Page Header

Experimental Analysis of Surface Roughness in the Cutting Process of Sugar Palm Fiber Reinforced Unsaturated Polyester Composites with Laser Beam and Abrasive Water Jet Cutting Technologies

Fathi Masoud, Salit Mohd Sapuan, Mohd Khairol Anuar Mohd Ariffin, Yusoff Nukman, Emin Bayraktar

Abstract


This research aims to investigate the effects of the input parameters on the surface roughness as output parameters of CO2 laser and abrasive water jet (AWJ) machining technologies utilized in cutting sugar palm fiber reinforced unsaturated polyester (SPF-UPE) composite of three specimen thicknesses. The objective of this study is to collect data involve the optimal parameters of these technologies regarding the surface roughness response. The motive was to avoid defects arising use in the conventional cutting techniques. In the AWJ technique, stand-offdistance, traverse speed, and water pressure were chosen as variable input parameters to optimize the surface roughness, whereas laser power, traverse speed, and gas pressure were the variable input parameters in the CO2 laser cutting technique. Taguchi’s approach was used to estimate the input parameter’s levels that produce the best surface roughness. Analysis of variation (ANOVA) was used to determine the contribution of every single input processing parameter to the effect on the surface roughness response. Good surface roughness responses could be attained by applying the optimum input parameters determined in this study. The experimental results of the current research provide practical data for the cutting of SPF-UPE composites with CO2 laser and AWJ machining techniques, and the findings can be used as a good starting point for the testing of other similar composites under the same cutting conditions

Keywords



[1] M. Li, Y. Pu, V. M. Thomas, C. G. Yoo, S. Ozcan, Y. Deng, K. Nelson, and A. J. Ragauskas, “Recent advancements of plant-based natural fiber– reinforced composites and their applications,” Composite Part B: Engineering, vol. 200, Nov. 2020.

[2] W. Liu, T. Chen, M. Fei, R. Qiu, D. Yu, T. Fu, and J. Qiu, “Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition,” Composite Part B: Engineering, vol. 171, pp. 87–95, Apr.2019.

[3] A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor, “Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites,” Journal of Materials Research and Technology, vol. 8, pp. 3988–3994, 2019.
[4] C. Santos, T. Santos, K. Moreira, M. Aquino, and R. F. L. Zillio, “Statistical study of the influence of fiber content, fiber length and critical length in the mechanical behavior of polymeric composites reinforced with Carica papaya fibers (CPFs),” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 719–726, 2021, doi: 10.14416/ j.asep.2021.07.002.

[5] M. Puttegowda, H. Pulikkalparambil, and S. M. Rangappa, “Trends and developments in natural fiber composites,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 543– 552, 2021, doi: 10.14416/j.asep.2021.06.006.

[6] F. Masoud, S. M. Sapuan, M. K. A. M. Ariffin, Y. Nukman, and E. Bayraktar, “Experimental analysis of kerf taper angle in cutting process of sugar palm fiber reinforced unsaturated polyester composites with laser beam and abrasive water jet cutting technologies,” Polymers, vol. 13, Jul. 2021, doi: 10.3390/polym13152543.

[7] A. Lotfi, H. Li, and D. V. Dao, “Drilling behavior of flax/poly(lactic acid) bio-composite laminates: An experimental investigation,” Journal of Natural Fibers, vol. 17, pp. 1264–1280, Dec. 2020.

[8] E. Sarikaya, H. Çallioğlu, and H. Demirel, “Production of epoxy composites reinforced by different natural fibers and their mechanical properties,” Composite Part B: Engineering, vol. 167, pp. 461–466, Jun. 2019.

[9] J. Sahari, S. M. Sapuan, Z. N. Ismarrubie, and M. Z. A. Rahman, “Comparative study of physical properties based on different parts of sugar palm fibre reinforced unsaturated polyester composites,” Key Engineering Materials, vol. 471–472, pp. 455–460, Feb. 2011.

[10] J. Sahari, S. M. Sapuan, Z. N. Ismarrubie, and M. Z. A. Rahman, “Tensile and impact properties of different morphological parts of sugar palm fibre-reinforced unsaturated polyester composites,” Polymers and Polymer Composite, vol. 20, pp. 861–866, Nov. 2012.

[11] J. Sahari, S. M. Sapuan, Z. N. Ismarrubie, and M. Z. A. Rahman, “Investigation on bending strength and stiffness of sugar palm fibre from different parts reinforced unsaturated polyester composites,” Key Engineering Materials, vol. 471–472, pp. 502–506, Feb. 2011.

[12] M. R. Ishak, S. M. Sapuan, Z. Leman, M. Z. A. Rahman, U. M. K. Anwar, and J. P. Siregar, “Sugar palm (Arenga pinnata): Its fibres, polymers and composites,” Carbohydrate Polymers, vol. 91, pp. 699–710, Jan. 2013.

