Page Header

Investigation on Microstructure and Mechanical Characteristics of Sugar Palm Fibre Ash Reinforced LM26 Al-Matrix Composites

Isah Aliyu, Salit Mohd Sapuan, Edi Syams Zainudin, Mohd Yusoff Mohamed Zuhri, Ridwan Yahaya

Abstract


Aluminium alloy of grade LM26 was used as a matrix and sugar palm fiber ash (SPFA) as reinforcement to investigate its microstructural and mechanical characteristics. Stir casting, a cost-effective method of casting was utilized to fabricate the composites, by altering SPFA from 0 to 10 wt% in 2 wt% increments in an LM26 Al-alloy matrix. The microstructural analysis and phase identification were identified with Scanning Electron Microscopy (SEM) attached to Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD), respectively. The composites were tested for density, hardness, tensile strength, compression strength, and impact energy according to ASTM. Microstructural images revealed a homogeneous distribution of SPFA in the LM26 Al-alloy matrix. The phases identified in the composites were α-Al, hard SiO2, Mg2Si, and Al5FeSi. The addition of SPFA decreased the composite density and impact energy by 3.85% and 46.68%, respectively. The compression strength and tensile strength of the composites increased by 23.73% and 27.83%, respectively, at an 8 wt% addition of SPFA. However, further addition of up to 10 wt% SPFA showed a decreasing trend in compression and tensile strength. The hardness of the composites increased by 60.80% after a 10 wt% addition of SPFA. These findings showed that synthesized LM26 Al-SPFA composites could be used in the automotive industries for the fabrication of pistons, connecting rods, brake shoes, and other components due to their excellent mechanical characteristics.

Keywords



[1] J. Grilo, V. H. Carneiro, J. C. Teixeira, and H. Puga, “Manufacturing methodology on casting-based aluminium matrix composites: Systematic review,” Metals, vol. 11, no. 3, pp. 1–30, 2021, doi: 10.3390/met11030436.

[2] S. Seetharaman, J. Subramanian, R. A. Singh, E. W. L. Wong, S. M. L. Nai, and M. Gupta, “Mechanical properties of sustainable metal matrix composites: A review on the role of green reinforcements and processing methods,” Technologies, vol. 10, no. 32, pp. 1–27, 2022.

[3] M. H. Kumar, S. M. Rangappa, and S. Siengchin, “A comprehensive review on metal matrix composites for railway applications,” Applied Science Engineering Progrogress, vol. 15, no. 2, Mar. 2022, doi: 10.14416/j.asep.2022.03.003.

[4] G. Arora and S. Sharma, “A comparative study of aa6351 mono-composites reinforced with synthetic and agro waste reinforcement,” International Journal of Precision Engineering and Manufacturing, vol. 19, no. 4, pp. 631–638, Apr. 2018, doi: 10.1007/s12541-018-0076-1.

[5] M. Ramasamy, A. A. Daniel, and M. Nithya, “Investigation on surface roughness of aluminium (Al7050/TiC/BN) hybrid metal matrix,” Materials Today: Proceedings, vol. 46, pp. 852–856, 2021, doi: 10.1016/j.matpr.2020.12.852.

[6] A. H. Khan, S. A. S. Ahmad, F. Umar, U Noor, R. M. Gul, K. Giasin, and M. Aamir, “Investigating the microstructural and mechanical properties of novel ternary reinforced AA7075 hybrid metal matrix composite,” Materials, vol. 15, no. 5303, pp. 1–18, 2022.

[7] M. B. N. Shaikh, S. Arif, T. Aziz, A. Waseem, M. A. N. Shaikh, and M. Ali, “Microstructural, mechanical and tribological behaviour of powder metallurgy processed SiC and RHA reinforced Al-based composites,” Surfaces and Interfaces, vol. 15, no. May 2018, pp. 166–179, 2019, doi: 10.1016/j.surfin.2019.03.002.

[8] N. S. Kumar, “Fabrication and characterization of Al7075 / RHA /Mica composite by squeeze casting,” Materials Today: Proceedings, vol. 37, no. 2, pp. 750–753, 2020, doi: 10.1016/j.matpr. 2020.05.769.

