Page Header

Dynamic Mechanical Performance of Natural Fiber Reinforced Composites: A Brief Review

Battula Durga Siva Deeraj, Kuruvilla Joseph, Jitha Santhakumari Jayan, Appukuttan Saritha

Abstract


Natural fiber reinforced polymer composite is a much focused area of study owing to its environmentally friendly nature and good mechanical properties. These composites offer comparable mechanical properties to that of steel and other composite materials. Dynamic mechanical analysis is a widely used technique to investigate the mechanical performance of fiber reinforced composites at a wide range of temperatures. Using this technique, the thermal transitions and damping properties of fiber reinforced composites can be studied. These natural fiber composites are widely employed in structural applications in many industries. Here, in this short review we have presented the recent works on the dynamic properties of natural fiber reinforced composite materials with an essence of the influencing factors

Keywords



[1] K. Venkatesan and G. Bhaskar, “Evaluation and comparison of mechanical properties of natural fiber abaca-sisal composite,” Fibers and Polymers, vol. 21, pp. 1523–1534, 2020.

[2] M. K. Gupta and R. Srivastava, “Effect of sisal fibre loading on wear and friction properties of jute fibre reinforced epoxy composite,” American Journal of Polymer Science & Engineering, vol. 3, pp. 198–207, 2015.

[3] P. Sahu and M. Gupta, “Sisal (Agave sisalana) fibre and its polymer-based composites: A review on current developments,” Journal of Reinforced Plastics and Composites, vol. 36, pp. 1759–1780, 2017.

[4] M. Gupta and R. Srivastava, “Mechanical properties of hybrid fibers-reinforced polymer composite: A review,” Polymer-Plastics Technology and Engineering, vol. 55, pp. 626–642, 2016.

[5] M. Bayart, K. Adjallé, A. Diop, P. Ovlaque, S. Barnabé, M. Robert, and S. Elkoun, “PLA/ flax fiber bio-composites: Effect of polyphenolbased surface treatment on interfacial adhesion and durability,” Composite Interfaces, vol. 28, pp. 287–308, 2021.

[6] G. George, K. Joseph, and E. Nagarajan, “Jute yarn as reinforcement for polypropylene based commingled eco-composites: Effect of fibre content and chemical modifications on accelerated ageing and tear properties,” Fibers and Polymers, vol. 18, pp. 948–956, 2017.

[7] C. Angulo, S. Brahma, M. Espinosa, R. Peters, K. M. Stewart, S. Pillay, and H. Ning, “Development of hemp fiber composites with recycled high density polyethylene grocery bags,” Environmental Progress & Sustainable Energy, pp. 1–10, 2021, Art. no. e13617.

[8] K. Joseph, S. Thomas, and C. Pavithran, “Effect of ageing on the physical and mechanical properties of sisal-fiber-reinforced polyethylene composites,” Composites Science and Technology, vol. 53, pp. 99–110, 1995.

[9] C. Lai, S. Sapuan, M. Ahmad, N. Yahya, and K. Dahlan, “Mechanical and electrical properties of coconut coir fiber-reinforced polypropylene composites,” Polymer-Plastic Technology and Engineering, vol. 44, pp. 619–632, 2005.

[10] M. Arulmurugan, A. Selvakumar, K. Prabu, and G. Rajamurugan, “Effect of barium sulphate on mechanical, DMA and thermal behaviour of woven aloevera/flax hybrid composites,” Bulletin of Materials Science, vol. 43, pp. 1–10, 2020.

[11] M. Jawaid and S. Siengchin, “Hybrid composites: A versatile materials for future,” Applied Science and Engineering Progress, vol. 12, p. 223, 2019.

[12] O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010,” Progress in Polymer Science, vol. 37, pp. 1552–1596, 2012.

[13] P. Sahu and M. Gupta, “A review on the properties of natural fibres and its bio-composites: Effect of alkali treatment,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 234, pp. 198–217, 2020.
[14] N. Saba, M. Jawaid, O. Y. Alothman, and M. Paridah, “A review on dynamic mechanical properties of natural fibre reinforced polymer composites,” Construction and Building Materials, vol. 106, pp. 149–159, 2016.

[15] H. L. Ornaghi Jr., V. Pistor, and A. J. Zattera, “Effect of the epoxycyclohexyl polyhedral oligomeric silsesquioxane content on the dynamic fragility of an epoxy resin,” Journal of Non- Crystalline Solids, vol. 358, pp. 427–432, 2012.

