Page Header

A Review of Natural Fibers Reinforced Composites for Railroad Applications

Milena Chanes de Souza, Ivan Moroz, Ivana Cesarino, Alcides Lopes Leão, Mohammad Jawaid, Otávio Augusto Titton Dias

Abstract


Composite materials are abundantly present in applications related to transportation industries, mainly due to their lightweight, good mechanical performance, and viable production costs. In this sector, weight reduction represents a two-fold advantage as fuel consumption can be reduced, as well as passenger (or load) capacity can be enhanced. The use of natural fiber composites is an excellent option considering weight reduction and source renewability, already being done in many automotive and aerospace utilities, but specifically in railroad applications, their choice seems to be eclipsed by synthetic fibers, such as glass and carbon fibers. The objective of this work is to analyze the current situation on composite applications in the railroad industry, deriving a discussion that includes the aspects that hinder the use of natural fibers and also indicates the current status of greener composites even if not including natural fibers. The production costs of these natural fiberreinforced composites, when observed under a scalability scenario, associated with some specific properties of natural fibers (as flammability performance, for example) seem to be the reason for their rather infrequent consideration. Nevertheless, technology advancements related to production processes and innovative additives fabrication present an interesting prospect for future development in agreement with sustainability concerns.

Keywords



[1] International Energy Agency - IEA, “Greenhouse gas emissions from energy: Overview. Drivers of CO2 emissions,” 2021, [Online]. Available: https://www.iea.org/reports/greenhouse-gasemissions- from-energy-overview/drivers-of-co2- emissions

[2] Climatewatch, “Historical emissions data,” 2019. [Online]. Available: https://www.climate watchdata.org/data-explorer/historical-emissions ?historical-emissions-data-sources=cait& historical-emissions-end_year=2018&historicalemissions- gases=co2&historical-emissionsregions= All%20Selected&historical-emissionssectors= transportation&historical-emissionsstart_ year=2014&page=1&sort_col=country& sort_dir=ASC

[3] United States Environmental Protection Agency – EPA, “Greenhouse gas emissions. Global greenhouse gas emissions data,” 2021. [Online]. Available: https://www.epa.gov/ghgemissions/ global-greenhouse-gas-emissions-data

[4] International Energy Agency – IEA, “Greenhouse gas emissions from energy: Overview. Emissions by sector,” 2021. [Online]. Available: https:// www.iea.org/reports/greenhouse-gas-emissionsfrom- energy-overview/emissions-by-sector

[5] H. Ritchie, “Which form of transport has the smallest carbon footprint?,” 2020. [Online]. Available: https://ourworldindata.org/travelcarbon- footprint
[6] M. J. Figueroa, C. Dubeux, and F. Creutzig, “Chapter 9 - Energy end-use: Transport,” in Global Energy Assessment - Toward a Sustainable Future. Cambridge, UK: Cambridge University Press, 2012, pp. 575–648.

[7] P. Singh and B. Singh, “Assessment of mechanical properties of biocomposite material by using sawdust and rice husk,” Incas Bulletin, vol. 11, pp. 147–156, 2019, doi: 10.13111/2066-8201. 2019.11.3.13.

[8] T. R. K. Reddy, H. -J. Kim, and J. -W. Park, “Chapter 10 - Renewable biocomposite properties and their applications,” in Composites from Renewable and Sustainable Materials. London, UK: IntechOpen, 2016, doi: 10.5772/62936.

[9] European Commission, Directorate-General for Communication, “Circular economy action plan: For a cleaner and more competitive Europe,” 2020. [Online]. Available: https://op.europa.eu/ en/publication-detail/-/publication/45cc30f6- cd57-11ea-adf7-01aa75ed71a1/language-en/ format-PDF/source-170854112

[10] European Environment Agency, “Roadmap to a single european transport area – Towards a competitive and resource efficient transport system,” 2011. [Online]. Available: https://eurlex. europa.eu/LexUriServ/LexUriServ.do? uri=COM:2011:0144:FIN:EN:PDF

[11] FARBioTY, “Life cycle assessment – Case study of biocomposite for a railway application,” 2021. [Online]. Available: https://www.life-farbioty.eu/ life-cycle-assessment-case-study-of-biocompositefor- a-railway-application/

