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Abstract

The growing demand for efficient and reliable manufacturing processes necessitates the development
of automated fault detection systems for Electronically Commutated (EC) motors. This research focuses
on designing and developing a robust, cost-effective, and user-friendly system that surpasses human
accuracy in fault detection. Utilizing a product design and development methodology, stakeholder needs
are translated into technical specifications to inform the design process. The prototype integrates a
soundproofing enclosure, condenser microphone, computer, and a Support Vector Machine (SVM)-based
machine learning algorithm, achieving an impressive testing accuracy of 94.54%. This results in high
accuracy in fault detection, surpassing human performance, which stands at 86.00%. The system features
a user-friendly Graphical User Interface (GUI) to ensure efficient quality control. Proven to be reliable
and efficient, the automated fault detection system enhances the quality control process for EC motors.
Future refinements could include improving noise isolation and cancellation algorithms and testing the
system in various real-world manufacturing environments. This research suggests that automated fault
detection systems have the potential to revolutionize manufacturing quality control and encourages

further exploration of emerging technologies for production system enhancement.

Keywords: Automated Fault Detection, Electronically Commutated Motor, Product Design and

Development, Stakeholder Needs, Technical Specifications
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1. Introduction

Electronically Commutated (EC) motors, also
known as brushless DC electric motors (BLDC), have
garnered interest across various industrial applications,
including Electric Vehicles (EV), due to their
energy efficiency, robust reliability, and reduced
maintenance requirements [1]. A consistent
challenge in the manufacturing of EC motors lies
in fault detection during the Quality Control (QC)
process. An efficient QC process is vital as it not only
ensures the superior quality of the final product but
also mitigates costly product recalls or extensive
rework processes [2], [3].

Fault detection in EC motors is critical for end
users, as faults can potentially lead to malfunctions
or complete system failures. Previous research
indicates that these issues could significantly escalate
the risk to public safety and result in expensive
equipment damage [4]. Consequently, a precise
and reliable QC process for EC motors becomes
a critical component of the overall manufacturing
process, essential for maintaining the safety, quality,
and operational efficiency of the finished product.

Currently, the quality inspection of EC motors
is dependent on human operators who can identify
specific motor faults based on the noise produced
by the motor. Although this approach has some
merit, it remains highly subjective and requires a high
level of expertise [5]. Furthermore, the potential for
human error and inconsistency can compromise its
reliability, highlighting the need for automated and
objective solutions.

Nowadays, many machine learning models,
ranging from simple ones to more complicated

ones such as K-Nearest Neighbors (k-NN) [6], Logistic

Regression [7], Decision Tree, Support Vector
Machine (SVM) [7], [8], and Artificial Neural Network
(ANN) [7], including Convolutional Neural Networks
(CNN) [9], have become powerful and play a vital
role in the inspection of motor, including rolling
elements such as bearings [9]-[13] and their
structures like rotor bars [6], [12]. The k-NN algorithm,
combined with a deterministic-stochastic subspace
method for system identification, has been
implemented to investigate the breakage of rotor
bars in induction motors [6]. However, this technique
uses the voltage and input of the motor as input,
which may require additional settings to measure
such electrical parameters. Another approach for
fault classification of bearings based on vibration
data is possible using CNN with transfer learning,
achieving great performance [9]. However, this
solution requires installation settings in a rig and
demands a good and reliable mounting of
accelerometers [11]. The acoustic-based approach for
fault classification, as a non-contact measurement,
tends to be a more practical solution, especially in
quality control processes that require minimal setup
[11], [12], [14]. It only needs an acoustic sensor or
microphone to record the noise of the motor. This
technique can also be extended to estimate the
torque of the motor [15].