[16] N. T. Qazvini and N. Mohammadi, “Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: Effect of styrene content,” Polymer, vol. 46, pp. 9088– 9096, 2005.

[17] D. Romanzini, A. Lavoratti, H. L. Ornaghi Jr, S. C. Amico, and A. J. Zattera, “Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites,” Materials & Design, vol. 47, pp. 9– 15, 2013.

[18] B. Deeraj, A. Saritha, and K. Joseph, “Electrospun butadiene copolymer fibers as potential reinforcement in epoxy composites: Modeling of rheological and visco elastic data,” Composites Part B: Engineering, vol. 160, pp. 384–393, 2019.

[19] M. Jawaid and H. A. Khalil, “Effect of layering pattern on the dynamic mechanical properties and thermal degradation of oil palm-jute fibers reinforced epoxy hybrid composite,” BioResources, vol. 6, pp. 2309–2322, 2011.

[20] M. Sreekala, S. Thomas, and G. Groeninckx, “Dynamic mechanical properties of oil palm fiber/phenol formaldehyde and oil palm fiber/ glass hybrid phenol formaldehyde composites,” Polymer Composites, vol. 26, pp. 388–400, 2005.
[21] J. Joseph, P. R. Munda, M. Kumar, A. M. Sidpara, and J. Paul, “Sustainable conducting polymer composites: Study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers,” Polymer- Plastics Technology and Materials, vol. 59, pp. 1088–1099, 2020.

[22] M. Rajesh, K. Jayakrishna, M. Sultan, M. Manikandan, V. Mugeshkannan, A. U. M. Shah, and S. N. A. Safri, “The hydroscopic effect on dynamic and thermal properties of woven jute, banana, and intra-ply hybrid natural fiber composites,” Journal of Materials Research and Technology, vol. 9, pp. 10305–10315, 2020.

[23] P. Sathyaseelan, P. Sellamuthu, and L. Palanimuthu, “Dynamic mechanical analysis of areca/ kenaf fiber reinforced epoxy hybrid composites fabricated in different stacking sequences,” Materials Today: Proceedings, vol. 39, pp. 1202– 1205, 2020.

[24] M. Tajvidi, R. H. Falk, and J. C. Hermanson, “Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis,” Journal of Applied Polymer Science, vol. 101, pp. 4341–4349, 2006.

[25] V. Prasad, K. Sekar, S. Varghese, and M. Joseph, “Enhancing mode I and mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2,” Composites Part A: Applied Science and Manufacturing, vol. 124, p. 105505, 2019.

[26] M. A. Murugan, A. S. Kumar, and C. Dineshkumar, “Analysis of thermal, dynamic and mechanical properties of hybrid alovera/hemp FRE bio-composites,” Materials Today: Proceedings, vol. 22, pp. 970–975, 2020.

[27] H. Hadiji, M. Assarar, W. Zouari, F. Pierre, K. Behlouli, B. Zouari, and R. Ayad, “Damping analysis of nonwoven natural fibre-reinforced polypropylene composites used in automotive interior parts,” Polymer Testing, vol. 89, p. 106692, 2020.

[28] B. Sethuraman, S. P. Subramani, S. K. Palaniappan, B. Mylsamy, and K. Aruchamy, “Experimental investigation on dynamic mechanical and thermal characteristics of Coccinia indica fiber reinforced polyester composites,” Journal of Engineered Fibers and Fabrics, vol. 15, 2020, Art. no. 1558925020905831.

[29] A. Khan, A. M. Asiri, M. Jawaid, and N. Saba, “Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites,” Carbohydrate Polymers, vol. 239, p. 116248, 2020.

[30] S. S. Chee, M. Jawaid, O. Y. Alothman, and H. Fouad, “Effects of nanoclay on mechanical and dynamic mechanical properties of bamboo/kenaf reinforced epoxy hybrid composites,” Polymers, vol. 13, p. 395, 2021.

[31] T. Mohan and K. Kanny, “Processing of high weight fraction banana fiber reinforced epoxy composites using pressure induced dip casting method,” Journal of Composite Materials, 2021, doi: 10.1177/0021998320988044.