[9] O. M. Ikumapayi, E. T. Akinlabi, J. D. Majumdar, O. P. Oladijo, and S. A. Akinlabi, “Influence of wood fly ash reinforcement on the wear behaviour of friction stir processed aluminium-based surface matrix composite,” Proceedings of the International Conference on Industrial Engineering Operations Management, 2019, vol. l, pp. 966–977.

[10] S. R. Prabhu, A. K. Shettigar, M. A. Herbert, and S. S. Rao, “Microstructure and mechanical properties of rutile-reinforced AA6061 matrix composites produced via stir casting process,” Transaction Nonferrous Metals Society of China, vol. 29, no. 11, pp. 2229–2236, 2019, doi: 10.1016/S1003-6326(19)65152-6.

[11] H. I. Akbar, E. Surojo, D. Ariawan, A. R. Prabowo, and F. Imanullah, “Fabrication of AA6061-sea sand composite and analysis of its properties,” Heliyon, vol. 7, no. 8, Aug. 2021, doi: 10.1016/j.heliyon.2021.e07770.

[12] R. Manikandan, T. V. Arjunan, and A. R. Nath O. P, “Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite,” Composite Part B: Engineering, vol. 183, no. 2019, Feb. 2020, doi: 10.1016/j.compositesb. 2019.107668.

[13] O. M. Ikumapayi, S. A. Afolalu, O. P. Bodunde, C. P. Ugwuoke, H. A. Benjamin, and E. T. Akinlabi, “Efficacy of heat treatment on the material properties of aluminium alloy matrix composite impregnated with silver nano particle/calcium carbonate Al –AgNp/CaCO3,” International Journal of Advanced Technology Engineering Exploration, vol. 9, no. 89, Apr. 2022, doi: 10.19101/IJATEE.2021.874829.

[14] B. U. Odoni, F. Odikpo, N. C. Chinasa, and R. O. Akaluzia, “Experimental analysis, predictive modelling and optimization of some physical and mechanical properties of aluminium 6063 alloy based composites reinforced with corn cob ash,” Journal of Materials and Engineering Structures, vol. 7, pp. 451–465, 2020.

[15] C. H. Gireesh, K. G. D. Prasad, K. Ramji, and P. V. Vinay, “Mechanical characterization of aluminium metal matrix composite reinforced with aloe vera powder,” Materials Today: Proceedings, vol. 5, no. 2, pp. 3289–3297, 2018, doi: 10.1016/j.matpr.2017.11.571.

[16] S. P. Dwivedi, M. Maurya, N. K. Maurya, A. K. Srivastava, S. Sharma, and A. Saxena, “Utilization of groundnut shell as reinforcement in development of aluminum based composite to reduce environment pollution: A review,” Evergreen, vol. 7, no. 1, pp. 15–25, 2020, doi: 10.5109/2740937.

[17] C. S. Shyn, R. Rajesh, and M. D. Anand, “Review of aluminium 6061 metal matrix composites fabricated using stir casting method and applications,” AIP Conference Proceedings, vol. 2317, 2021 , doi: 10.1063/5.0036169.

[18] A. M. Razzaq, D. L. Majid, U. M. Basheer, and H. S. S. Aljibori, “Research summary on the processing, mechanical and tribological properties of aluminium matrix composites as effected by fly ash reinforcement,” Crystals, vol. 11, no. 1212, pp. 1–20, 2021.

[19] N. K. Maurya, M. Maurya, A. K. Srivastava, S. P. Dwivedi, A. Kumar, and S. Chauhan, “Investigation of mechanical properties of Al 6061/SiC composite prepared through stir casting technique,” Materials Today: Proceedings, vol. 25, pp. 755–758, 2019, doi: 10.1016/j.matpr. 2019.09.003.

[20] V. Veeranaath, S. Sengupta, and R. Joseph, “Analysis of the effect of processing constraints and reinforcement content in properties of aluminum hybrid composites,” Materials Today: Proceedings, vol. 68, pp. 2115–2124, 2022, doi: 10.1016/j.matpr.2022.08.396.

[21] P. Harish, V. M. Srikanth, P. R. Babu, and M. R. C. Sastry, “Characterization of mechanical and tribological properties of aluminium alloy based hybrid composites reinforced with cotton shell ash and silicon carbide,” International Journal Latest Engineering Science, vol. 2, no. 4, pp. 1–15, 2019.

