. Then, we simulate a 50 GB of web traffic 
log and store it in HDFS via Impala table with plain 
text file format and Impala table with Parquet file 
format.  

We adjust the number of datanodes that store our 
50 GB of web traffic log from 3 to 8 datanodes and 
then we prepare 3 queries q1, q2 and q3 to measure the 
query time usage of Impala tables as follows: 

q1: select COUNT(*) from table. 
q2: select COUNT(*) from table GROUP BY ip. 
q3: select ip, COUNT(*) from table GROUP BY ip 

ORDER BY COUNT(*). 
 
4.1 Query Time Usage 
 For the Impala tables with plain text file format, 
the result in Fig. 6. shows that with 3 datanodes all of 3 
queries’ time usage are about 37 seconds and query 
time usage drop dramatically when we add more 
datanodes to HDFS cluster. Thus, we end up with 
around 15 seconds query time usage on 8 datanodes 
HDFS cluster. 
 For the Impala tables with Parquet file format, the 
result in Fig. 7. shows that with 3 datanodes the query 
q1 takes about 1 second and the query q2 and q3 take 
about 5 seconds. When we add more datanodes to 

HDFS cluster, the query time of all 3 queries does not 
effect much because they are already fast. Hence, we 
end up with 0.9 seconds query time usage for q1 and 
about 3.8 seconds query time usage for q2 and q3 
when using 8 datanodes. 
 
 
 
 
 
 
 
 
 
 
Fig. 6. The Query Time Usage on Impala Tables with 
Plain Text File Format. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. The Query Time Usage on Impala Tables with 
Parquet File Format. 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

69 

0

1

2

3

  5 6   
Qu

ery
 Ti

me
 Sp

ee
du

p
The Number of Datanodes

q1 q2 q3

0

0.25

0.5

0.75

1

1.25

1.5

  5 6   

Qu
ery

 Ti
me

  S
pe

ed
up

The Number of Datanodes

q1

q2

q3

4.2 Query Time Speedup 
 We calculate the query time speedup (QTS) when 
adding more datanodes into the system in Eq. (1) 
where Q3D is the query time usage for 3 datanodes and 
QND is the query time usage for n datanodes. 

 
QTS = Q3D / QND                         (1) 

 
 The query time speedup on Impala tables with 
plain text file format and Impala tables with Parquet 
file format shown in Fig.8. and Fig.9, respectively. We 
found that the increasing of datanodes to work with 
Impala tables with plain text format of 50GB data size 
has linear speedup. The query can be speeded up 
almost 2.5 times when we have 8 datanodes comparing 
to 3 datanodes in the cluster. 
 However, the query time speedup on Impala tables 
with Parquet file format does not scale very well 
because the query time is already quite low. Thus, we 
can gain speed up about 1.2 times when we use 8 
datanodes comparing to 3 datanodes in the cluster. 
 
4.4 Web Traffic Log Analyzer UI 
 Our large-scale web traffic log analyzer is a web 
application implemented in PHP language. On the 
dashboard, it displays the information of Top 10 
visiting IP, Top 10 website access, Top 10 URL error 
and Top 10 webpage access as shown in Fig.10. Also, 
system administrators can generate reports in the 
specific range of time as shown in Fig.11.  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. The Query Time Speedup on Impala Tables 
with Plain Text File Format. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. The Query Speedup on Impala Tables with 
Paquet File Format. 
 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

70 

 We also measure the response time of each page. 
The average response time of each page is around 4 
seconds on the 50 GB of log size and 8 datanodes in 
the HDFS cluster. 
 

 
 

Fig. 10. Web Traffic Log Analyzer Dashboard. 
 

 
 

Fig. 11. Web Traffic Log Analyzer Detail Page. 
 

5. Conclusion 
 This paper presents the design and implementation 
of a large-scale web traffic log analyzer using PHP 
language together with HDFS to store traffic log, 
Cloudera Impala to query data from HDFS, Apache 
Flume to receive apache web server traffic log and 
send them to store in HDFS, and Apache Thrift which 

is a communication channel between our web in PHP 
language and Cloudera Impala API in Java language. 
 In our experiments, we have queried data from 
HDFS via Impala tables with plain text file format and 
Impala tables with Parquet file format. We found that 
the query time usage on Impala tables with Parquet file 
format is a lot faster than on Impala tables with plain 
text file format. With 50 GB of traffic log data stored 
on 8 datanodes of HDFS cluster, the query time usage 
for Impala table with plain text file format takes 
around 15 seconds whereas 0.9 seconds is used for 
querying data on Impala table with Parquet file format.  
 Also, the use of hybrid between Impala tables with 
plain text file format to store the current day traffic log 
and Impala tables with Parquet file format to store 
history traffic log, each page of our web traffic log 
analyzer has only about 4 seconds response time. 
 

6. Reference 
[1] AWstats, Available: http://www.awstats.org/, 04 

March 2016. 
[2] OWA, Available: http://www.openwebanalytics. 

com/, 04 March 2016. 
[3] Piwik, Available: http://www.piwik.org/, 04 

March 2016. 
[4] C. Rattanapoka, “The Design and Implementation 

of Computer Traffic Log Searcher System using 
Hadoop Map/Reduce Framework”, The Journal 
of Industrial Technology 8(3), 2012. (in Thai). 



บทความวิจยั                                                               วารสารวิชาการเทคโนโลยอุีตสาหกรรม ปีท่ี 13 ฉบบัท่ี 1  มกราคม – เมษายน  2560 
The Journal of Industrial Technology, Vol. 13, No. 1  January – April  2017 

 

71 

[5] S. Narkhede and T. Baraskar, “HMR Log 
Analyzer: Analyze Web Application Logs over 
Hadoop Mapreduce”, The International Journal of 
UbiComp (IJU) 4(3), July 2013. 

[6] S. Adhikari, D. Saraf, M. Revanwar and N. 
Ankam, “Analysis of Log Data and Statistics 
Report Generation using Hadoop”, The 
International Journal of Innovative Research in 
Computer and Communication Engineering 2(4), 
April 2014. 

[7] Apache Pig, Available: https://pig.apache.org/ 
[8] K. Shvachko, H. Kuang, S. Radia and                 

R. Chansler, “The Hadoop Distributed File 
System”, The 26th IEEE Symposium on Massive 
Storage Systems and Technologies, 2010. 

[9] S. Ghemawat, H. Gobioff and S.T. Leung, “The 
Google File System”, Proceedings of the 19th 
ACM Symposium on Operating Systems 
Principles, 2003. 

[10] Cloudera Impala, Available: http://www.cloudera 
.com/products/apache-hadoop/impala.html, 04 
March 2016. 

[11] J. Dean and S. Ghemawat, “MapReduce: 
simplified data processing on large clusters”, 
Communications of the ACM 51, 2008, pp 107-
113. 

[12] Apache Parquet, Available: http://parquet.apache 
.org/, 04 March 2016. 

[13] Apache Flume, Available: http://flume.apache. 
org/, 04 March 2016. 

[14] Apache Thrift, Available: http://thrift.apache. 
org/, 04 March 2016. 

[15] Elasticsearch, Available: https://www.elastic.co/ 
[16] PHP Impala Phar, Available: https://github.com/ 

rmcfrazier/ php_impala_phar, 04 March 2016. 