[32] R. A. Kurien, D. P. Selvaraj, and C. P. Koshy, “Worn surface morphological characterization of NaOH-treated chopped abaca fiber reinforced epoxy composites,” Journal of Bio-and Tribo- Corrosion, vol. 7, pp. 1–8, 2021.
[33] M. N. Arshad, H. Mohit, M. Sanjay, S. Siengchin, A. Khan, M. M. Alotaibi, A. M. Asiri, and M. A. Rub, “Effect of coir fiber and TiC nanoparticles on basalt fiber reinforced epoxy hybrid composites: Physico–mechanical characteristics,” Cellulose, vol. 28, pp. 3451–3471, 2021.

[34] V. Prasad, K. Sekar, S. Varghese, and M. Joseph, “Evaluation of interlaminar fracture toughness and dynamic mechanical properties of nano TiO2 coated flax fibre epoxy composites,” Polymer Testing, vol. 91, p. 106784, 2020.

[35] V. Prasad, K. Sekar, and M. Joseph, “Mechanical and water absorption properties of nano TiO2 coated flax fibre epoxy composites,” Construction and Building Materials, vol. 284, p. 122803, 2021.

[36] A. K. Maurya, R. Gogoi, and G. Manik, “Study of the moisture mitigation and toughening effect of fly‐ash particles on sisal fiber‐reinforced hybrid polypropylene composites,” Journal of Polymers and the Environment, vol. 256, pp. 1–16, 2021.

[37] M. Sanjay and B. Yogesha, “Studies on mechanical properties of jute/E-glass fiber reinforced epoxy hybrid composites,” Journal of Minerals and Materials Characterization and Engineering, vol. 4, pp. 15–25, 2016.

[38] M. Sanjay and B. Yogesha, “Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences,” Journal of Industrial Textiles, vol. 47, pp. 1830–1848, 2018.

[39] M. H. Gheith, M. A. Aziz, W. Ghori, N. Saba, M. Asim, M. Jawaid, and O. Y. Alothman, “Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites,” Journal of Materials Research and Technology, vol. 8, pp. 853–860, 2019.

[40] G. Goud and R. Rao, “Effect of surface modification and hybridization on dynamic mechanical properties of Roystonea regia/glass–epoxy composites,” Bulletin of Materials Science, vol. 35, pp. 1143–1149, 2012.

[41] M. Sanjay, G. Arpitha, P. Senthamaraikannan, M. Kathiresan, M. Saibalaji, and B. Yogesha, “The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: Impact, inter-laminar strength, and failure surface characterization,” Journal of Natural Fibers, vol. 16, no. 4, 2019.

[42] T. Bin, J.-p. Qu, L.-m. Liu, Y.-h. Feng, S.-x. Hu, and X.-c. Yin, “Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly (butylene succinate) composites reinforced with cotton stalk bast fibers,” Thermochimica Acta, vol. 525, pp. 141–149, 2011.

[43] J. George, S. Bhagawan, and S. Thomas, “Thermogravimetric and dynamic mechanical thermal analysis of pineapple fibre reinforced polyethylene composites,” Journal of Thermal Analysis and Calorimetry, vol. 47, pp. 1121– 1140, 1996.

[44] P. Herrera-Franco and A. Valadez-Gonzalez, “A study of the mechanical properties of short natural-fiber reinforced composites,” Composites Part B: Engineering, vol. 36, pp. 597–608, 2005.
[45] F. M. Salleh, A. Hassan, R. Yahya, and A. D. Azzahari, “Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites,” Composites Part B: Engineering, vol. 58, pp. 259–266, 2014.

[46] S. Mohanty, S. K. Verma, and S. K. Nayak, “Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites,” Composites Science and Technology, vol. 66, pp. 538–547, 2006.

[47] A. Pérez-Fonseca, J. Robledo-Ortíz, D. Ramirez- Arreola, P. Ortega-Gudiño, D. Rodrigue, and R. González-Núñez, “Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites,” Materials & Design, vol. 64, pp. 35–43, 2014.
[48] A. N. Towo and M. P. Ansell, “Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre–thermosetting resin composites,” Composites Science and Technology, vol. 68, pp. 925–932, 2008.