[22] O. Olaniran, O. Uwaifo, E. Bamidele, and B. Olaniran, “An investigation of the mechanical properties of organic silica, bamboo leaf ash and rice husk reinforced aluminium hybrid composite,” Material Science and Engineering International Journal, vol. 3, no. 4, 2019, doi: 10.15406/mseij.2019.03.00103.

[23] S. G. Datau, M. A. Bawa, J. S. Jatau, M. H. Muhammad, and A. S. Bello, “The potentials of kyanite particles and coconut shell ash as strengthener in aluminum alloy composite for automobile brake disc,” Journal Minerals and Materials Characterization and Engineering, vol. 8, no. 3, pp. 84–96, 2020, doi: 10.4236/ jmmce.2020.83006.

[24] J. Singh, N. M. Suri, and A. Verma, “Affect of mechanical properties on groundnut shell ash reinforced Al 6063,” International Journal for Technological Research in Engineering, vol. 2, no. 11, pp. 2619–2623, 2015.

[25] M. A. Bawa, O. B. Umaru, B. T. Abur, I. Salako, and J. S. Jatau, “Effect of locust bean pod ash on the hardness and wear rate of heat treated a356 alloy metal matrix composite for production of automobile brake rotor,” International Journal of Research Publications, vol. 57, no. 1, pp. 36–43, Jul. 2020, doi: 10.47119/IJRP100571720201325.

[26] I. C. Ezema, V. S. Aigbodion, E. G. Okonkwo, and C. S. Obayi, “Fatigue properties of valueadded composite from Al-Si-Mg/palm kernel shell ash nanoparticles,” International Journal of Advanced Manufacturing Technology, vol. 107, no. 7–8, pp. 3247–3257, 2020, doi: 10.1007/ s00170-020-05268-z.

[27] N. S. Ebenezer, B. Vinod, and H. S. Jagadesh, “Corrosion Behaviour of bamboo leaf ashreinforced nickel surface-deposited aluminium metal matrix composites,” Journal of Bio- and Tribo-Corrosion, vol. 7, no. 2, pp. 1–7, 2021, doi: 10.1007/s40735-021-00510-x.

[28] K. O. Babaremu and O. O. Joseph, “Experimental study of corncob and cow horn AA6063 reinforced composite for improved electrical conductivity,” Journal of Physics: Conference Series, vol. 1378, no. 4, 2019, doi: 10.1088/1742- 6596/1378/4/042048.

[29] N. E. Udoye, O. S. I. Fayomi, and A. O. Inegbenebor, “Fractography and tensile properties of AA6061 aluminium alloy/rice husk ash silicon nanocomposite,” International Journal of Chemical Engineering, vol. 2020, pp. 1–8, 2020, doi: 10.1155/2020/8818224.

[30] A. Sharma and P. M. Mishra, “Effects of various reinforcements on mechanical behavior of AA7075 hybrid composites,” Materials Today: Proceedings, vol. 18, pp. 5258–5263, 2019, doi: 10.1016/j.matpr.2019.07.526.

[31] X. Guo, Q. Guo, J. Nie, Z. Liu, Z. Li, G. Fan, D. Xiong, Y Su, J. Fan, and D. Zhang, “Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites,” Materials Science and Engineering A, vol. 711, pp. 643–649, 2018, doi: 10.1016/j.msea.2017.11.068.
[32] S. Jannet, R. Raja, S. R. Ruban, S. Khosla, U. Sasikumar, N. B. Sai, and P. M. Teja, “Effect of egg shell powder on the mechanical and microstructure properties of AA 2024 metal matrix composite,” Materials Today: Proceedings, vol. 44, pp. 135–140, 2021, doi: 10.1016/j.matpr. 2020.08.546.

[33] S. Dev and A. Aherwar, “Study of physicomechanical properties of procelain filled aluminium LM26 alloy for piston material,” International Journal of Mechanical and Production Engineering, vol. 4, no. 9, pp. 38–41, 2016.

[34] P. Mishra, P. Mishra, and R. S. Rana, “Effect of rice husk ash reinforcements on mechanical properties of aluminium alloy (LM6) matrix composites,” Materials Today: Proceedings, vol. 5, no. 2, pp. 6018–6022, 2018, doi: 10.1016/j. matpr.2017.12.205.