[12] V. Shanmugam, R. A. Mensah, M. Försth, G. Sas, Á. Restás, C. Addy, Q. Xu, L. Jiang, R. E. Neisiany, S. Singha, G. George, T. Jose, F. Berto, M. S. Hedenqvist, O. Das, and S. Ramakrishna, “Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends,” Composites Part C: Open Access, vol. 5, 2021, Art. no. 100138, doi: 10.1016/j.jcomc. 2021.100138.
[13] LIFE FARBioTY, “Fire and ageing resistant biocomposite for transportation industry,” 2021. [Online]. Available: https://www.life-farbioty.eu/
[14] J. Batchelor, “Use of fibre reinforced composites in modern railway vehicles,” Materials & Design, vol. 2, pp. 172–182, Jun. 1981, doi: 10.1016/0261-3069(81)90017-0.

[15] M. Robinson, “Application of composites in rail vehicles,” in Reference Module in Materials Science and Materials Engineering. Oxford, UK: Elsevier, 2016, doi: 10.1016/B978-0-12-803581- 8.03965-5.

[16] A. Manalo, T. Aravinthan, W. Karunasena, and A. Ticoalu, “A review of alternative materials for replacing existing timber sleepers,” Composite Structures, vol. 92, pp. 603–611, 2010, doi: 10.1016/j.compstruct.2009.08.046.

[17] S. C. Ho, J. H. Chern Lin, and C. P. Ju, “Effect of fiber addition on mechanical and tribological properties of a copper/phenolic-based friction material,” Wear, vol. 258, pp. 861–869, 2005, doi: 10.1016/j.wear.2004.09.050.

[18] I. D. Ibrahim, T. Jamiru, E. R. Sadiku, W. K. Kupolati, K. Mpofu, A. A. Eze, and C. A. Uwa, “Production and application of advanced composite materials in rail cars development: Prospect in south african industry,” Procedia Manufacturing, vol. 35, pp. 471–476, 2019, doi: 10.1016/j.promfg.2019.05.069.

[19] M. Puttegowda, H. Pulikkalparambil, and S. M. Rangappa, “Trends and developments in natural fiber composites,” Applied Science and Engineering Progress, vol. 14, pp. 543–552, 2021, doi: 10.14416/j.asep.2021.06.006.

[20] H. Ning, S. Pillay, N. Lu, S. Zainuddin, and Y. Yan, “Natural fiber-reinforced high-density polyethylene composite hybridized with ultrahigh molecular weight polyethylene,” Journal of Composite Materials, vol. 53, pp. 2119–2129, 2019, doi: 10.1177/0021998318822716.

[21] M. Zwawi, “A review on natural fiber bio-composites, surface modifications and applications,” Molecules, vol. 26, no. 2, pp. 1–28, 2021, doi: 10.3390/molecules26020404.

[22] S. Nandhakumar, K. M. Kanna, A. M. Riyas, and M. N. Bharath, “Experimental investigations on natural fiber reinforced composites,” Materials Today: Proceedings, vol. 37, pp. 2905–2908, 2021, doi: 10.1016/j.matpr.2020.08.669.

[23] P. H. F. Pereira, M. F. Rosa, M. O. H. Cioffi, K. C. C. C. Benini, A. C. Milanese, H. J. C. Voorwald, and D. R. Mulinari, “Vegetal fibers in polymeric composites: A review,” Polímeros, vol. 25, pp. 9–22, 2015, doi: 10.1590/0104-1428.1722.

[24] S. Erden and K. Ho, “Chapter 3 - Fiber reinforced composites,” in Fiber Technology for Fiber- Reinforced Composites. Cambridge, UK: Woodhead Publishing, 2017, pp. 51–79.

[25] S. Salim, T. Rihayat, and S. Riskina, “Enhanced mechanical properties of natural fiber bamboo/ pineapple leaf/ coconut husk reinforced composites for application in bio-board,” International Journal of Geomate, vol. 19, pp. 168–174, 2020.

[26] S. Z. Ali, M. K. Nahian, and M. A. Islam, “Effect of fiber content and post stress on moisture absorption of jute polyester composite,” IOP Conference Series Materials Science and Engineering, vol. 438, 2018, Art. no. 12024, doi: 10.1088/1757-899X/438/1/012024.

[27] S. M. Rangappa and S. Siengchin, “Exploring the applicability of natural fibers for the development of biocomposites,” eXPRESS Polymer Letters, vol. 15, no. 3, p. 193, 2021, doi: 10.3144/ expresspolymlett.2021.17.