[49] F. M. Margem, S. N. Monteiro, J. Bravo Neto, R. J. S. Rodriguez, and B. G. Soares, “The dynamicmechanical behavior of epoxy matrix composites reinforced with ramie fibers,” Matéria (Rio de Janeiro), vol. 15, pp. 164–171, 2010.
[50] K. Mylsamy and I. Rajendran, “The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated agave continuous fibre reinforced epoxy composites,” Materials & Design, vol. 32, pp. 3076–3084, 2011.
[51] A. Saha, S. Das, D. Bhatta, and B. Mitra, “Study of jute fiber reinforced polyester composites by dynamic mechanical analysis,” Journal of Applied Polymer Science, vol. 71, pp. 1505– 1513, 1999.

[52] P. Ghosh, N. R. Bose, B. Mitra, and S. Das, “Dynamic mechanical analysis of FRP composites based on different fiber reinforcements and epoxy resin as the matrix material,” Journal of Applied Polymer Science, vol. 64, pp. 2467–2472, 1997.
[53] T. Yu, N. Jiang, and Y. Li, “Study on short ramie fiber/poly (lactic acid) composites compatibilized by maleic anhydride,” Composites Part A: Applied Science and Manufacturing, vol. 64, pp. 139–146, 2014.

[54] R. A. Talib, I. S. M. A. Tawakkal, and A. Khalina, “The influence of mercerised kenaf fibres reinforced polylactic acid composites on dynamic mechanical analysis,” Key Engineering Materials, vol. 471-472, pp. 815–820, 2011.

[55] M. Jonoobi, J. Harun, A. P. Mathew, and K. Oksman, “Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion,” Composites Science and Technology, vol. 70, pp. 1742–1747, 2010.

[56] V. Geethamma, G. Kalaprasad, G. Groeninckx, and S. Thomas, “Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites,” Composites Part A: Applied Science and Manufacturing, vol. 36, pp. 1499–1506, 2005.
[57] S. Joseph, S. P. Appukuttan, J. M. Kenny, D. Puglia, S. Thomas, and K. Joseph, “Dynamic mechanical properties of oil palm microfibrilreinforced natural rubber composites,” Journal of Applied Polymer Science, vol. 117, pp. 1298– 1308, 2010.

[58] M. Jacob, B. Francis, S. Thomas, and K. Varughese, “Dynamical mechanical analysis of sisal/oil palm hybrid fiber‐reinforced natural rubber composites,” Polymer Composites, vol. 27, pp. 671–680, 2006.

[59] R. Arib, S. Sapuan, M. Ahmad, M. Paridah, and H. K. Zaman, “Mechanical properties of pineapple leaf fibre reinforced polypropylene composites,” Materials & Design, vol. 27, pp. 391–396, 2006.

[60] H. Brodowsky and E. Mäder, “Jute fibre/ polypropylene composites II. Thermal, hydrothermal and dynamic mechanical behaviour,” Composites Science and Technology, vol. 67, pp. 2707–2714, 2007.

[61] M. Tajvidi, N. Motie, G. Rassam, R. H. Falk, and C. Felton, “Mechanical performance of hemp fiber polypropylene composites at different operating temperatures,” Journal of Reinforced Plastics and Composites, vol. 29, pp. 664–674, 2010.

[62] C.-G. Guo, Y.-M. Song, Q.-M. Wang, and C.- S. Shen, “Dynamic-mechanical analysis and SEM morphology of wood flour/polypropylene composites,” Journal of Forestry Research, vol. 17, pp. 315–318, 2006.

[63] S. K. Nayak, S. Mohanty, and S. K. Samal, “Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites,” Materials Science and Engineering: A, vol. 523, pp. 32–38, 2009.

[64] K. Jarukumjorn and N. Suppakarn, “Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites,” Composites Part B: Engineering, vol. 40, pp. 623–627, 2009.

[65] L. A. Pothan, Z. Oommen, and S. Thomas, “Dynamic mechanical analysis of banana fiber reinforced polyester composites,” Composites Science and Technology, vol. 63, pp. 283–293, 2003.

[66] A. d'Almeida, V. Calado, D. Barreto, and J. d'Almeida, “Effect of surface treatments on the dynamic mechanical behavior of piassava fiber–polyester matrix composites,” Journal of Thermal Analysis and Calorimetry, vol. 103, pp. 179–184, 2011.

[67] M. F. Omar, H. M. Akil, Z. A. Ahmad, A. Mazuki, and T. Yokoyama, “Dynamic properties of pultruded natural fibre reinforced composites using split Hopkinson pressure bar technique,” Materials & Design, vol. 31, pp. 4209–4218, 2010.
[68] M. Idicula, S. Malhotra, K. Joseph, and S. Thomas, “Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites,” Composites Science and Technology, vol. 65, pp. 1077–1087, 2005.