This study adapts product design and
development techniques [16], [17] and incorporates
the human-centered design approach from
previous works [18]-[20] to create a prototype
for automated fault detection in EC motors. This
methodology, which is well-respected, structured,
and comprehensive in the fields of human factors

and ergonomics, aligns perfectly with the rationale of
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this research. By emphasizing the human-centered
design concept and focusing on identifying
stakeholder needs, these approaches contribute to
an informed design process. This, in turn, facilitates
the creation of products more likely to effectively
meet end-user requirements, offering the potential
to enhance the quality control process in the motor
production industry.

This research paper outlines the development
process of this prototype, including the identification
of stakeholders' needs, establishment of target
specifications, and generation of product concepts.
The paper also presents the results of the initial
tests and proposes potential opportunities for

future research.

2. Material and Methods

The proposed process follows three primary
stages of concept development [16] and integrates
a human factors and ergonomics approach [18],
as depicted in Figure 1. These stages are iterative,
responsive to prior outcomes, and adaptable to
new information. The following subsections provide
a comprehensive description of the approach taken
at each stage. Moreover, at the onset of the study,
it is crucial to establish a clear mission statement
that serves as the rationale and objective of this

research, as detailed in the introduction section.

2.1 Identifying Stakeholders' Needs

The initial step involves engagement with
stakeholders who play pivotal roles in the
manufacturing and inspection of EC motors. The
stakeholders involved in this context include an

electrical engineer with 10 years of experience

<« -« <«
. . Establish Generate
Mission | Identify Users N Target N Product |y
Statement Needs . .
Specifications Concepts

Figure 1 Proposed methods [16], [18].

in the QC process of EC motors, a scholar with a
backeround in automation systems, and two
researchers with backgrounds in production
engineering and industrial engineering, respectively.
To effectively understand the needs of stakeholders
and convey them to the development team,
this study employs a mix of informal interviews
and focus group discussions. These discussions,
which provide insights into the stakeholders'
perspectives on the challenges of the existing fault
detection process and the desired features of an
automated system, are essential for justifying and
finalizing the needs based on consensus. The
information gathered from this stage, referred to as
"needs factors," serves as the basis for defining the
target specifications of the product. Also, to track
progress, regular bi-weekly meetings are conducted
in the laboratory throughout the development
process. This approach enables the team to make
necessary adjustments promptly if any issues arise,
thereby preempting potential impediments in the

development process.

2.2 Establishing Target Specifications

Target specifications are determined after
identifying the "needs factors" but before creating
product concepts. These specifications are based
on practical metrics that directly reflect the extent
to which the product meets the end-users' needs

[16]. In this research, these metrics are referred to
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as "technical factors." The concept of specifications
focuses on the relationship between "needs factors"
and "technical factors." This relationship illustrates
the ability to translate stakeholder needs into
specific and measurable specifications. Furthermore,
meeting specifications ensures product performance,

accomplishing objectives, and satisfying customers.

2.3 Generating Product Concepts

Product concepts are developed to outline
the technology, operating principles, and visual
design of the product. These concepts provide a
clear representation of how the product will meet
customer requirements and fulfill their needs.
The design process follows an iterative approach,
involving frequent reviews and modifications to en-
sure alignment with the established specifications.
In this study, the most suitable concept is determined
through stakeholder consensus. The selected concept
is subsequently developed into a prototype and

tested.

3. Result and Discussion

The mission statement of this research
addresses the persistent need for improved quality
controlin the manufacturing of EC motors. This goal
is achieved by developing a prototype for automated
fault detection. By employing structured and
comprehensive product design and development
methodologies, this study focuses on identifying
and satisfying stakeholder needs. This ensures the
creation of a product that effectively meets end-
user requirements.

The results of the study are reflected in each

of the three stages of concept development,

corresponding to the identification of stakeholders'
needs, the establishment of target specifications,
and the generation of product concepts. Each
stage offers valuable insights and facilitates the
development and refinement of the automated

fault detection prototype for EC motors.