[28] K. Rohit and S. Dixit, “A review - Future aspect of natural fiber reinforced composite,” Polymers from Renewable Resources, vol. 7, pp. 43–59, 2016, doi: 10.1177/204124791600700202.

[29] R. Malkapuram, V. Kumar, and Y. S. Negi, “Recent development in natural fiber reinforced polypropylene composites,” Journal of Reinforced Plastics and Composites, vol. 28, pp. 1169–1189, 2008, doi: 10.1177/0731684407087759.

[30] W. D. Callister Jr. and D. G. Rethwisch, “Composite materials,” in Materials Science and Engineering: An Introduction, 9th ed. New Jersey: John Wiley & Sons, 2013, pp. 627–671.

[31] T. G. Y. Gowda, M. R. Sanjay, K. S. Bhat, P. Madhu, P. Senthamaraikannan, and B. Yogesha, “Polymer matrix-natural fiber composites: An overview,” Cogente Engineering, vol. 5, pp. 1–13, 2018, doi: 10.1080/23311916.2018.1446667.

[32] M. Biron, “Chapter 6: Thermoplastic composites,” in Thermoplastics and Thermoplastic Composites: Technical Information for Plastic Users, 2nd ed. Oxford: William Andrew, 2013, pp. 769–829.

[33] P. Bazan, P. Nosal, B. Kozub, and S. Kuciel, “Biobased polyethylene hybrid composites with natural fiber: Mechanical, thermal properties, and micromechanics,” Materials, vol. 13, pp. 1–16, 2020, doi: 10.3390/ma13132967.

[34] S. Amin and M. Amin, “Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation,” Reviews on Advanced Materials Science, vol. 29, pp. 15–30, 2011.

[35] S. Sivaraj, C. Elanchezian, M. K. Kumar, and A. A. Kumar, “Mechanical behavior of saw wood dust filled polymer composites,” International Journal of Science and Engineering Research, vol. 5, pp. 3221–5687, 2017.

[36] S. A. Abdulkareem, M. K. Amosa, A. G. Adeniyi, S. A. Adeoye, and A. K. Ajayi, “Development of natural fibre reinforced polystyrene (NFRP) composites: Impact resistance study,” IOP Conference. Series: Materials Science and Engineering, vol. 640, 2019, Art. no. 012059, doi: 10.1088/1757-899X/640/1/012059.

[37] S. M. Rangappa, S. Siengchin, and H. N. Dhakal, “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol. 13, no. 3, pp. 183–184, 2020, doi: 10.14416/ j.asep.2020.06.001.

[38] M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, “Characterization and properties of natural fiber polymer composites: A comprehensive review,” Journal of Cleaner Production, vol. 172, pp. 566– 581, 2018, doi: 10.1016/j.jclepro.2017.10.101.
[39] P. Madhu, M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha, “A review on synthesis and characterization of commercially available natural fibers: Part-I,” Journal of Natural Fibers, vol. 16, pp. 1132–1144, 2019, doi: 10.1080/15440478.2018.1453433.

[40] B. G. Harvey, A. J. Guenthner, T. A. Koontz, P. J. Storch, J. T. Reams, and T. J. Groshens, “Sustainable hydrophobic thermosetting resins and polycarbonates from turpentine,” Green Chemistry, vol. 18, pp. 2416–2423, 2016, doi: 10.1039/C5GC02893K.

[41] D. E. Arthur, J. N. Akoji, G. C. Okafor, K. L. Abdullahi, S. A. Abdullahi, C. Mgbemena, A. O. Aroh, E. Uwaiya, and D. A. Danlami, “Studies on some mechanical properties of PVC-Wood fibre composite,” Chemical Review and Letters, vol. 4, pp. 85–91, 2021, doi: 10.22034/ crl.2021.242652.1076.

[42] A. S. Singha, R. K. Rana, and A. Rana, “Natural fiber reinforced polystyrene matrix based composites,” Advanced Materials Research, vol. 123–125, pp. 1175–1178, 2010, doi: 10.4028/ www.scientific.net/AMR.123-125.1175.

[43] A. S. Singha and R. K. Rana, “Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties,” Materials and Design, vol. 41, pp. 289–297, 2012, doi: 10.1016/j.matdes. 2012.05.001.