[35] P. V. Reddy, P. R. Prasad, D. M. Krishnudu, and E. V. Goud, “An investigation on mechanical and wear characteristics of Al 6063/TiC metal matrix composites using RSM,” Journal of Bio- and Tribo-Corrosion, vol. 5, no. 4, pp. 1–10, 2019, doi: 10.1007/s40735-019-0282-0.

[36] A. A. Abdulrazaq, S. R. Ahmed, and F. M. Mahdi, “Agricultural waste and natural dolomite for green production of aluminum composites,” Cleaner Engineering and Technology, vol. 11, Dec. 2022, doi: 10.1016/j.clet.2022.100565.

[37] A. Balaji, K. Gomathi, U. S. Naveen Rajan, J. Mithil, A. Vinunath, and R. C. Vagish, “Effect of particle size on mechanical behavior of sugarcane bagasse ash reinforced AlSi10Mg alloy,” Materials Today: Proceedings, vol. 66, pp. 1276–1283, 2022, doi: 10.1016/j.matpr.2022.05.126.

[38] K. R. Raju and G. Senthilkumar, “Investigation on properties of LM26 hybrid composite material with ceramic reinforcements,” Mateials Today: Proceedins, vol. 45, pp. 8086–8093, 2021, doi: 10.1016/j.matpr.2021.01.286.

[39] A. Y. Vadghule and P. V. C. Kale, “Tribological evaluation of LM26 aluminum metal matrix composites,” International Research Journal of Engineering Technology (IRJET), vol. 5, no. 6, pp. 2553–2558, 2018.

[40] M. P. Chakravarthy and D. S. Rao, “Proceedings Evaluation of mechanical properties of aluminium alloy (AA6082) reinforced with Rice husk ash (RHA) and Boron carbide (B4C) hybrid metal matrix composites using stir casting method,” Materials Today: Proceedings, vol. 66, pp. 580–586, 2022.

[41] M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review,” Renewable Sustainable Energy Reviews, vol. 54, pp. 533–549, Feb. 2016, doi: 10.1016/j.rser.2015.10.037.

[42] R. A. Ilyas, S. M. Sapuan, A. Atiqah, R. Ibrahim, H. Abral, M. R. Ishak, E. S. Zainudin, N. M. Nurazzi. M. S. N. Atikah, M. N. M. Ansari, M. R. M. Asyral, A. B. M. Supian, and H. Ya, “Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties,” Polymer Composites, vol. 41, no. 2, pp. 459–467, Feb. 2020, doi: 10.1002/pc.25379.

[43] S. S. Panda, A. K. Senapati, and P. S. Rao, “Effect of particle size on properties of industrial and agro waste-reinforced aluminum-matrix composite,” The Journal of The Minerals, Metals & Materials Society, vol. 73, no. 7, pp. 2096– 2103, 2021, doi: 10.1007/s11837-021-04700-3.
[44] Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8/E8M:2013, 2013.

[45] Standard Test Method for Microindentation Hardness of Materials, ASTM E 384:2005, 2005.

[46] Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM E 23:2018, 2018.

[47] P. P. Ikubanni, M. Oki, A. A. Adeleke, A. A. Adediran, and O. S. Adesina, “Influence of temperature on the chemical compositions and microstructural changes of ash formed from palm kernel shell,” Results in Engineering, vol. 8, 2020, doi: 10.1016/j.rineng.2020.100173.

[48] C. U. Atuanya, A. O. A. Ibhadode, and I. M. Dagwa, “Effects of breadfruit seed hull ash on the microstructures and properties of Al-Si-Fe alloy/breadfruit seed hull ash particulate composites,” Results in Physics, vol. 2, pp. 142–149, 2012, doi: 10.1016/j.rinp.2012.09.003.

[49] N. K. Chandla, Yashpal, S. Kant, M. M. Goud, and C. S. Jawalkar, “Experimental analysis and mechanical characterization of Al 6061/ alumina/bagasse ash hybrid reinforced metal matrix composite using vacuum-assisted stir casting method,” Journal of Composite Materials, vol. 54, no. 27, pp. 4283–4297, 2020, doi: 10.1177/0021998320929417.