[69] H. L. Ornaghi Jr, A. S. Bolner, R. Fiorio, A. J. Zattera, and S. C. Amico, “Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding,” Journal of Applied Polymer Science, vol. 118, pp. 887–896, 2010.

[70] B. Wielage, T. Lampke, H. Utschick, and F. Soergel, “Processing of natural-fibre reinforced polymers and the resulting dynamic–mechanical properties,” Journal of Materials Processing Technology, vol. 139, pp. 140–146, 2003.

[71] G. George, K. Joseph, A. Saritha, and E. Nagarajan, “Influence of fiber content and chemical modifications on the transport properties of PP/jute commingled biocomposites,” Polymer Composites, vol. 39, pp. E250–E260, 2018.
[72] M. Jawaid, O. Y. Alothman, N. Saba, P. M. Tahir, and H. A. Khalil, “Effect of fibers treatment on dynamic mechanical and thermal properties of epoxy hybrid composites,” Polymer Composites, vol. 36, pp. 1669–1674, 2015.

[73] M. Gupta, “Effect of frequencies on dynamic mechanical properties of hybrid jute/sisal fibre reinforced epoxy composite,” Advances in Materials and Processing Technologies, vol. 3, pp. 651–664, 2017.

[74] J. Kar, A. K. Rout, A. K. Sutar, and T. Mohanty, “Study on static and dynamic mechanical properties of hybrid palm stalk fiber reinforced epoxy composites,” BioResources, vol. 15, pp. 4249–4270, 2020.

[75] T. Sathishkumar, “Dynamic mechanical analysis of snake grass fiber-reinforced polyester composites,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 230, pp. 160–174, 2016.

[76] A. Sonia, K. P. Dasan, and R. Alex, “Celluloses microfibres (CMF) reinforced poly (ethyleneco- vinyl acetate)(EVA) composites: Dynamic mechanical, gamma and thermal ageing studies,” Chemical Engineering Journal, vol. 228, pp. 1214– 1222, 2013.

[77] V. Sreenivasan, N. Rajini, A. Alavudeen, and V. Arumugaprabu, “Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment,” Composites Part B: Engineering, vol. 69, pp. 76– 86, 2015.

[78] A. Martínez-Hernández, C. Velasco-Santos, M. De-Icaza, and V. M. Castano, “Dynamical– mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers,” Composites Part B: Engineering, vol. 38, pp. 405–410, 2007.

[79] S. S. Kumar, D. A. Duraibabu, and K. Subramanian, “Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites,” Materials & Design, vol. 59, pp. 63–69, 2014.

[80] P. Singhal and S. Tiwari, “Effect of various chemical treatments on the damping property of jute fibre reinforced composite,” International Journal of Advanced Mechanical Engineering, vol. 4, pp. 413–424, 2014.

[81] M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers,” Composites Science and Technology, vol. 68, pp. 424–432, 2008.

[82] D. Ray, B. Sarkar, S. Das, and A. Rana, “Dynamic mechanical and thermal analysis of vinylesterresin- matrix composites reinforced with untreated and alkali-treated jute fibres,” Composites Science and Technology, vol. 62, pp. 911–917, 2002.

[83] H. Essabir, A. Elkhaoulani, K. Benmoussa, R. Bouhfid, F. Arrakhiz, and A. Qaiss, “Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites,” Materials & Design, vol. 51, pp. 780–788, 2013.
[84] S. M. K. Thiagamani, S. Krishnasamy, and S. Siengchin, “Challenges of biodegradable polymers: An environmental perspective,” Applied Science and Engineering Progress, vol. 12, p. 149, 2019.
[85] B. Deeraj, J. S. Jayan, A. Saritha, and K. Joseph, “Electrospun biopolymer-based hybrid composites,” in Hybrid Natural Fiber Composites. Cambridge, UK: Woodhead Publishing, 2021, pp. 225–252.

[86] S. M. Rangappa, S. Siengchin, and H. N. Dhakal, “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol. 13, pp. 183–184, 2020.

Full Text: PDF

DOI: 10.14416/j.asep.2021.06.003

Refbacks

  • There are currently no refbacks.