[44] Mukesh and S. S. Godara, “Effect of chemical modification of fiber surface on natural fiber composites: A review,” Materials Today: Proceedings, vol. 18, pp. 3428–3434, 2019, doi: 10.1016/j.matpr.2019.07.270.

[45] P. A. Sreekumar, R. Saiah, J. M. Saiter, N. Leblanc, K. Joseph, G. Unnikrishnan, and S. Thomas, “Effect of chemical treatment on dynamic mechanical properties of sisal fiber-reinforced polyester composites fabricated by resin transfer molding,” Composite Interfaces, vol. 15, pp. 263– 279, 2012, doi: 10.1163/156855408783810858.

[46] K. N. Bharath, P. Madhu, T. G. Yashas Gowda, M. R. Sanjay, V. Kushvaha, and S. Siengchin, “Alkaline effect on characterization of discarded waste of moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites,” Journal of Polymers and the Environment, vol. 28, pp. 2823–2836, 2020, doi: 10.1007/s10924-020- 01818-4.

[47] C.-K. Lee, Y.-K. Kim, P. Pruitichaiwiboon, J.-S. Kim, K.-M. Lee, and C.-S. Ju, “Assessing environmentally friendly recycling methods for composite bodies of railway rolling stock using life-cycle analysis,” Transportation Research Part D: Transport and Environment, vol. 15, pp. 197–203, 2010, doi: 10.1016/j.trd.2010.02.001.

[48] P. J. Mistry, M. S. Johnson, and U. I. K. Galappaththi, “Selection and ranking of rail vehicle components for optimal lightweighting using composite materials,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 235, pp. 390–402, 2020, doi: 10.1177/0954409720925685.

[49] S. M. Rangappa, S. Siengchin, J. Parameswaranpillai, M. Jawaid, and T. Ozbakkaloglu, “Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives,” Polymer Composites, vol. 43, no. 2, pp. 645–691, 2021, doi: 10.1002/pc.26413.

[50] C. V. Fiorini, “Railway noise in urban areas: Assessment and prediction on infrastructure improvement combined with settlement development and regeneration in central Italy,” Applied Acoustics, vol. 185, 2022, Art. no. 108413, doi: 10.1016/j.apacoust.2021.108413.

[51] J. Rose, “American railway engineering and maintenance-of-way association: Introduction to railroad infrastructure,” 2010. [Online]. Available: https://web.engr.uky.edu/~jrose/ RailwayIntro/Modules/Module%202%20 Railroad%20Infrastructure%20REES%202010.pdf

[52] F. Guo, Y. Qian, and Y. Shi, “Real-time railroad track components inspection based on the improved YOLOv4 framework,” Automation in Construction, vol. 125, 2021, Art. no. 103596, doi: 10.1016/j.autcon.2021.103596.

[53] S. Senaratne, O. Mirza, T. Dekruif, and C. Camille, “Life cycle cost analysis of alternative railway track support material: A case study of the Sydney harbour bridge,” Journal of Cleaner Production, vol. 276, 2020, Art. no. 124258, doi: 10.1016/j.jclepro.2020.124258.

[54] A. B. Morgan, “23 - Flame retardant fiberreinforced composites,” in Handbook of Fire Resistant Textiles. Cambridge: Woodhead Publishing, 2013, pp. 623–652, doi: 10.1533/ 9780857098931.4.623.

[55] R. N. Walters and R. E. Lyon, “Molar group contributions to polymer flammability,” Journal of Applied Polymer Science, vol. 87, pp. 548– 563, 2003, doi: 10.1002/app.11466.

[56] M. L. Bras, S. Duquesne, M. Fois, M. Grisel, and F. Poutch, “Intumescent polypropylene/flax blends: A preliminary study,” Polymer Degradation and Stability, vol. 88, pp. 80–84, 2005, doi: 10.1016/j.polymdegradstab.2004.04.028.

[57] A. Jacob, “Technology is the driver for Sistema Compositi,” Reinforced Plastics, vol. 41, pp. 38– 41, 1997.

[58] M. Grasso, A. Gallone, A. Genovese, L. Macera, F. Penta, G. Pucillo, and S. Strano, “Composite material design for rail vehicle innovative lightweight components,” Proceedings of the World Congress on Engineering, vol. II, pp. 731–736, 2015.