[50] K. S. Madhu, C. V Venkatesh, B. N. Sharath, and S. Karthik, “Characterization and evaluation of mechanical properties of Al-Zn based hybrid metal matrix composites,” Applied Science Engineering Progrogress, vol. 16, no. 1, pp. 1–13, 2023.

[51] S. O. Akinwamide, O. J. Akinribide, and P. A. Olubambi, “Microstructural evolution, mechanical and nanoindentation studies of stir cast binary and ternary aluminium based composites,” Journal of Alloys and Compound, vol. 850, 2021, doi: 10.1016/j.jallcom.2020.156586.

[52] A. Lakshmikanthan, T. R. Prabhu, U. S. Babu, P. G. Koppad, M. Gupta, M. Krishna, and S. Bontha, “The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 6434–6452, 2020, doi: 10.1016/ j.jmrt.2020.04.027.

[53] M. Udo, P. Babalola, S. Afolalu, S. Ongbali, F. Apeh, and O. Olayiwola-Busari, “Effect of sic reinforcement on mechanical and electrical properties of magnesium-aluminium (Mg-Al) alloy matrix composite,” IOP Conference Series Materials Science and Engineering, vol. 1107, no. 1, Apr. 2021, doi: 10.1088/1757-899X/1107/ 1/012207.

[54] A. K. Yadav, K. M. Pandey, and A. Dey, “Aluminium metal matrix composite with rice husk as reinforcement: A review,” Materials Today: Proceedings, vol. 5, no. 9, pp. 20130– 20137, 2018, doi: 10.1016/j.matpr.2018.06.381.

[55] Y. Afkham, R. A. Khosroshahi, S. Rahimpour, C. Aavani, D. Brabazon, and R. T. Mousavian, “Enhanced mechanical properties of in situ aluminium matrix composites reinforced by alumina nanoparticles,” Archives of Civil and Mechanical Engineering, vol. 18, no. 1, pp. 215– 226, Jan. 2018, doi: 10.1016/j.acme.2017.06.011.

[56] M. Satheesh and M. Pugazhvadivu, “Investigation on physical and mechanical properties of Al6061- Silicon Carbide (SiC)/Coconut shell ash (CSA) hybrid composites,” Physica B: Condensed Matter, vol. 572, pp. 70–75, Nov. 2019, doi: 10.1016/j.physb.2019.07.058.

[57] R. Muralimohan, U. N. Kempaiah, and Seenappa, “Influence of rice husk ash and B4C on mechanical properties of ADC 12 alloy hybrid composites,” Materials Today: Proceedings, vol. 5, no. 11, pp. 25562–25569, 2018, doi: 10.1016/j.matpr. 2018.10.363.

[58] I. Y. Suleiman, S. A. Salihu, and T. A. Mohammed, “Investigation of mechanical, microstructure, and wear behaviors of Al-12% Si/reinforced with melon shell ash particulates,” International Journal of Advanced Manufacturing Technology, vol. 97, pp. 4137–4144, 2018.
[59] K. R. Kumar, T. Pridhar, and V. S. S. Balaji, “Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite,” Journal of Alloys Compounds, vol. 765, pp. 171–179, 2018, doi: 10.1016/j.jallcom.2018.06.177.

[60] S. Kasagani, P. N. Bellamkonda, and S. Sudabathula, “Wear and friction behaviour of coconut shell ash reinforced Aa-7075 metal,” International Journal of Research, vol. 8, no. 477, pp. 477–485, 2020.

[61] B. C. Kandpal, J. Kumar, and H. Singh, “Fabrication and characterisation of Al2O3/aluminium alloy 6061 composites fabricated by Stir casting,” Materials Today: Proceedings, vol. 4, no. 2, pp. 2783–2792, 2017, doi: 10.1016/j.matpr. 2017.02.157.

[62] V. S. Aigbodion, S. B. Hassan, and J. E. Oghenevweta, “Microstructural analysis and properties of Al- Cu-Mg/bagasse ash particulate composites,” Journal of Alloys Compounds, vol. 497, no. 1–2, pp. 188–194, 2010, doi: 10.1016/j.jallcom. 2010.02.190.

Full Text: PDF

DOI: 10.14416/j.asep.2023.02.010

Refbacks

  • There are currently no refbacks.