3.1 Identifying Stakeholders' Needs

The research team collaborates with
stakeholders to gain a comprehensive understanding
of their requirements for the automated fault
detection system. Through interviews and focus
group discussions, the team identifies key needs,
systematically ranking them based on perceived
importance and the frequency of mention by
stakeholders. To ensure well-informed judgments,
the team emphasizes the achievement of consensus
among stakeholders during regular meetings
throughout the development process. As illustrated
in Table 1, reliability, user-friendliness, and efficiency
in fault detection are crucial, with lower priority
given to low cost and robustness. This ranking
process helps to prioritize the needs and guides the

development of the specifications of the prototype.

3.2 Establishing Target Specifications

After identifying and ranking the stakeholders'
needs, a comprehensive set of target specifications
is generated. These specifications are translated
into technical factors that encapsulate the desired
features. As illustrated in Table 2, each of these
technical factors is designed to be specific and
measurable to ensure the developed product
aligns with needs of stakeholders and the mission

statement of research.

T. Sittiwanchai and A. Blattler, “The Development of an Automated Fault Detection System for Electronically Commutated

Motors Using a Product Design and Development Approach.”



MFEANTIVINTNSLIBUNAMTEUATIILD U 35 aUUR 3 n.A.—n.8. 2568
The Journal of KMUTNB., Vol. 35, No. 3, Jul.-Sep. 2025

Table 1 Needs Factors

Rank Needs Factors Description

1 Reliability The system must consistently perform its function of detecting faults with minimal errors.
2 User-friendliness | The system should be intuitive and easy to use, requiring minimal training for the user.

The system must accurately and swiftly detect faults to minimize disruption in the
3 Efficiency

manufacturing process.

The system must be affordable to produce and operate, making it a practical solution
4 Low cost

for various scales of production.

The system must be durable and capable of withstanding the rigors of a manufacturing
5 Robustness

environment while requiring minimal maintenance.

Table 2 Technical Factors

Technical Factors Description Targeted Specification
Accuracy The system should have a high degree of precision in | > 90% (Current human operator
detecting faults, contributing to its reliability. accuracy is 86.00%)
Interface The system should have a clear and intuitive user-interface, | < 2 hours of Training time
enhancing its user-friendliness.
speed The system should be capable of swiftly identifying faults, | <1 minute per item
reflecting its efficiency.
Cost The cost-effectiveness system of should be considered, | < $1,000 per setand < $50 maintenance
covering both the manufacturing and operational expenses. | cost per year
The system should be robust enough to withstand the | > 5 years with annual maintenance
Durability manufacturing environment and should require minimal
upkeep.

Drawing on the information provided in Tables
1-2, a basic relationship matrix can be established
to identify correlations between needs factors and
technical factors, as depicted in Table 3. Based
on the concept development framework, this
relationship matrix serves as a simplified version
of the central matrix in the house of quality [17].
Correlations between technical factors and needs

factors are indicated by an "x" in the matrix.

3.3 Generating Product Concepts

The creation of product concepts for the

automated fault detection system for EC motors
requires the careful integration of various
components. Each component is meticulously
selected to best align with stakeholder needs.
The determination of the most fitting concept is
accomplished through stakeholder consensus, as
illustrated in Figure 2. Core components include a
soundproofing enclosure, a condenser microphone,
a computer, and a machine learning algorithm
designed for feature extraction and fault detection.
Detailed information about these components is

presented in the following paragraphs.
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Table 3 Relationship matrix

Accuracy Interface Speed Cost Durability

Reliability X X X
User-friendliness X
Efficiency X X
Low cost X
Robustness X

Touch screen monitor

—

Motor
Microphone Processor
E

Figure 2 Concept of the proposed system.

1) Soundproofing Enclosure

Figure 3 illustrates the soundproofing enclosure,
which plays a vital role in creating an optimal
environment for noise measurement. The enclo-
sure isolates motor noise from external sounds
and is composed of acrylic sheets combined with
two layers of the acoustic material, SCG Cylence
Zoundblock. Noise absorption material is also ap-
plied to the insulation to minimize internal echoes.
This configuration guarantees a controlled acoustic
environment, which is essential for accurate fault
detection in noisy factory settings.