[13] F. Masoud, S. M. Sapuan, M. K. A. M. Ariffin, Y. Nukman, and E. Bayraktar, “Experimental analysis of heat-affected zone (Haz) in laser cutting of sugar palm fiber reinforced unsaturated polyester composites,” Polymers, vol. 13, no. 5, pp. 1–12, Feb. 2021.

[14] M. N. Norizan, K. Abdan, M. S. Salit, and R. Mohamed, “Physical, mechanical and thermal properties of sugar palm yarn fibre loading on reinforced unsaturated polyester composites,” Journal of Physical Science, vol. 28, pp. 115– 136, Nov. 2017.

[15] A. Atiqah, M. Jawaid, S. M. Sapuan, M. R. Ishak, M. N. M. Ansari, and R. A. Ilyas, “Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites,” Journal of Materials Research and Technology, vol. 8, pp. 3726–3732, 2019.

[16] S. N. Syaqira S, Z. Leman, S. M. Sapuan, T. T. Dele-Afolabi, M. A. Azmah Hanim, and S. Budati, “Tensile strength and moisture absorption of sugar palm-polyvinyl butyral laminated composites,” Polymers, vol. 12, Aug. 2020, doi: 10.3390/polym12091923.

[17] N. M. Nurazzi, A. Khalina, S. M. Sapuan, R. A. Ilyas, S. A. Rafiqah, and Z. M. Hanafee, “Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites,” Journal of Materials Research and Technology, vol. 9, pp. 1606–1618, Apr. 2020.
[18] M. I. Shaharuddin, M. S. Salit, M. Z. M. Yusoff, and M. A. Rahman, “Handgrip automotive prototype of polypropylene reinforced benzoyl treated kenaf and sugar palm fibers: A facile flexural strength and hardness studies,” Applied Science and Engineering Progress, vol. 15, 2022, Art. no. 5883, doi: 10.14416/j.asep.2022.04.005.

[19] Y. H. Çelik and M. S. Alp, “Determination of milling performance of jute and flax fiber reinforced composites,” Journal of Natural Fibers, vol. 19, no. 2, pp. 782–796, May 2020, doi: 10.1080/15440478.2020.1764435.

[20] Y. H. Çelik, E. Kilickap, and A. İ. Kilickap, “An experimental study on milling of natural fiber (jute)- reinforced polymer composites,” Journal of Composite Materials, vol. 83, Jan. 2019, doi: 10.1177/0021998319826373.

[21] A. Lotfi, H. Li, D. V. Dao, and G. Prusty, “Natural fiber–reinforced composites: A review on material, manufacturing, and machinability,” Journal of Thermoplastic Composite Materials, vol. 34, Apr. 2019, doi: 10.1177/0892705719844546.

[22] T. Rajmohan, R. Vinayagamoorthy, and K. Mohan, “Review on effect machining parameters on performance of natural fibre–reinforced composites (NFRCs),” Journal of Thermoplastic Composite Materials, vol. 32, Sep. 2018, doi: 10.1177/0892705718796541.

[23] R. Vinayagamoorthy and T. Rajmohan, “Machining and its challenges on bio-fibre reinforced plastics: A critical review,” Journal of Reinforced Plastics and Composites, vol. 37, pp. 1037–1050, 2018.

[24] J. L. Mercy, P. Sivashankari, M. Sangeetha, K. R. Kavitha, and S. Prakash, “Genetic optimization of machining parameters affecting thrust force during drilling of pineapple fiber composite plates–an experimental approach,” Journal of Natural Fibers, vol. 19, pp. 1729–1740, Jul 2020.

[25] S. P. Jani, A. S. Kumar, M. A. Khan, and M. U. Kumar, “Machinablity of hybrid natural fiber composite with and without filler as reinforcement,” Materials and Manufacturing Processes, vol. 31, no. 10, pp. 1393–1399, Mar. 2016.

[26] H. Rezghi Maleki, M. Hamedi, M. Kubouchi, and Y. Arao, “Experimental study on drilling of jute fiber reinforced polymer composites,” Journal of Composite Materials, vol. 53, pp. 283–295, Jun. 2019.

[27] S. A. Sobri, R. Heinemann, and D. Whitehead, “Development of laser drilling strategy for thick carbon fibre reinforced polymer composites (Cfrp),” Polymers, vol. 12, pp. 1–21, Nov. 2020.

[28] A. Díaz-Álvarez, Á. Rubio-López, C. Santiuste, and M. H. Miguélez, “Experimental analysis of drilling induced damage in biocomposites,” Textile Research Journal, vol. 88, pp. 2544–2558, Aug. 2017.

[29] P. F. M. Ares, F. G. Mata, M. B. Ponce, and J. S. Gómez, “Defect analysis and detection of cutting regions in CFRP machining using AWJM,” Materials, vol. 12, Dec. 2019, doi: 10.3390/ma12244055

[30] Jagadish, K. Gupta, and M. Rajakumaran, “Evaluation of machining performance of pineapple filler based reinforced polymer composites using abrasive water jet machining process,” IOP Conference Series: Materials Science and Engineering, vol. 430, 2018, doi:10.1088/1757- 899X/430/1/012046.