[59] L. Nickels, “Bio revolution for UK rail,” Reinforced Plastics, vol. 62, pp. 302–303, 2018, doi: 10.1016/j.repl.2018.10.003.

[60] I.-W. Lee, S. Pyo, and Y.-H. Jung, “Development of quick-hardening infilling materials for composite railroad tracks to strengthen existing ballasted track,” Composites Part B: Engineering, vol. 92, pp. 37–45, May 2016, doi: 10.1016/j.compositesb. 2016.02.042.

[61] Z. Zeng, A. A. Shuaibu, F. Liu, M. Ye, and W. Wang, “Experimental study on the vibration reduction characteristics of the ballasted track with rubber composite sleepers,” Construction and Building Materials, vol. 262, 2020, Art. no. 120766, doi: 10.1016/j.conbuildmat.2020. 120766.
[62] B. Indraratna, Y. Qi, T. N. Ngo, C. Rujikiatkamjorn, T. Neville, F. B. Ferreira, and A. Shahkolahi, “Use of geogrids and recycled rubber in railroad infrastructure for enhanced performance,” Geosciences, vol. 9, no. 1, 2019, Art. no. 30, doi: 10.3390/geosciences9010030.

[63] J. C. Vélez, J. A. C. Cornelio, R. B. Sierra, J. F. Santa, L. M. Hoyos-Palacio, R. Nevshupa, and A. Toro, “Development of a composite friction modifier with carbon nanotubes for applications at the wheel–rail interface,” Advanced Composites Letters, vol. 29, pp. 1–8, 2020, doi: 10.1177/2633366X20930019.

[64] E. Choi, I. Rhee, J. Park, and B. -S. Cho, “Seismic retrofit of plain concrete piers of railroad bridges using composite of FRP-steel plates,” Composites Part B: Engineering, vol. 42, pp. 1097–1107, 2011, doi: 10.1016/j.compositesb.2011.03.024.

[65] H. T. Ali, R. Akrami, S. Fotouhi, M. Bodaghi, M. Saeedifar, M. Yusuf, and M. Fouhi, “Fiber reinforced polymer composites in bridge industry,” Structures, vol. 30, pp. 774–785, 2021, doi: 10.1016/j.istruc.2020.12.092.

[66] N. N. M. Telang, “Field inspection of in-service FRP bridge decks,” in National Academies of Sciences, Engineering, and Medicine. Washington, DC: The National Academies Press, 2006, doi: 10.17226/23284.

[67] A. Shojaei, M. Fahimian, and B. Derakhshandeh, “Thermally conductive rubber-based composite friction materials for railroad brakes – Thermal conduction characteristics,” Composites Science and Technology, vol. 67, pp. 2665–2674, 2007, doi: 10.1016/j.compscitech.2007.03.009.

[68] A. E. Anderson, “Friction and wear of automotive brakes, friction, lubrication, and wear technology,” in ASM Handbook, Volume 18. Ohio: ASM International, 1992, pp. 568–577.

[69] E. Haddadi, F. Abbasi, and A. Shojaei, “Wear and thermal effects in low modulus polymer-based composite friction materials,” Journal of Applied Polymer Science, vol. 95, pp. 1181–1188, 2005, doi: 10.1002/app.21208.

[70] S. R. Sachin, T. K. Kannan, and R. Rajasekar, “Effect of wood particulate size on the mechanical properties of PLA biocomposite,” Pigment & Resin Technology, vol. 49, pp. 465–472, 2020, doi: 10.1108/PRT-12-2019-0117.

[71] P. Kaliappan, R. Kesavan, and B. Vijaya Ramnath, “Investigation on effect of fibre hybridization and orientation on mechanical behaviour of natural fibre epoxy composite,” Bulletin of Materials Science, vol. 40, pp. 773–782, 2017, doi: 10.1007/s12034-017-1420-2.

[72] K. N. Bharath, P. Madhu, T. G. Y. Gowda, A. Verma, S. M. Rangappa, and S. Siengchin, “A novel approach for development of printed circuit board from biofiber based composites,” Polymer Composites, vol. 41, pp. 4550–4558, 2020, doi: 10.1002/pc.25732.

Full Text: PDF

DOI: 10.14416/j.asep.2022.03.001

Refbacks

  • There are currently no refbacks.