2) Microphone

Choosing the right microphone is crucial for
precise motor noise capture. Extensive pattern
evaluation highlights pros and cons. The omni-
directional pattern's equal sensitivity proves un-

suitable due to potential precision compromises

Figure 3 Soundproofing enclosure.

1]1-[23]. The

bi-directional patterns are ruled out for vulnerability

from increased ambient noise [2

to side noise [23], [24]. The cardioid pattern excels
in capturing front sounds while minimizing side and
rear noise, aligning with our precision goal for motor
noise capture [21], [23]. Though the super-cardioid
pattern offers enhanced directionality [22], [23],

placement sensitivity poses challenges. Thus, the
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1802

Figure 4 Cardioid polar pattern.

deliberate choice of the cardioid pattern in the Boya
By-PM300 model, as shown in Figure 4, optimizes
performance, ensuring focused and accurate motor
noise capture within the enclosure while minimizing
residual environmental noise.

3) Computer

Serving as the backbone of the system, the
computer processes the captured noise data
and executes the fault detection algorithm. An
Intel NUC computer is selected, outperforming
the initially considered Raspberry Pi in terms of
processing speed, compatibility, and maintainability.
Paired with the computerisaUperfect EO7 touchscreen
monitor, chosen for its affordability and user-friendly
interface, which facilitates efficient system display
and interaction.

4) Data Augmentation

The data collection reveals an imbalance in
the collected data. Imbalanced data can lead to
biased models and overfitting, where the machine
learning model only predicts one class. To address

this issue, an audio augmentation technique called

Example of Original Waveform

1.0

0.5

0.0

-0.5

Normalized Amplitude

10 Example of Augmented Waveform

0.5

0.0

Normalized Amplitude

-1.0

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds)

Figure 5 Waveform of data in the time domain (Top -

Before) (Bottom - After) noise injection

noise injection is applied to the 155 fail motors,
as shown in Figure 5. As a result, the final dataset
consists of 310 fail motor data and 309 pass
motor data.

5) Machine Learning Models

The model configurations encompass four
distinct machine learning algorithms, each adopted
with default hyperparameters sourced from the
scikit-learn library. For the Logistic Regression
model, key parameters include the L2 penalty,
false dual formation, a tolerance of 1e-4, an inverse
regularization strength or C of 1.0, true fit intercept,
intercept scaling of 1, no class weight, no random
state, and the Limited-Memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) solver. Gaussian Naive
Bayes adopts default settings with no prior
probabilities of the classes and le-9 variance
smoothing. The Decision Tree model relies on
default configurations with the Gini impurity
criterion, the best splitter, no maximum depth,
2 minimum samples split, and 1 minimum samples

leaf. Lastly, the Support Vector Machine (SVM)
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is configured with default settings, including a
regularization parameter or C of 1.0, a Radial Basis
Function (RBF) kernel, a degree of 3, a scale kernel
coefficient or gamma of 1, a coef0 of 0.0, true
shrinking heuristic, false probability estimates, a
tolerance of 1e-3, a cache size of 200 MB, no class
weight, no limit for iteration, a one-vs-rest (ovr)
decision function shape, and false breaking ties.
All models utilize seven features extracted
from noise data as the input, which include Chroma,
Root Mean Square (RMS), Spectral Centroid, Spectral
Bandwidth, Spectral Roll-off, Zero Crossing, and Mel
Frequency Cepstral Coefficients (MFCCs). Table 4
represents the details of the noise characteristics

for each selected feature.

