Page Header

Mining Bug Report Repositories to Identify Significant Information for Software Bug Fixing

Bancha Luaphol, Jantima Polpinij, Manasawee Kaneampornpan

Abstract


Most studies relating to bug reports aims to automatically identify necessary information from bug reports for software bug fixing. Unfortunately, the study of bug reports focuses only on one issue, but more complete and comprehensive software bug fixing would be facilitated by assessing multiple issues concurrently. This becomes a challenge in this study, where it aims to present a method of identifying bug reports at severe level from a bug report repository, together with assembling their related bug reports to visualize the overall picture of a software problem domain. The proposed method is called “mining bug report repositories”. Two techniques of text mining are applied as the main mechanisms in this method. First, classification is applied for identifying severe bug reports, called “bug severity classification”, while “threshold-based similarity analysis” is then applied to assemble bug reports that are related to a bug report at severe level. Our datasets are from three opensource namely SeaMonkey, Firefox, and Core:Layout downloaded from the Bugzilla. Finally, the best models from the proposed method are selected and compared with two baseline methods. For identifying severe bug reports using classification technique, the results show that our method improved accuracy, F1, and AUC scores over the baseline by 11.39, 11.63, and 19% respectively. Meanwhile, for assembling related bug reports using threshold-based similarity technique, the results show that our method improved precision, and likelihood scores over the other baseline by 15.76, and 9.14% respectively. This demonstrate that our proposed method may help increasing chance to fix bugs completely.

Keywords



Full Text: PDF

DOI: 10.14416/j.asep.2021.03.005

Refbacks

  • There are currently no refbacks.