[31] F. Masoud, S. M. Sapuan, M. K. A. M. Ariffin, Y. Nukman, and E. Bayraktar, “Cutting processes of natural fiber-reinforced polymer composites,” Polymers, vol. 12, no. 6, pp. 15–17, Jun. 2020.

[32] S. Akıncıoğlu, “Investigation of effect of abrasive water jet (AWJ) machining parameters on aramid fiber-reinforced polymer (AFRP) composite materials,” Aircraft Engineering and Aerospace Technology, vol. 93, pp. 615–628, Jan. 2021.

[33] S. S. R. Raj, J. E. R. Dhas, and C. P. Jesuthanam, “Challenges on machining characteristics of natural fiber-reinforced composites – A review,” Journal of Reinforced Plastics and Composites, vol. 40, pp. 41–69, Jul. 2021.

[34] A. Alberdi, A. Suárez, T. Artaza, G. A. Escobar- Palafox, and K. Ridgway, “Composite cutting with abrasive water jet,” Procedia Engineering, vol. 63, pp. 421–429, Sep, 2013.

[35] J. Zeng, “Determination of machinability and abrasive cutting properties in AWJ cutting,” in 2007 American WJTA Conference and Expo, 2007, pp. 2–5.

[36] Jagadish, S. Bhowmik, and A. Ray, “Prediction and optimization of process parameters of green composites in AWJM process using response surface methodology,” International Journal of Advanced Manufacturing Technology, vol. 87, pp. 1359–1370, Jan. 2016.

[37] H. A. Eltawahni, A. G. Olabi, and K. Y. Benyounis, “Investigating the CO2 laser cutting parameters of MDF wood composite material,” Optics and Laser Technology, vol. 43, pp. 648–659, Apr. 2011.

[38] D. Bachtiar, S. M. Sapuan, and M. M. Hamdan, “The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites,” Materials and Design, vol. 29, pp. 1285–1290, Oct. 2007.

[39] K. Setswalo, N. Molaletsa, O. P. Oladijo, E. T. Akinlabi, S. M. Rangappa, and S. Siengchin, “The influence of fiber processing and alkaline treatment on the properties of natural fiberreinforced composites: A review,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 632–650, 2021, doi: 10.14416/j.asep. 2021.08.005.

[40] A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, “Physical properties of silanetreated sugar palm fiber reinforced thermoplastic polyurethane composites,” IOP Conference Series: Materials Science and Engineering, vol. 368, 2018, doi: 10.1088/1757-899X/ 368/1/012047.

[41] B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, “The mechanical performance of sugar palm fibres (ijuk) reinforced phenolic composites,” International Journal of Precision Engineering and Manufacturing, vol. 17, pp. 1001–1008, Aug. 2016.

[42] F. Quintero, A. Riveiro, F. Lusquiños, R. Comesaña, and J. Pou, “CO2 laser cutting of phenolic resin boards,” Journal of Materials Processing Technology, vol. 211, pp. 1710–1718, Nov. 2011.

[43] M. Li, S. Li, X. Yang, Y. Zhang, and Z. Liang, “Effect of lay-up configuration and processing parameters on surface quality during fiber laser cutting of CFRP laminates,” The International Journal of Advanced Manufacturing Technology, vol. 100, pp. 623–635, Sep. 2019.

[44] A. Solati, M. Hamedi, and M. Safarabadi, “Comprehensive investigation of surface quality and mechanical properties in CO2 laser drilling of GFRP composites,” The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 791–808, Jan. 2019.

[45] V. A. Prabu, S. T. Kumaran, and M. Uthayakumar, “Performance evaluation of abrasive water jet machining on banana fiber reinforced polyester composite,” Journal of Natural Fibers, vol. 14, pp. 450–457, Dec. 2016.

[46] S. Kalirasu, N. Rajini, N. B. Sagar, D. M. Kumar, and A. G. Sankar, “Studies of abrasive water jet machining (AWJM) parameters on banana/ polyester composites using robust design concept,” Applied Mechanics and Materials, vol. 787, pp. 573–577, Aug. 2015.

[47] K. R. Sumesh and K. Kanthavel, “Abrasive water jet machining of Sisal/Pineapple epoxy hybrid composites with the addition of various fly ash filler,” Materials Research Express, vol. 7, no. 3, Mar. 2020, Art. no. 035303.

[48] K. R. Sumesh, K. Kanthavel, and V. Kavimani, “Machinability of hybrid natural fiber reinforced composites with cellulose micro filler incorporation,” Journal of Composite Materials, vol. 54, no. 24, pp. 3655–3671, Apr. 2020.

[49] H. N. Dhakal, S. O. Ismail, S. O. Ojo, M. Paggi, and J. R. Smith, “Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites: A comprehensive analysis of machining-induced damage responses,” The International Journal of Advanced Manufacturing Technology, vol. 99, pp. 2833–2847, Sep. 2018.

Full Text: PDF

DOI: 10.14416/j.asep.2022.11.001

Refbacks

  • There are currently no refbacks.