Table 4 Selected Features

Features Noise Characteristics
Chroma | Pitch of the underlying noise
Root Mean | Energy content of the noise over time
Square
Spectral | Brightness or spectral center of the noise
Centroid
Spectral | Frequency difference in the noise spectrum
Bandwidth
Spectral | Frequency below which a specific percentage
Roll-off | of total spectral energy lies
Zero Number of times the signal changes from
Crossing | positive to negative values
MECCs Mel-frequency cepstral coefficients representing
the cepstrum of the noise

6) Model training and testing

All the models mentioned early is trained
and tested by the final dataset consists of 310
fail motor data and 309 pass motor data which

80% training, 20% validation. The summary results

of machine learning algorithms are presented in
Table 5. The Support Vector Machine (SVM) plays a
central role in the fault detection system, analyzing
noise data for binary classification to determine the
'pass' or fail' status of motors. It exhibits superior
performance compared to other algorithms like
Logistic Regression, Gaussian Naive Bayes, and
Decision Tree, validating its selection.

At the beginning of this work, the goal is to
develop a system capable of accurately identifying
faults in EC motors, surpassing the accuracy of
human operators in a consistent and scalable
manner. In line with the established objectives,
the SVM algorithm used in the automated fault
detection system prototype achieves an impressive
test accuracy of 92.86%. This exceeds the average
accuracy of human operators, which stands at
86.00%, indicating that the automated system
outperforms manual inspection and successfully

fulfills a major project goal.

Table 5 Comparison of Accuracy

Validation Test
Method
Accuracy (%) |Accuracy (%)

Logistic Regression 86.29 70.83
Gaussian Naive Bayes 83.87 75
Decision Tree 93.55 83.33
Human Operator - 86
Support Vector Machine 99.19 92.86

7) Model Cross Validation

The use of k-fold cross-validation isimplemented
in the SYM model to demonstrate its robustness,
preventing overfitting and ensuring reliable results. A
5-fold splitting strategy is selected to divide the data

into the same proportions as the training process
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(80% training dataset, 20% validation set). The
outcome of the k-fold cross-validation demonstrates
satisfactory results, as depicted in Table 6,
presenting the training and validation accuracy.
Cross-validation methods typically emphasize
average validation accuracy. The machine-learning
model exhibits an average validation accuracy
of 94.54%, surpassing human inspection and
corresponding to the result of training process.
Hence, it can be concluded that the machine
learning model is reliable and unbiased, providing
evidence for the efficiency of the noise injection
method. It is recommended to delve into the
analysis of false detection cases, including both
instances of False Positives and False Negatives.
This exploration would provide valuable insights
into the system's performance, enabling targeted

improvements.

Table 6 Cross Validation Result

Fold Training Accuracy Validation
Number (%) Accuracy (%)
1 98.23 94.95
2 97.98 93.94
3 98.99 94.95
4 97.47 92.93
5 99.24 95.96

8) Graphical User Interface (GUI)

The Graphical User Interface (GUI) has been
designed based on user requirements to provide
a user-friendly experience. In Figure 6, the GUI
prominently features three intuitive buttons: "start,"
"cancel," and "hide/unhide." Upon clicking the "start"
button, a five-second audio recording process is

initiated and repeated three times, leading to a

[ ] Motor Sound Inspector

11 January 2024 11:38:28 +07 RPM selection

Idle
Start Cancel
chroma_shft rmse spec_cent spec_bw rolloff
Pass mean 0.0098 4986.578 0.138 107.072 25104 28.337
Pass max 0.0177 6235.413 0.284 130.413 39.76 40.215
Pass min 0.0061 4380.005 0.06 90.298 7.81 15.153
Not pass mean  0.0112 4856.691 0135 105.667 24632 30.16
Not pass max 0.0486 6148.855 0.28 126.764 43.458 43.622
Not pass min 0.006 3474.371 0.079 69.235 5.614 12107

Test motor

Figure 6 Graphical User Interface (GUI).

Figure 7 Testing scenario.

final 'pass' prediction if at least two out of the three
recordings indicate a pass. The 'hide/unhide’ button
effectively manages the visibility of a numerical data
table, which remains hidden by default but can be
displayed by the user with a simple click, aiding in
user verification.

9) Testing Scenario

Figure 7 illustrates the ongoing testing scenario
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inside the soundproofing enclosure, demonstrating
the positioning of the motor and microphone
during operation. The motor is securely placed on
a dedicated fixture designed with elastic material to
minimize vibration-induced noise. This configuration
closely simulates a real production environment,
allowing for thorough validation of the fault

detection performance.

3.4 Interpretation of Key Results

1) Stakeholders' Needs and Target Specifications

Engaging with stakeholders during the
development process provides vital insights into
the essential features and requirements of the
automated fault detection system. These interactions
underscore the critical importance of reliability,
user-friendliness, efficiency, cost-effectiveness,
and robustness. These needs are subsequently
converted into technical factors, forming specific
and measurable target specifications. It is crucial
to acknowledge the inherent trade-off between
ranking factors and addressing identified needs.
The prioritization process, while providing valuable
insights, introduces certain limitations. Future work
should explore methodologies to balance these
trade-offs effectively, ensuring a more nuanced
and comprehensive understanding of stakeholder
requirements.

2) Automated Fault Detection Prototype

The demonstrated prototype incorporates a
soundproofing enclosure, condenser microphone,
computer, and machine learning algorithm, all in
alignment with the identified needs and specifications.
Specifically, the SVM-based machine learning

algorithm showcases high accuracy in fault detection,

bolstering system reliability. The limitation of the
proposed system lies in its development and testing
on a single-motor model. Variations in acoustic
characteristics and operational behavior among
different motor models may impact its generalizability.
Future research should explore its adaptability to
diverse motor models for broader applicability in
manufacturing settings.

3) Graphical User Interface (GUI)

The usability of prototype is enhanced by a
straightforward, intuitive GUI. The GUI facilitates the
simple operation of system and provides informa-
tive feedback to the user, improving the overall

efficiency of the quality control process.

3.5 Comparative Analysis

1) Reliability Comparison

The SVM-based fault detection system not
only demonstrates superior accuracy compared to
the current human operator but also aligns with
findings in previous research [25], representing a
significant enhancement in the reliability of the EC
motor quality control process. This highlights the
consistency of our findings with existing studies and
underscores the critical nature of this improvement.

2) Enhanced Efficiency

The fault detection process operates swiftly,
requiring less than a minute per motor. This not only
supports operational efficiency but also minimizes
disruptions in the manufacturing process [2], further
emphasizing the practical significance of our findings.

3) User-friendliness and Minimal Training

The user-friendliness of the system is supported
by its straightforward GUI interface and ease of

operation, requiring minimal training time for users [26].
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4) Cost-effectiveness and Feasibility

The prototype has been designed to adhere
to budget constraints, making it a feasible solution
for implementation across various production
scales [16].

5) Robustness and Low Maintenance

The robustness of system, achieved through the
inclusion of a soundproofing enclosure and durable
components, ensures its resilience in manufacturing
environments, leading to reduced maintenance

requirements [27].

4. Conclusion

This research designs and develops an
automated fault detection system for EC motors,
surpassing human accuracy and offering a robust,
cost-effective solution. Guided by product design and
development methodologies, this work translates
stakeholder needs into practical technical specifications,
ensuring broad industry applicability. Although this
study demonstrates significant advancements in
automated fault detection for EC motors, potential
paths for future research remain. Enhancing fault
detection accuracy by refining the machine learning
model or considering different machine learning
algorithms could further improve the performance
of the system. The integration of additional
functionalities into the GUI could enhance the user
experience and provide more detailed information
regarding motor faults. Broadening the deployment
of the prototype in various real-world manufacturing
contexts will aid in evaluating the system's robustness
and practicality. Such tests will also provide insights
into necessary modifications to adapt to diverse

manufacturing conditions. As technology advances,

future work may explore the viability of incorporating
the Internet of Things (IoT) [28] and other emerging
technologies to improve system connectivity and

data analysis capabilities.
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